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1. Introduction

The treatment of Euclidean geometry you will find presented in these notes is loosely
based1 on an approach proposed by Garrett Birkhoff in 1932. Birkhoff, in turn, was heavily
influenced by earlier work of David Hilbert (1899) and Morris Pasch (1882). However, all of
these approaches — and indeed, virtually all other approaches to axiomatic plane geometry
— are essentially refinements of Euclid’s classical treatise, the Elements. The latter text,
written about 300 BC, provided such a beautifully logical development of plane geometry
that its absolute authority remained essentially unchallenged for well over 2000 years.

1.1. Euclidean geometry as an axiomatic theory. Euclidean geometry tries to de-
scribe geometric properties of various subsets of the plane. The geometric figures we will
discuss should be understood to be sets of points; we will use capital letters for points and
write P ∈ m for “the point P belongs to the figure m,” or “the figure m contains the point
P .” The notion of “point” is taken to be fundamental, and we will not attempt to explain
it in terms of simpler notions. There are some other basic notions (line, distance, angle
measure) that are also left undefined. Instead, we will simply postulate some rules which
these objects obey; these “postulates” are usually called the “axioms of Euclidean geome-
try.” All results in Euclidean geometry should be proved by deducing them from
the axioms; justifications such as, “it is obvious,” “it is well-known,” or “it is clear from
the figure” are not acceptable. We allow use of all tautologies and laws of logic. We also
assume standard facts about the real numbers and their properties.

Although a monumental achievement of classical civilization, Euclid’s Elements must un-
fortunately be judged to be somewhat deficient by current mathematical standards of clarity
and rigor. For this reason, various modern authors have developed their own systematic ways
of remedying the limitations of Euclid’s framework. As there are, however, several different
but equally satisfactory ways of accomplishing this, different modern books on geometry
typically use slighlty different sets of axioms. For this reason, you are advised to exercise
considerable care when comparing these notes to any other treatment of the subject.

1.2. Basic objects. The following concepts are the bedrock on which we will build our
theory. No attempt will be made to define or explain them in terms of anything simpler.
However, everything else in these notes will be defined in terms of these basic notions.

• Points: the plane is assumed to consist of elements, called points.
• Lines: certain special subsets of the plane will be called lines;
• Distances: for any two points A and B, it is assumed that there is a real number
|AB|, called the distance between A and B.

• Angle measures: we will eventually introduce some special geometric figures, called
angles. For every angle ∠ABC, it will be assumed that there there is an associated
real number m∠ABC, called the measure of the angle.

1In writing these notes, Stony Brook faculty members made use of numerous secondary sources, including
textbooks by G. E. Martin, by E. G. Golos, and by C. R. Wylie, Jr.
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2. Incidence Axioms

In this section, we introduce the first axioms which deal with lines, points, and the relation
that “the point P lies on the line l.” This relation is often called an incidence relation; hence
the name of this section. We will not discuss distances or angles yet; they will be treated
later by other axioms.

2.1. First Concepts.

Definition 2.1. Two lines l,m are said to be transverse if they are distinct (l 6= m) and have
at least one point in common. When this is true, we will write l " m.

This is slightly different from saying that l and m intersect as point sets. (Why?) Nonethe-
less, the word intersecting is often used to mean “transverse” in contexts where this is unlikely
to cause any confusion.

Definition 2.2. Two lines l and m are called parallel if they are not transverse. When this
is true, we will write l‖m.

Notice that, by this definition, any line is parallel to itself.

Exercise 2.1: Show that two lines l and m are parallel iff either

• l ∩m = ∅; or
• l = m.

Exercise 2.2: Show that l‖m ⇐⇒ m‖l.

2.2. Incidence and Parallel lines Axioms.

Incidence Axiom.

(1) For any two distinct points, there is a unique line that contains these two points.
(2) For any line, there exists a point not on this line.

We will denote the unique line containing points A, B by
←→
AB.

Parallel Axiom. For any line l and a point P not on l, there exists a unique line containing
P and parallel to l.

2.3. First theorems.

Theorem 2.1. The intersection of two transverse lines consists of exactly one point.

Exercise 2.3: Prove this theorem.

Definition 2.3. Two transverse lines are said to meet at their unique point of intersection.

Theorem 2.2. For any lines l,m, n, if l‖m and m‖n, then l‖n.

Exercise 2.4: Prove this theorem.

Exercise 2.5: Let A, B, C be distinct points such that C lies on the line
←→
AB. Show that

then A lies on the line
←→
BC.

Exercise 2.6: Lel l,m, n be lines such that l‖m and n " l. Show that n " m.
4



2.4. Historical remarks. Our Parallel Axiom corresponds to the Fifth Postulate in Eu-
clid’s classical treatment. Starting in the Middle Ages, some scholars wondered whether
it was redundant, in the sense that it might actually be a logical consequence of Euclid’s
other postulates. In the 1830’s, however, Bolyai and Lobachevsky independently became
convinced that this could not be the case, and proposed a conjectural alternative geometry,
in which the Parallel Axiom fails, but all the other axioms of Euclidean geometry still hold.
Half a century later, the logical consistency of this alternative geometry was definitively
proved by Klein and Poincaré, who constructed explicit coordinate models of the so-called
“non-Euclidean plane” or “hyperbolic plane”. For a wonderfully readable, yet mathemat-
ically precise account, see Hilbert and Cohn-Vossen, Geometry and the Imagination,
§§34-35.
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3. Ruler Axiom

In this section we impose a new axiom which describes properties of distance and order
relation for points on a line.

3.1. Ruler Axiom.

Ruler Axiom. Let l be any line. Then there is a one-to-one correspondence f : l → R such
that, for any two points A, B on l, |AB| = |f(A)− f(B)|.

Here the statement that f is a one-to-one correspondence means that for every t ∈ R, there
is exactly one point P ∈ l such that f(P ) = t. In particular, we must have f(P ) 6= f(Q)
whenever P 6= Q.

This axiom roughly says that any line “looks like” the usual number line R. This allows
us to use known properties of R to prove many results about points on lines.

A one-to-one correspondence f : l → R with the distance property stipulated by the Ruler
Axiom is called a coordinate system on l. It is not unique: there are many coordinate systems
on a given line.

Exercise 3.1: Suppose that f : l → R is a coordinate system on the line l, and let c ∈ R be
any real constant. Define g : l → R and h : l → R by

g(A) = c + f(A)

h(A) = c− f(A)

for all A ∈ l. Show that g and h are also coordinate systems on l.

Theorem 3.1. Let P and Q be distinct points. Then there exists a coordinate system f on

the line
←→
PQ such that f(P ) = 0 and f(Q) > 0.

Exercise 3.2: Prove this theorem, using Exercise 3.1.

Exercise 3.3: Let f be a coordinate system on
←→
PQ which satisfies the conditions of Theo-

rem 3.1. For every A ∈
←→
PQ, show that

f(A) =

{
|PA|, if |QA| < |QP | or |QA| < |PA|

−|PA|, otherwise.

(Hint: if c is a positive constant, first show that a real number x is positive iff either |x−c| < c
or |x− c| < |x|.) Then use this to show that the added conditions stipulated by Theorem 3.1

in fact determine a unique coordinate system on
←→
PQ.

Exercise 3.4: Let f be the coordinate system on
←→
PQ given by Theorem 3.1. If g is any

coordinate system on
←→
PQ for which g(P ) < g(Q), use Exercise 3.3 to show that

g(A) = c + f(A),

where c = g(P ). Similarly, if h is any coordinate system on
←→
PQ for which h(P ) > h(Q),

show that
h(A) = c− f(A),

where c = h(P ).

3.2. Order on a line.

Definition 3.1. Let A, B, C be points on a line l. We say that B is between A and C if
there is a coordinate system f on l such that f(A) < f(B) < f(C). When this is true, we
write A−B − C.
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Exercise 3.5: Show that A−B − C iff C −B − A.

Exercise 3.6: Let g be any coordinate system on a line l. If A, B, C are three points of l, use
Exercise 3.4 to show that A−B −C iff either g(A) < g(B) < g(C) or g(A) > g(B) > g(C).

Definition 3.2. Let A, B be distinct points. Then the segment AB is the set of all points

C on the line
←→
AB such that A− C −B.

Note that according to this definition, the endpoints A and B are not included in AB.

Definition 3.3. Let A, B, C be points on a line l, where A 6= C and B 6= C. Then we will
say that A and B are on opposite sides of C if A − C − B. On the other hand, we will say
that A and B are on the same side of C if they are not on opposite sides of C.

Exercise 3.7: Let A, B, C be points on a line l, where A 6= C and B 6= C. Show that A
and B are one the same side of C iff one of the following holds:

• A = B:
• C − A−B; or
• C −B − A.

Theorem 3.2.

(1) Given three distinct points on a line, exactly one of them lies between the other two.
(2) Let A, B, C,D be points on a line l, and suppose that none of the other three points

is equal to D. If A and B are on the same side of D, and if B and D are on the
same side of D, then A and C are on the same side of D.

Exercise 3.8: Prove this theorem.

Theorem 3.3. Let V be a point on the line l. Then the complement of V in l is the union
of two disjoint subsets R1 and R2, such that

• if A, B ∈ R1, then A and B are on the same side of V ;
• if A, B ∈ R2, then A and B are on the same side of V ; but
• if A ∈ R1 and B ∈ R2, then A and B are on opposite sides of V .

The subsets R1 and R2 of l are called rays, or half-lines.

In other words, any point on a line “divides the line into two rays.”

Proof. Choose a coordinate system on l such that f(V ) = 0; by Theorem 3.1, such a coor-
dinate system exists. Define R1 to consist of those points A with f(A) > 0, and define R2

to consist of those points A with f(A) < 0. The stated properties of R1 and R2 then follow
from the fact that 0 lies between two real numbers iff one is positive and one is negative. �

Definition 3.4. Let V and A be distinct points. By Theorem 3.3, V then divides the line
←→
V A into two rays, and exactly one of these rays will contain A. We will denote this preferred

ray by
−→
V A.

Theorem 3.4. Let
−→
V A be a ray, and suppose B ∈

−→
V A. Then

−→
V B=

−→
V A.

Exercise 3.9: Prove this theorem.

3.3. Properties of distance. Here are some easy but useful consequences of the Ruler
Axiom.

Theorem 3.5. For any A, B, |AB| ≥ 0. Moreover, |AB| = 0 iff A = B.

Exercise 3.10: Prove this theorem.
7



Theorem 3.6. Let A, B, C be distinct points such that B ∈ AC. Then

|AB|+ |BC| = |AC|.

Exercise 3.11: Prove this theorem.

Exercise 3.12: Let
−→
V A be a ray, and let r be a positive real number. Show that there is a

unique point P on the ray
−→
V A such that |V P | = r.

Exercise 3.13: If B ∈
−→
V A and |V B| < |V A|, then V −B − A.

Exercise 3.14: Let A and B be distinct points. Show there exists a unique point M on the
segment AB such that |AM | = |MB|. (This point is called the midpoint of AB.)

8



4. Protractor Axiom

The purpose of this section is to discuss angles and their measures. Before we can do so,
however, we will first need to introduce the notion of a half-plane.

Definition 4.1. Let l be a line in the plane, and let P and Q be points which are not on l.
Then we will say that P and Q are on opposite sides of l if P 6= Q and the line segment PQ
meets l. We will say that P and Q are on the same side of l if they are not on opposite sides
of l.

4.1. Plane separation axiom.

Plane Separation Axiom. Let l be a line, and let P , Q, and R be three points which do
not lie on l. If P and Q are on the same side of l, and if Q and R are on the same side of
l, then P and R are also on the same side of l.

Theorem 4.1. The complement of any line l is the union of two disjoint non-empty sets
H1 and H2, such that

• If A, B ∈ H1, then A and B are on the same side of l;
• If A, B ∈ H2, then A and B are on the same side of l; and
• If A ∈ H1 and B ∈ H2, then A and B are on opposite sides of l.

Definition 4.2. The two subsets H1 and H2 in the above theorem are called half-planes

Thus, the plane separation axiom essentially says that any line divides the plane into two
half-planes.

4.2. Angles and their interiors.

Definition 4.3. An angle is the figure consisting of a point A and two distinct rays starting

at A. The angle formed by rays
−→
AB and

−→
AC is denoted by ∠BAC.

Later in these notes, we will sometimes use the abbreviated notation ∠A for ∠BAC if it
is absolutely clear from the context which rays form the sides of the angle.

Definition 4.4. We will say that ∠BAC is a straight angle if A ∈ BC.

Exercise 4.1: Show that an angle ∠BAC is a straight angle iff there is a single line which
contains all three of the points A, B, C.

Definition 4.5. Suppose that ∠BAC is not a straight angle. Then the interior of ∠BAC is
the set of those points which are simultaneously

• on the same side of
←→
AB as C; and

• on the same side of
←→
AC as B.

By contrast, when ∠BAC is a straight angle, we will allow ourselves to choose a half-plane

on one side of
←→
BC, and then refer to this chosen half-plane as the “interior” of ∠BAC. (Of

course, however, the opposite half-plane would have made an equally valid choice).

Exercise 4.2: If ∠BAC is not a straight angle, D lies in the interior of ∠BAC iff

• D /∈
←→
AB;

• D /∈
←→
AC;

• DB ∩
←→
AC= ∅; and

• DC ∩
←→
AB= ∅.
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Exercise 4.3: If C lies in the interior of ∠BAD, show that

every other point of
−→
AC lies in the interior of ∠BAD, too. In

this case, we will say that
−→
AC lies inside of ∠BAD.

A

C

B

D

4.3. Angle measure. One of the basic undefined notions of Euclidean geometry is that of
angle measure: it is assumed that for each angle ∠ABC, there is an associated positive real
number m∠ABC called the measure of ∠ABC. No attempt is made to give a definition of
this measure. Instead, the Protractor Axiom below simply specifies some of its properties.
It is common to use Greek letters α, β, γ, . . . , ϕ, θ for angle measures.

4.4. Historical note. The phrase “measure of an angle” is actually relatively modern.
Up to about 50 years ago, the measure of the angle at A was simply denoted by A or ∠A, and
it was left to the reader to distinguish between the angle and its measure. When convenient,
we will follow this convention, and use the same notation for an angle and its measure.

4.5. The Protractor axiom.

Protractor Axiom.

(1) For any angle ∠BAC, 0 < m∠BAC ≤ π.
(2) If ∠BAC is a straight angle, then m∠BAC = π.

(3) Let A, B be distinct points, and let H be one of half-planes into which
←→
AB divides

the plane. Then, for any α ∈ R with 0 < α < π, there exists a unique ray
−→
AC in the

half-plane H such that m∠BAC = α.

(4) If ray
−→
AC lies inside ∠BAD, then m∠BAD = m∠BAC + m∠CAD.

Note that we measure the angles in radians, so that the measure of straight angle is π rather
than 180. Also, we always measure the smaller of the two sectors formed by two rays, so the
measure of any angle is at most π.

Exercise 4.4: Let A, B be distinct points, and let H be one of the half-planes into which
←→
AB divides the plane. For any real numbers r and α such that r > 0 and 0 < α < π, show
there exists a unique point C in H such that |AC| = r and m∠BAC = α. (Please note that
you can only use the results we have proved; in particular, we do not yet know anything
about circles!)

4.6. When rays are inside an angle. We now come to two important results charac-
terizing when a ray lies inside an angle. First of all, we have:

Theorem 4.2 (Monotonicity of angles). Let A, B, C,D be distinct points such that C and

D lie on the same side of the line
←→
AB. Then m∠BAD < m∠BAC iff

−→
AD is inside the angle

∠BAC.

Exercise 4.5: Show that, without the assumption that C, D lie on the same side of
←→
AB,

Theorem 4.2 would be false.

Exercise 4.6: Prove Theorem 4.2.

The second result discussed in this section is much more subtle:
10



Theorem 4.3 (Crossbar Theorem). Suppose that ∠BAC is a non-straight angle. Then the

ray
−→
AD is inside of ∠BAC if and only if

−→
AD meets the segment BC.

In one direction, this is actually straightforward:

Exercise 4.7: Suppose the
−→
AD meets the segment BC. Show that

−→
AD is inside of ∠BAC.

Part of the other direction is fairly manageable, too:

Exercise 4.8: Suppose that ∠BAC is a non-straight angle, and that
−→
AD is inside of ∠BAC.

Show that either

• the ray
−→
AD meets the segment BC; or else

• the lines
←→
AD and

←→
BC are parallel.

(Use the fact that every point of
←→
BC is either on the same side of

←→
AB as D, or else on the

same side of
←→
AC as D. Then show than any element of

←→
AD which has one of these properties

actually has both.)

To prove Theorem 4.3, it therefore suffices to show that
←→
AD and

←→
BC cannot be parallel.

In Exercise 6.1 below, you will be able to give a proof of this remaining fact, assuming the
Parallel axiom. We remark in passing, however, that Theorem 4.3 can actually be shown to
hold without assuming the Parallel axiom; it is true even in “non-Euclidean” geometry. Such
a proof, however, is much more difficult, and lies beyond the scope of the present notes.

4.7. Vertical and supplementary angles. Let l,m be distinct lines intersecting at
point A. Then these lines define four angles as shown in the figure below (again, this can be
proved but we omit the proof). In this situation, two angles are called supplementary if they
have a common side; otherwise, they are called vertical. Thus, in the figure below angles
∠B1AC1 and ∠C1AB2 are supplementary, while ∠B1AC1 and ∠B2AC2 are vertical.

1B2B

C2

1C

α
1

α
2

β
2

1
β

A

Theorem 4.4.

(1) The sum of the measures of any two supplementary angles is π.
(2) Any two vertical angles have equal measure.

Proof. (1) By part (4) of the Protractor Axiom, the sum of the measures of supplemen-
tary angles is equal to the measure of a straight angle. But by part (b) of the same
axiom, the measure of the straight angle is π.

(2) Let α1, α2 and β1, β2 be the measures of two pairs of vertical angles, arranged as in
the figure above. Then by part (a), α1 + β1 = π. But also by part (a), α2 + β1 = π.
Subtracting these equalities, we get α1 = α2. In a similar way one proves that
β1 = β2.

11
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This result shows that when we have two intersecting lines, they define two different angle
measures, α and β = π − α. The “measure of the angle between two lines” is therefore
ambiguous and undefined; one would need specify which of these is being used in order to
give this phrase a precise meaning.
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5. Triangles

5.1. Basics. A triangle is a figure consisting of three points, A, B, C, not lying on one line,
and the three segments connecting them, AB, BC, AC. The points A, B, C are called the
vertices of the triangle, and the segments AB, BC, and AC are called its sides. A triangle
with vertices A, B, C is denoted 4ABC.

Each triangle defines three angles, ∠BAC, ∠ABC, ∠BCA. In this context, it is common
to use the abbreviated notation ∠A, ∠B, ∠C if it is clear which triangle is being discussed.

Thus, every gives six real numbers: measures of the three angles and lengths of the three
sides. It is common to denote α = m∠A, β = m∠B, γ = m∠C and a = |BC|, b = |AC|, c =
|AB|

This definition formalizes our intuitive picture of a triangle as something built out of three
sticks joined together at the ends.

5.2. Congruence.

Definition 5.1. Two triangles, 4ABC and 4A′B′C ′, are congruent if the corresponding
angles have equal measures, and the corresponding sides have equal lengths. That is, the
triangles 4ABC and 4A′B′C ′ are congruent iff the following six conditions hold:

m∠A = m∠A′ |AB| = |A′B′|
m∠B = m∠B′ |AC| = |A′C ′|
m∠C = m∠C ′ |BC| = |B′C ′|

When this is true, we will write 4ABC ∼= 4A′B′C ′.

Please note that writing 4ABC ∼= 4A′B′C ′ not only indicates that the two triangles are
congruent, but also says that they are congruent in such a way that vertex A corresponds
to vertex A′, B to B′, and C to C ′.

Informally, the notion of congruence has the following intuitive meaning: If you imagine a
triangle as a physical object, constructed of sticks joined at their ends, then two triangles are
congruent if you can put one on top of another so that they exactly match. (Note that you
are allowed to turn a triangle “face down” in the process.) Euclid takes this for granted, but
unfortunately never defines what “moving” a triangle is supposed to mean! In fact, many
modern approaches to Euclidean geometry do rigorously define “rigid motions” of geometric
figures, via special transformations of the plane known as “isometries.” But it is often
the case in mathematics that one can actually accomplish a surprising amount by simply
formalizing a few aspects of an intuitive idea, and then pursuing the logical ramifications of
the resulting abstract concept. This is the point of view we will adopt herein.

5.3. The SAS congruence Axiom. The following is often called the SAS Axiom:

Side-Angle-Side Congruence Axiom. If 4ABC and 4A′B′C ′ are triangles such that

m∠ABC = m∠A′B′C ′, |AB| = |A′B′|, and |BC| = |B′C ′|,

then 4ABC ∼= 4A′B′C ′.

One can also try other ways to specify a triangle in terms of three pieces of information,
such as three sides (SSS), three angles (AAA), two angles and a side, or two sides and an
angle. For two angles and a side, there are two possibilities, one in which the side connects
the two angles (ASA), and one in which it does not (AAS). For two sides and an angle, there
are also two possibilities, one in which the two sides are adjacent to the given angle (SAS)
and the other in which one is not (SSA).

13



Exercise 5.1: Convince yourself that SSS and ASA do define a triangle up to congruence,
but AAA and SSA do not. (We currently do not have enough tools to prove this rigorously,
so here you are merely being asked to draw some convincing diagrams.)

Exercise 5.2: Let A, B, C,D be points such that no three of them lie on a line, the segments
AC and BD intersect, and the intersection point M is the midpoint (see Exercise 3.14) for
each of them. Show that

(1) 4AMD ∼= 4CMB
(2) |AD| = |BC|, |AB| = |CD|
(3) m∠ABD = m∠BDC
(4) m∠ABC = m∠ADC.

(In §6.5, we will see that this shows that the quadrilateral ♦ABCD is a parallelogram.)

5.4. Congruence via ASA.

Theorem 5.1 (ASA). If 4ABC and 4A′B′C ′ are triangles such that

m∠ABC = m∠A′B′C ′, |BC| = |B′C ′|, and m∠ACB = m∠A′C ′B′,

then 4ABC ∼= 4A′B′C ′.

Proof. Suppose we are given two triangles 4ABC and4A′B′C ′ which satisfy these hypothe-
ses. If |AB| and |A′B′| were the same, we could just invoke the SAS Axiom.

A

B

C

D

A

B

C’

’

’

So let us instead suppose that they are different, and show that
this leads to a contradiction. Without loss of generality, assume
that |A′B′| < |AB|; otherwise, just exchange the names of the
two triangles.

By the Ruler Axiom, we can find a point D on
−→
BA such that

|BD| = |B′A′|. Since |BD| < |BA|, D is between A and B, and
−→
CD is therefore inside ∠ACB. Hence m∠DCB < m∠ACB
by Theorem 4.2. But 4DCB ∼= 4A′C ′B′ by the SAS Axiom.
Hence m∠DCB = m∠A′C ′B′. But m∠A′C ′B = m∠ACB by
hypothesis. Thus

m∠DCB = m∠A′C ′B = m∠ACB > m∠DCB.

Therefore m∠DCB > m∠DCB, which is a contradiction.
Hence |AB| = |A′B′|, and 4ABC ∼= 4A′B′C ′ by SAS.

�

Exercise 5.3: In this proof, some of the references to our previous results are actually less
precise than could be desired. In some cases, for example, it might better to refer, not to an
axiom or theorem, but rather to an associated exercise; in other places, no justification has
been given, but some citation would clearly be appropriate. Carefully check each step in the
proof, listing each such imprecision you find, and indicating the manner in which each could
be improved.

5.5. Isosceles triangles. A triangle is isosceles if two of its sides have equal length. The
two sides of equal length are called legs; the point where the two legs meet is called the apex
of the triangle; the other two angles are called the base angles of the triangle; and the third
side is called the base.

While an isosceles triangle is defined to be one with two sides of equal length, the next
theorem tells us that is equivalent to having two angles of equal measure.

14



Theorem 5.2 (Base angles equal). If 4ABC is isosceles, with base BC, then m∠B = m∠C.
Conversely, if 4ABC has m∠B = m∠C, then it is isosceles, with base BC.

Exercise 5.4: Prove Theorem 5.2 by showing that 4ABC is congruent to its reflection
4ACB. Note that there are two parts to the theorem, and so you need to give essentially
two separate arguments.

5.6. Congruence via SSS.

Theorem 5.3 (SSS). If 4ABC and 4A′B′C ′ are such that |AB| = |A′B′|, |AC| = |A′C ′|
and |BC| = |B′C ′|, then 4ABC ∼= 4A′B′C ′.

Proof. If the two triangles were not congruent, then one of the angles of 4ABC would have
measure different from the measure of the corresponding angle of 4A′B′C ′. If necessary,
relabel the triangles so that ∠A and ∠A′ are two corresponding angles which differ, with
m∠A′ < m∠A.

We find a point D and construct the ray
−→
AD so that m∠DAB = m∠A′, and |AD| = |A′C ′|.

(That this can be done follows from Exercise 4.4) It is unclear where the point D lies: it

could lie inside triangle ABC; it could lie on the line
←→
BC between B and C; or it could lie

on the other side of the line
←→
BC. We need to take up these three cases separately.

Exercise 5.5: Suppose the point D lies on the line
←→
BC. Explain why this yields an imme-

diate contradiction.

For both of the remaining cases, we draw the segments BD and CD. We observe that, by
SAS, 4ABD ∼= 4A′B′C ′. It follows that |BD| = |B′C ′| = |BC| and that |AD| = |A′C ′| =
|AC|. Hence 4BDC is isosceles, with base DC, and 4ADC is isosceles with base CD.
Since the base angles of an isosceles triangle have equal measure, m∠BDC = m∠BCD and
m∠ADC = m∠ACD.

B

A C

D

First, we take up the case that D lies outside 4ABC; that is,

D lies on the other side of
←→
BC from A.

Exercise 5.6: Finish this case of the proof, first by showing
that m∠ADC < m∠BDC and m∠BCD < m∠ACD. Then
use the isosceles triangles to arrive at the contradiction that
m∠ADC < m∠ADC.

We now consider the case where D lies inside 4ABC. Let E

be a point on the line
←→
BC so that C is between B and E to some

point E. Observe that m∠BCD + m∠DCA + m∠ACE = π,
from which it follows that m∠BCD + m∠DCA < π. Next,
extend the segment BD past D to some point F . Also extend
the segment AD past the point D to some point G, and extend
the segment CD past the point D to some point H.

Exercise 5.7: Finish this case of the proof by explaining why
π < m∠BDC + m∠CDA and m∠BCD + m∠DCA < π, and
then show that this leads to the contradiction π < π.

B

A

H

F C

E

GD

�
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5.7. Congruence via AAS.

Theorem 5.4 (AAS). Suppose we are given triangles ABC and A′B′C ′, where m∠A =
m∠A′, m∠B = m∠B′, and |BC| = |B′C ′|. Then 4ABC ∼= 4A′B′C ′.

This theorem can be proved by methods similar to those used in the proofs above. We
will skip this for now, however, and will instead give a much simpler proof later, using a
celebrated result about the sum of the angles of any triangle.

This concludes our generalities concerning congruences of triangles. We have now seen
four basic congruence results: ASA, SAS, SSS and AAS. We also have seen that the other
two possibilities, SSA and AAA, are simply not valid. It follows that, for example, if we are
given the lengths of all three sides of a triangle, then the measures of all three angles are
determined. However, we do not as yet have any means of computing the measures of these
angles in terms of the lengths of the sides.

5.8. Median, altitude, and bisector in an isosceles triangle.

Definition 5.2. Two lines intersecting at a point A are perpendicular or orthogonal if each
of the four angles at A has measure π/2. These angles are called right angles.

It is standard mathematical practice to use the words perpendicular and orthogonal to mean
precisely the same thing. Anyone who tries to draw a distinction between them is joking!

In any triangle 4ABC, there are three special lines passing through the arbitrary vertex
we have chosen to call A, namely:

• the altitude from A is perpendicular to
←→
BC;

• the median from A bisects BC, in the sense that it crosses
←→
BC at the midpoint D of

BC, which we constructed in Exercise 3.14; and
• the angle bisector bisects ∠A, in the sense that if E is the point where the angle

bisector meets BC, then m∠BAE = m∠EAC.

Exercise 5.8: For any triangle 4ABC, show there exists a unique median thorough A and
a unique angle bisector through A.

Later we will show the altitude from A actually exists, and is unique. Note that this isn’t
completely trivial!

For most triangles, the three lines through a given vertex we’ve just defined are all different.
For an isosceles triangle, however, they all actually coincide:

Theorem 5.5. If B is the apex of the isosceles triangle ABC, and BM is the median, then
BM is also the altitude, and is also the angle bisector, from B.

Proof. Consider triangles4ABM and4CBM . Then |AB| = |CB| (by definition of isosceles
triangle), |AM | = |CM | (by definition of midpoint), and m∠MAB = m∠MCB (by Theo-
rem 5.2). Thus, by the SAS Axiom, 4ABM ∼= 4CBM . Therefore, m∠ABM = m∠CBM ,
so BM is the angle bisector.

Also, m∠AMB = m∠CMB. On the other hand, by Protractor Axiom, m∠AMB +
m∠CMB = m∠AMC = π. Thus, m∠AMB = m∠CMB = π/2. �

5.9. Inequalities for general triangles.

Theorem 5.6 (Exterior angle inequality). Consider the triangle

4ABC. Let D be some point on the ray
−→
BC, where C lies

between B and D. Then

(1) m∠ACD > m∠B.
(2) m∠ACD > m∠A. DCB

A
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We will later prove a much stronger result, namely, that m∠ACD = m∠A + m∠B.
However, to get this stronger statement we will need to also invoke the Parallel Axiom,
whereas the result we are about to prove remains true even in “hyperbolic geometry,” where
all of our axioms except the Parallel Axiom hold.

Notice that the following proof depends only on direct use of the SAS Axiom, together
with easy consequences of the Incidence, Ruler and Protractor Axioms. This will be an point
important point when we finish the proof of Theorem 4.3 in Exercise 6.1.

Proof. We first prove part (1).

Choose E to be the midpoint of the segment BC, and extend
AE beyond E to F , so that |AE| = |EF |. Now extend FC
beyond C to some point G.

Exercise 5.9: Finish the proof of part (1) by showing that
m∠B = m∠BCF = m∠DCG < m∠DCA. (Hint: use Exer-
cise 5.2.)

DB

A

E

F

G

C

DCB

A

E

F

Exercise 5.10: Give a proof of part (2) using the figure at left
(E is the midpoint of AC, and |EF | = |BE|.)

�

We already know that if two sides of a triangle are equal, then the angles opposite to these
sides are also equal (Theorem 5.2). The next theorem extends this result: in a triangle, if
one angle is bigger than another, the side opposite the bigger angle must be longer than the
one opposite the smaller angle.

Theorem 5.7. In 4ABC, if m∠A > m∠B, then we must have |BC| > |AC|.

Proof. Assume not. Then either |BC| = |AC| or |BC| < |AC|.
Exercise 5.11: Show that if |BC| = |AC|, the assumption m∠A > m∠B is contradicted.

Now assume |BC| < |AC|, find the point D on AC so that

|BC| = |CD|, and draw the line
←→
BD. Then 4BCD is isosceles,

with apex at C. Hence m∠CBD = m∠CDB. Since ∠CDB
is an exterior angle for 4ABD, by Theorem 5.6, m∠CDB >
m∠A. Also, since D lies between A and C, m∠DBC <
m∠ABC. We now have that m∠CBD < m∠CBA < m∠A <
m∠CDB = m∠CBD; so we have reached a contradiction.

CB

A
D

�

The converse of the previous theorem is also true: opposite a long side, there must be a
big angle.

Theorem 5.8. In 4ABC, if |BC| > |AC|, then m∠A > m∠B.

Proof. Assume not. If m∠A = m∠B, then 4ABC is isosceles, with apex at C, so |BC| =
|AC|, which contradicts our assumption.

If m∠A < m∠B, then, by the previous theorem, |BC| < |AC|, which again contradicts
our assumption. �
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The following theorem doesn’t quite say that a straight line provides the shortest route
between two points, but what it does say is certainly closely related. This result is constantly
used throughout much of mathematics, and is known as “the triangle inequality”.

Theorem 5.9 (The Triangle Inequality). In any triangle 4ABC,

|AB|+ |BC| > |AC|.

Proof. Extend the segment AB past B to the point D so that |BD| =
|BC|, and join the points C and D with a line to form4ADC. Observe
that 4BCD is isosceles, with apex at B; hence m∠BDC = m∠BCD.
It is immediate that m∠DCB < m∠DCA. Looking at 4ADC, it
follows that m∠D < m∠C; by Theorem 5.7, this implies |AD| > |AC|.
Our result now follows, since |AD| = |AB|+ |BD| by Theorem 3.6. �

B C

D

A
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6. Parallel Lines Revisited

Looking over the proofs in the previous sections, we see that we haven’t used the Parallel
Axiom since Section 2. For example, our congruence rules for triangles were proved without
using this axiom. In this section, we will see what new results can be obtained from the
Parallel Axiom.

6.1. Alternate interior angles. We will meet the following situation some number of
times. We are given two lines k1 and k2, and a third line m, where m crosses k1 at A1 and m
crosses k2 at A2. Choose a point B1 6= A1 on k1, and choose a point B2 6= A2 on k2, where
B1 and B2 lie on opposite sides of the line m. Then ∠B1A1A2 and ∠B2A2A1 are referred to
as alternate interior angles.

In any given situation, there are two distinct pairs of alternate
interior angles. That is, let C1 be some point on k1, where B1

and C1 lie on opposite sides of m, and let C2 be some point on
k2, where C2 and B2 lie on opposite sides of m. Then one could
also regard ∠C1A1A2 and ∠C2A2A1 as being alternate interior
angles. However, observe that m∠B1A1A2 + m∠C1A1A2 = π
and m∠B2A2A1 + m∠C2A2A1 = π. It follows that one pair of
alternate interior angles are equal if and only if the other pair
of alternate interior angles are equal.

A

A1 B 1

C

C 1
k1

k
B

2

222

m

Theorem 6.1. If the alternate interior angles are equal, then the lines k1 and k2 are parallel.

Proof. Suppose not. Then the lines k1 and k2 meet at some point D. If necessary, we
interchange the roles of the Bi and the Ci so that ∠B1A1A2 is an exterior angle of 4A1A2D.
Then D and B2 lie on the same side of m, so ∠DA2A1 = ∠B2A2A1. By the exterior angle
inequality,

m∠B1A1A2 > m∠A1A2D = m∠B2A2A1 = m∠B1A1A2,

so we have reached a contradiction. �

6.2. Characterization of parallel lines. Let k1 be a line, and let A2 be a point not
on k1. Pick some point A1 on k1 and draw the line m through A1 and A2. By the Protractor
Axiom, we can find a line k2 through A2 so that the alternate interior angles are equal.
Hence we can find a line through A2 parallel to k1.

Theorem 6.2 (Alternate Interior Angles Equal). Two lines k1 and k2 are parallel if and
only if the alternate interior angles are equal.

Proof. To prove the forward direction, construct the line k3 through A2, where there is a
point B3 on k3, with B3 and B2 on the same side of m, so that m∠B3A2A1 = m∠B1A1A2.
Then, by Theorem 6.1, k3 is a line through A2 parallel to k1. The Parallel Axiom implies
k3 = k1. Hence m∠B3A2A1 = m∠B2A2A1, and the desired conclusion follows.

The other direction is just Theorem 6.1, restated as part of this theorem for convenience.
�

Exercise 6.1: Let ∠BAC be a non-straight angle, and choose D so that
←→
AD‖

←→
BC. Use

Theorem 6.2 to show that either D and B are on opposite sides of
←→
AC, or else that D and

C are on opposite sides of
←→
AB. Conclude that D cannot be in the interior of ∠BAC.

Notice that the proof of Theorem 5.6 only depends on Theorem 6.2, along with the Parallel
and SAS axioms; most importantly, it does not logically depend on the Crossbar Theorem in
any way. For this reason, Exercise 6.1, together with Exercise 4.7 and Exercise 4.8, provides
a complete proof of Theorem 4.3.
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6.3. Perpendicular lines. Recall that a right angle is an angle of measure π/2, and that
two intersecting lines are called perpendicular, or orthogonal, if all four angles formed by
these lines are right angles (notation: l ⊥ m). Using Theorem 4.4 (about vertical and
complementary angles), it is easy to see that if one of the four angles is a right angle, then
so are all of them.

Proposition 6.3. Let m ‖ n, l ⊥ m. Then l ⊥ n.

Theorem 6.4. For any line l and a point P , there exists a unique line n such that P ∈
n, n ⊥ l. This line is called the perpendicular from P to l.

Proof. Existence: Let Q be an arbitrary point on l. By the Pro-
tractor Axiom, there exists a line m going through Q such that
m ⊥ l. Now let n be the line going through P and parallel to
m (exists by the Parallel Axiom). By Proposition 6.3, n ⊥ l.

Uniqueness: Assume n1, n2 are two lines, both containing P and
perpendicular to l. Then, by Theorem 6.2, these two lines are
parallel: n1 ‖ n2. But by definition, if two parallel lines have a
common point, they must coincide, i.e. n1 = n2.

�

P

Q

m n

l

Exercise 6.2: Let A, B be distinct points and let M1, M2 be points on different sides of the

line
←→
AB such that |AM1| = |AM2|, |BM1| = |BM2|. Show that

←→
M1M2⊥

←→
AB.

6.4. The sum of the angles of a triangle.

Theorem 6.5. The sum of the measures of the angles of a triangle is equal to π.

Proof. Consider 4ABC, and let m be the line passing through A and
parallel to BC.

Exercise 6.3: Use alternate interior angles to complete the proof of
this theorem.

� B C

A
m

Exercise 6.4: Prove that the external angle of a triangle is equal to the sum of two other
angles, i.e., m∠ACD = m∠A + m∠B (notation as in Theorem 5.6).

Exercise 6.5: Prove Theorem 5.4 (congruence via AAS).

6.5. Parallelograms and rectangles. A quadrilateral is a figure consisting of four
points A, B, C,D (vertices) and segments AB, BC, CD,DA (sides), such that all points are
distinct, no three points lie on the same line, and no two sides intersect (except at vertices).
We will denote the resulting figure by ♦ABCD.

A quadrilateral ♦ABCD is said to be convex if A and C are on opposite sides of
←→
BD, and

if B and D are on opposite sides of
←→
AC.

Exercise 6.6: Show that the quadrilateral ♦ABCD is convex iff its “diagonal” line segments
AC and BD meet in a point.

Exercise 6.7: If ♦ABCD is a convex quadrilateral, use the Crossbar Theorem to show that
C is in the interior of ∠BAD.

Exercise 6.8: Show that the sum of the measures of the angles in a convex quadrilateral is
equal to 2π. (Hint: cut the quadrilateral into two triangles.)

Exercise 6.9: In the previous exercise, what goes wrong if ♦ABCD is not convex? (Hint:
by our conventions, the measure of an angle can never exceed π.)
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Definition 6.1. A parallelogram is a quadrilateral ♦ABCD in which

opposite sides are parallel; that is,
←→
AB is parallel to

←→
CD, and

←→
AD is

parallel to
←→
BC.

A

B C

D

Lemma 6.6. Any parallelogram is a convex quadrilateral.

Proof. Since CD does not meet
←→
AB and BD does not meet

←→
AC, C is in the interior of ∠BAD

by Exercise 4.2. Thus
−→
AC meets BD by the Crossbar Theorem. Similarly,

−→
CA meets BD.

Since
←→
AC meets

←→
BD in only one point, and since

−→
AC ∩

−→
CA= AC, it follows that AC meets

BD. Hence ♦ABCD is convex by Exercise 6.6. �

Theorem 6.7. Let ♦ABCD be a parallelogram. Then m∠A = m∠C; m∠B = m∠D;
|AB| = |CD|; and |BC| = |AD|.

Exercise 6.10: Prove this theorem. (Hint: Draw a diagonal.)

Theorem 6.8. If ♦ABCD is a quadrilateral in which |AB| = |CD| and |AD| = |BC|, then
♦ABCD is a parallelogram.

Exercise 6.11: Prove this theorem.

Definition 6.2. A rectangle is a quadrilateral in which all four angles are right angles. A
rectangle with all four sides of equal length is called a square.

Theorem 6.9. Any rectangle is a parallelogram.

Exercise 6.12: Prove this theorem.

Exercise 6.13: Let ♦ABCD be a parallelogram with diagonals of equal length (that is,
|AC| = |BD|). Then ♦ABCD is a rectangle.
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7. Similarity, and the Pythagorean Theorem

7.1. Similar triangles. We say that triangles 4ABC and 4A′B′C ′ are similar, with
constant of proportionality k, if ∠A = ∠A′, ∠B = ∠B′, ∠C = ∠C ′ and

|A′B′|
|AB|

=
|B′C ′|
|BC|

=
|A′C ′|
|AC|

= k.

If this holds for some positive real number k, we write 4ABC ∼ 4A′B′C ′.
From this definition, it is clear that 4ABC ∼= 4A′B′C ′ iff they are similar with constant

of proportionality k = 1.

Exercise 7.1: Show that if4ABC ∼ 4A′B′C ′ with constant k1 and4A′B′C ′ ∼ 4A′′B′′C ′′

with constant k2, then 4ABC ∼ 4A′′B′′C ′′ with constant k1k2.

7.2. Key theorem. The key tool in the study of similar triangles is the following theorem.

Theorem 7.1. Consider a triangle 4ABC and let B′ ∈
−→
AB,

C ′ ∈
−→
AC be such that lines

←→
BC and

←→
B′C ′ are parallel. Then

|AB′|
|AB|

=
|AC ′|
|AC| A B

C

C

B

Exercise 7.2: Assuming Theorem 7.1, use the Parallel Axiom to show, conversely, that if

B′ ∈
−→
AB, C ′ ∈

−→
AC are such that |AC′|

|AC| = |AB′|
|AB| , then

←→
B′C ′‖

←→
BC.

The proof of Theorem 7.1 is surprisingly difficult, and will be completed in stages. We begin
by proving the following important special case:

Lemma 7.2. Theorem 7.1 is true in the special case in which |AB′|
|AB| = n is a positive integer.

Proof. Divide the segment AB′ into n equal length pieces, i.e. find on it points B1 =
B, B2, . . . , Bn = B′ such that |AB1| = |B1B2| = · · · = |Bn−1Bn|. Through each point Bi,

draw a line li which is parallel to
←→
BC. Let Ci be the intersection point of li with

−→
AC.

Next, for each Ci, draw a line parallel to
←→
AB and let Di be the intersection point of this

line with line Bi+1Ci+1.

B
1

B
3

B
n

B
n−1

B
2

1
C

C
2

C
3

C
n

n−1
C

1
D

D
2

D
n−1

A

Exercise 7.3: Show that each of triangles CiDiCi+1 is congruent to the triangle ABC.
(Hint: ♦BiCiDiBi+1 is a parallelogram.)

Thus, |CiCi+1| = |AC|, so |AC ′| = n|AC|, and

|AC ′|
|AC|

= n =
|AB′|
|AB|

�
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Exercise 7.4: Use Lemma 7.2 to prove Theorem 7.1 in the case when |AB′|
|AB| = 1

m
for some

positive integer m.

Exercise 7.5: Now combine Lemma 7.2 and Exercise 7.4 to prove Theorem 7.1 in the case

when |AB′|
|AB| = n

m
is any positive rational number.

Now, one of the fundamental properties of the real numbers R is that one can find rational
numbers between any two distinct real numbers:

∀x, y ∈ R [x < y =⇒ ∃q ∈ Q (x < q < y)]

Using this fact about R, we can now complete the proof of our key theorem.

Proof of Theorem 7.1. Set

k1 =
|AB′|
|AB|

and k2 =
|AC ′|
|AC|

.

We will show by contradiction that k1 = k2. Indeed, suppose not. Then the trichotomy
axiom for R tells us that either k1 < k2, or else k2 < k1. We will show that either of these
possibilities leads to a contradiction.

If k1 < k2, we can choose a rational number q = n
m

such that k1 < q < k2. Let B′′ be the

unique point of
−→
AB such that

|AB′′|
|AB|

= q

and let C ′′ be the point of
−→
AC such that

←→
B′′C ′′ ‖

←→
BC:

���
���

���
���

���

A AA
B

C
A

A
A

A
A

A

B′

C ′

A
A

A
A

A
AA

B′′

C ′′

Now |AB′| < |AB′′|, since k1 < q. Hence A − B′ − B′′, and A is therefore on the opposite

side of
←→

B′C ′ from B′′. But B′′ and C ′′ are on the same side of
←→

B′C ′, since B′′C ′′ is parallel

to
←→

B′C ′, and so does not meet it. The Plane Separation Axiom therefore tells us that A and

C ′′ are on opposite sides of
←→

B′C ′. Hence A− C ′ − C ′′, so |AC ′| < |AC ′′|, and therefore

k2 =
|AC ′|
|AC|

<
|AC ′′|
|AC|

.

But
|AC ′′|
|AC|

=
|AB′′|
|AB|

= q

by Exercise 7.5, so it follows that k2 < q. But since q was chosen at the outset to satisfy
q < k2, this is a contradiction. Thus k1 < k2 is impossible.

In much the same way, we also obtain a contradiction if k2 < k1. Indeed, if k2 < k1, we
can instead choose a rational number q such that k2 < q < k1, and once again choose B′′ on
−→
AB so that

|AB′′|
|AB|

= q
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and C ′′ on
−→
AC so that

←→
B′′C ′′ ‖

←→
BC:

��
���

���
���

���
�

A AA
B

C
A

A
A

A
A

A

B′′

C ′′

A
A

A
A

A
AA

B′

C ′

This time, |AB′| > |AB′′|, since k1 > q. Hence A−B′′ −B′, and A is therefore on the same

side of
←→

B′C ′ as B′′. But C ′′ is on the same side of
←→

B′C ′ as B′′, and hence on the same side
as A, by the Plane Separation Axiom. Hence A− C ′′ − C ′. Thus |AC ′| > |AC ′′|, and

k2 =
|AC ′|
|AC|

>
|AC ′′|
|AC|

.

But
|AC ′′|
|AC|

=
|AB′′|
|AB|

= q

by Exercise 7.5, so we conclude that k2 > q. But since q was chosen to satisfy q > k2, this
is another a contradiction, and our proof is therefore complete. �

7.3. Existence of similar triangles.

Theorem 7.3. In the situation described by Theorem 7.1, 4ABC ∼ 4AB′C ′.

Proof. By Theorem 6.2 (alternate interior angles equal), ∠B = ∠B′ and ∠C = ∠C ′. By

Theorem 7.1, |AC′|
|AC| = |AB′|

|AB| . Thus, it remains to show that |BC′|
|BC| = |AB′|

|AB| .

Let A′ be a point on
−→
BA such that |A′B′| = |AB|, and let

C ′′ ∈
−→
BC be such that

←→
A′C ′′‖

←→
AC ′.

Exercise 7.6: Show that 4A′B′C ′′ ∼= 4ABC. A B

C

C

BA

C

Using Theorem 7.1, one easily sees that |B
′C′|

|B′C′′| =
|AB′|
|A′B′| . Since |A′B′| = |AB|, and |B′C ′′| =

|BC|, we get |B
′C′|
|BC| = |AB′|

|AB| . �

Corollary 7.4. For any triangle 4ABC and a real number k > 0, there exists a triangle
4A′B′C ′ similar to 4ABC with constant k.

Exercise 7.7: For a triangle 4ABC, let D be the midpoint of AB and F be the midpoint
of AC. Show that

(1)
←→
DF‖

←→
BC

(2) |DF | = 1
2
|BC|

7.4. Similarity via AAA.

Theorem 7.5 (Similarity via AAA). Let 4ABC, 4A′B′C ′ be such that ∠A = ∠A′, ∠B =
∠B′, ∠C = ∠C ′. Then these triangles are similar.

Proof. Let k = |A′B′|
|AB| . Construct a triangle 4A′′B′′C ′′ which is similar to 4ABC with

constant of proportionality k. Then |A′B′| = |A′′B′′|, and ∠A = ∠A′ = ∠A′′, ∠B = ∠B′ =
∠B′′, ∠C = ∠C ′ = ∠C ′′. Thus, by ASA, 4A′B′C ′ ∼= 4A′′B′′C ′′. �
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Theorem 7.6 (Similarity via SAS). Let 4ABC, 4A′B′C ′ be such that ∠A = ∠A′, |A
′B′|
|AB| =

|A′C′|
|AC| . Then these triangles are similar.

Exercise 7.8: Prove this theorem.

7.5. Pythagoras’ Theorem. A right triangle is a triangle in which one of the angles is a
right angle. The hypotenuse of a right triangle is the side opposing the right angle.

The following theorem, often attributed to Pythagoras, and so called the Pythagorean
Theorem, seems to have been known “experimentally” to the Babylonians and Egyptians
as early four thousand years ago, and there is considerable historical evidence that this
knowledge had spread to India and China by the time of Pythagoras’ time, some 2500 years
ago. It is quite plausible, however, that the first actual proof of the theorem may have been
found by Pythagoras’ school, and in any case, the earliest general proof to have come down
to us is the one in Euclid’s Elements. The proof given below is not as geometrically intuitive
as the one presumably discovered by Pythagoras — but it is far easier to derive from our
axioms!

Theorem 7.7 (Pythagorean Theorem). Let 4ABC be a right triangle, with ∠C being the
right angle. Then

|AB|2 = |AC|2 + |BC|2.

Proof. For brevity, set a = |BC|, b = |AC|, and c = |AB|. Drop a perpendicular from C to

AB; let M be the point where this perpendicular intersects
←→
AB.

Exercise 7.9: Show that 4ACM ∼ 4ABC, and deduce from
this that |AM | = b2/c.

Exercise 7.10: Show that4CBM ∼ 4ABC, and deduce from
this that |BM | = a2/c. A B

C

M
Combining these two exercises, we get

c = |AM |+ |MB| = a2

c
+

b2

c
.

Multiplying both sides by c, we obtain the Pythagorean theorem a2 + b2 = c2. �

Exercise 7.11: The figure to the right can be used to give a more “geometrically obvious”
proof of Pythagoras’ theorem — if we allow ourselves to use the notion of “area”.

(1) By computing the area of the large square in two ways,
prove the Pythagorean theorem.

(2) Carefully analyze the proof of part (1) and list all the
properties of area you are using. Can you prove any
of them? (This, of course, depends on how one defines
area.)

Exercise 7.12: Let 4ABC and 4A′B′C ′ be such that |AB| = |A′B′|, |BC| = |B′C ′|, and
m∠C = m∠C ′ = π/2. Prove that 4ABC ∼= 4A′B′C ′.
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8. Circles and lines

8.1. Circles. A circle Σ is the set of points at fixed distance r > 0 from a given point, its
center. The distance r is called the radius of the circle Σ.

The circle Σ divides the plane into two regions: the inside, which is the set of points at
distance less than r from the center O, and the outside, which consists of all points having
distance from O greater than r. Note that every line segment from O to a point on Σ has
the same length r.

A line segment from O to a point on Σ is also called a radius; this should cause no confusion.
A line segment connecting two points of Σ is called a chord, if the chord passes through

the center, then it is called a diameter.
As above, we also use the word diameter to denote the length of a diameter of Σ, that is,

the number that is twice the radius.

8.2. Perpendicular bisector. Let A, B be distinct points. The perpendicular bisector of

segment AB is the line l which contains midpoint of AB and is perpendicular to
←→
AB.

Theorem 8.1. Let A, B be distinct points. Then |OA| = |OB| iff O lies on the perpendicular
bisector of AB.

Corollary 8.2. If A, B are two distinct points on a circle Σ, then the center of Σ lies on
perpendicular bisector of AB.

Proposition 8.3. A line k intersects a circle Σ in at most two points.

Exercise 8.1: Prove this proposition, using proof by contradiction.

8.3. Circumscribed circles. The circle Σ is circumscribed about 4ABC if all
three vertices of the triangle lie on the circle. In this case, we also say that the
triangle is inscribed in the circle.

Note that another way to describe a circle circumscribed about a triangle is to say that
it is the smallest circle for which every point inside the triangle is also inside the circle. In
this view, the problem of circumscribing a circle becomes a minimization problem. A given
triangle lies inside many circles, but the circumscribed circle is, in some sense, the smallest
circle which lies outside the given triangle.

It is not immediately obvious that one can always solve this minimization problem, nor
that the solution is unique.

Proposition 8.4 (Uniqueness of Circumscribed Circles). There is at most one circle cir-
cumscribed about any triangle.

Proof. Suppose there are two circles Σ and Σ′ which are circumscribed about 4ABC. Since
points A, B, and C lie on both circles, AB and BC are chords. By Corollary 8.2, the
perpendicular bisectors of AB and BC both pass through the centers of Σ and Σ′. Since
these two distinct lines can intersect in at most one point, Σ and Σ′ share the same center
O. Since AO is a radius for both circles, they have the same center and radius, and hence
are the same circle. �

Theorem 8.5 (Existence of Circumscribed Circles). Given 4ABC, there is always exactly
one circle Σ circumscribed about it.

Proof. We need to show existence of a circumscribed circle; uniqueness was shown in Propo-
sition 8.4.
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Let D and E be the midpoints of sides AB and BC respectively.
Draw the perpendicular bisectors of AB and BC, and let O be the
point where these two lines intersect (note that O need not be inside
the triangle). Draw the lines AO, BO and CO. By Theorem 8.1,
|AO| = |BO| (since O lies on the perpendicular bisector of AB);
similarly, |BO| = |CO|. Thus, if we denote r = |AO| = |BO| =
|CO|, and let Σ be the circle with center at O and radius r, then
points A, B, C are on Σ.

D

B
O

E

C

A

�

Corollary 8.6. In any triangle, the three perpendicular bisectors of the sides meet at a point.

Exercise 8.2: Explain why Theorem 8.5 implies this corollary.

8.4. Altitudes meet at a point.

Theorem 8.7. In any triangle 4ABC, the three altitudes meet at a point.

Proof. Draw line l through vertex A, such that l ‖
←→
BC; similarly, draw lines through vertices

B and C parallel to opposite sides of 4ABC. Let A′, B′, C ′ be the intersection points of
these lines, as shown in the figure.
Exercise 8.3: (1) Prove that each of triangles

4A′BC,4ABC ′,4AB′C is congruent to 4ABC.
(2) Prove that A is the midpoint of B′C ′, B is the midpoint

of A′C ′, and C is the midpoint of A′B′.
(3) Prove that altitudes of 4ABC are the same as perpen-

dicular bisectors of sides of 4A′B′C ′.

BC

A

A

CB

Since, by Corollary 8.6, perpendicular bisectors of 4A′B′C ′ meet at a point, we see that
altitudes of 4ABC meet at a point. �

8.5. Tangent lines. A line that meets a circle in exactly one point is a tangent line to the
circle at the point of intersection. Our first problem is to show that there is one and only
one tangent line at each point of a circle.

Proposition 8.8. Let A be a point on the circle Σ, and let k be the line through A perpen-
dicular to the radius at A. Then k is tangent to Σ.

Proof. There are only three possibilities for k: it either is disjoint from Σ, which cannot be,
as A is a common point; or it is tangent to Σ at A; or it meets Σ at another point B. If k
meets Σ at B then OAB is a triangle, where ∠A is a right angle. Since OA and OB are both
radii, |OA| = |OB|. Hence 4OAB is isosceles. Hence m∠A = m∠B. We have constructed
a triangle with two right angles, which cannot be; i.e., we have reached a contradiction. �

Proposition 8.9. If k is a line tangent to the circle Σ at the point A, then k is perpendicular
to the radius ending at A.

Proof. We will prove the contrapositive: if k is a line passing through A, where k is not
perpendicular to the radius, then k is not tangent to Σ.

Draw the line segment m from O to k, where m is perpendicular
to k. Let B be the point of intersection of k and m. On k, mark off
the distance |AB| from B to some point C, on the other side of B
from A. Since OB is perpendicular to k, m∠OBA = m∠OBC. By
SAS, 4OBA ∼= 4OBC, and so |OC| = |OA|. Thus both A and C
lie on Σ, and k intersects Σ in two points. Thus, k is not tangent
to Σ.

O

A CB
k
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Corollary 8.10. Let A be a point on the circle Σ. Then there is exactly one line through A
tangent to Σ.

Exercise 8.4: Prove this Corollary.

8.6. Inscribed circles.

A circle Σ is inscribed in 4ABC if all three sides of the triangle are
tangent to Σ. One can view the inscribed circle as being the largest circle
whose interior lies entirely inside the triangle. (Note that it is not quite
correct to say that the circle lies entirely inside the triangle, because the
triangle and the circle share three points.)

We start the search for the inscribed circle with the question of what it means for the
circle to have two tangents which are not parallel.

Proposition 8.11. Let A be a point outside the circle Σ, and let k1 and k2 be tangents to
Σ passing through A. Then the line segment OA bisects the angle between k1 and k2.

Proof. Let Bi be the point where ki is tangent to Σ, for i = 1, 2. Draw the lines OB1 and
OB2. Observe that |OB1| = |OB2| = r, and that, since radii are perpendicular to tangents,

∠OB1A = ∠OB2A = π/2. By Pythagoras theorem, |AB1| =
√
|AB1|2 + r2 = |AB2.

By SSS, 4OB1A ∼= 4OB2A. Hence m∠OAB1 = m∠OAB2. �

From the above, we see that if there is an inscribed circle for 4ABC, then its center lies
at the point of intersection of the three angle bisectors, and its radius is the distance from
this point to the three sides. Hence we have proven the following.

Corollary 8.12 (Inscribed circles are unique). Every triangle has at most one inscribed
circle.

Theorem 8.13. Every triangle has an inscribed circle.

Proof.

Let G be the point of intersection of the angle bisectors from A
and B in 4ABC. Let D be the point where the perpendicular
from G meets AB; let E be the point where the perpendicular
from G meets BC; and let F be the point where the perpendic-
ular from G meets AC.
Observe that, by AAS, 4ADG ∼= 4AFG. Similarly, 4BDG ∼=
4BEG and 4CEG ∼= 4CFG.

D

B

E

C

A

G

F

We have shown that the perpendiculars from G to the three sides all have equal length;
call this length r. Then, by Proposition 8.8, the circle centered at G of radius r is tangent
to the three sides of 4ABC exactly at the points D, E and F . �

Corollary 8.14. The three angle bisectors of a triangle meet at a point; this point is the
center of the inscribed circle.

Exercise 8.5: Give a proof of this corollary using the above theorem.

Exercise 8.6: Let A and B be points on the circle Σ. Let k be the line tangent to Σ at A
and let m be the line tangent to Σ at B. Prove that if k and m are parallel, then the line
segment AB is a diameter of Σ.
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8.7. Central angles. Let Σ be a circle with center O, and let A, B be points on Σ. Then
the angle ∠AOB is called central angle. It turns out that the angles in a triangel ABC
inscribed in Σ are closely related with the corresponding central angles.

Proposition 8.15. Let Σ be a circle with center O, and let A, B, C be distinct points on Σ
such that AC is a diameter of Σ. Then m∠ACB = 1

2
m∠AOB

Proof. Consider the triangle BOC. Since |BO| = |OC|, this tri-
angle is isosceles. Thus, by Theorem 5.2(base angles are equal),
∠OBC = ∠OCB. Now consider ∠AOC. This is an external
angle of 4OBC, so by Exercise 6.4, it is equal to the sum of
two other angles: ∠AOC = ∠OBC + ∠OCB = 2∠OCB =
2∠ACB. �

A

B

C
O

α2α

α

The next step is to generalize it to the case when AC is not necessarily a diameter of Σ.
however, one must be careful when doing this. The following “theorem” seems a natural
generalization — however, it is not correct as stated. We give it here as an example of why
it is dangerous to base your proof on things which are “obvious from the figure”.

Theorem 8.16 (INCORRECT). Let Σ be a circle with center
O, and let A, B, C be distinct points on Σ. Then m∠ACB =
1
2
m∠AOB.

“Proof”. Let D be the point on Σ such that CD is a diameter
(it is easy to show that such a point exists and is unique). Then
m∠ACB = m∠ACD + m∠DCB. Since CD is a diameter, we
can apply Proposition 8.15 to triangles 4ACD,4DCB which
gives ∠ACD = 1

2
∠AOD,m∠DCB = 1

2
m∠DOB, so

m∠ACB =
1

2
(m∠AOD + m∠DOB) =

1

2
m∠AOB

�

C
α2α

A

B

O
2β βD

So what is wrong with this theorem and this proof? Here is one problem: if we choose
A, B, C so that ∠ACB > π/2 as shown below, then according to this theorem, ∠AOB =
2∠ACB > π. But by Protractor axiom, the measure of any angle is ≤ π. So we get a
contradiction which shows that this theorem can not be correct as stated.

CD

B

A

O

Closer look also shows what is the likely origin of this trou-
ble. Namely, looking at this example it seems that the for-
mula m∠ACB = 1

2
m∠AOB would be true if we gave dif-

ferent interpretation of m∠AOB: if instead of measuring the
smaller of two angles formed by rays OA and OB (which is
the definition we used in Protractor axiom and elsewhere), we
measured that of the two angles which contains the point D.
This also shows the gap in the proof: the proof assumes that
m∠AOD + m∠DOB = m∠AOB; however, we didn’t explain
why it is so. It could be justified by referring to Protractor ax-

iom — but only if the ray
−→
OD is inside angle ∠AOB. As the

two figures above show, this is not always true.
As mentioned above, the statement of the theorem can be corrected. There are several

ways of doing so. One possibility is to change the way we measure angles, so instead of saying
“for every angle we have its measure”, we would say “for every sector there is a measure”,
with a sector being one of two regions of the plane bounded by the angle. Then replacing
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in Theorem 8.16 m∠AOB by “measure of the sector bounded by ∠AOB which does not
contain point C” would give a correct theorem.

This can be done (and, in fact, this is the way it is done in most elementary geometry
books), but it would require some work — and it is too late to do so now, as we have already
extensively used the notion of anlge and Protractor axiom. Therefore, instead we give the
following reformulation of Theorem 8.16.

Theorem 8.17. Let Σ be a circle with center O, and let A, B, C be distinct points on Σ.
Then

m∠AOB =

{
2m∠ACB, if m∠ACB ≤ π/2

2π − 2m∠ACB, if m∠ACB > π/2
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9. Coordinates

In this section, we show how one can relate this axiomatic approach to Euclidean geometry
with the familiar coordinate one, in which we use a coordinate system to describe a point by
a pair of real numbers — its x and y coordinates. Please note that this is a relatively new
approach to geometry: it was introduced Descartes in 17th century — less than 4 centuries
ago (for comparison, Euclid’s Elements were written 23 centuries ago). We will discuss
advantages and disadvantages of this approach later.

9.1. Coordinate system. A coordinate system is an identification f : P → R2, where P is
the plane (i.e., the set of all point considered in Euclidean geometry) and R2 is the set of
all pairs (x, y) of real numbers. This naturally extends the notion of coordinate system on a
line, discussed in Ruler Axiom.

As with a line, there is more than one coordinate system on the plane. In order to define
a coordinate system, we need to specify the origin and coordinate axes. Here are the precise
definitions.

Definition 9.1. A coordinate system on the plane is the following collection of data:

• A point O (called the origin).

• Rays
−→
OA and

−→
OB such that

←→
OA⊥

←→
OB.

The lines OA and OB are usually called x-axis and y-axis respectively. Please note that
the definition of coordinate system asks not just for the lines but for the rays — this is
needed to determine the direction on each of the axes.

Now comes the promised result about identifying the set of all points with R2.

Theorem 9.1. Every coordinate system O,
−→
OA,

−→
OB defines an identification of the set of

all points with R2.

Proof. To define an identification, we need:

• Describe a map f : {points} → R2

• Show that conversely, for each (x, y) ∈ R2, there is a unique point P corresponding
to it (i.e., such that f(P ) = (x, y)).

To define f , note first that by Ruler Axiom, choice of O and a ray
−→
OA defines a coordinate

system fx :
←→
OA→ R such that fx(O) = 0, fx(A) > 0. Similarly, ray

−→
OB defines a coordinate

system fy :
−→
OB→ R. This allows us to label points on both axes by real numbers.

Now let P a point. Drop perpendiculars PPx, PPy from P to
←→
OA (x-axis) and

←→
OB (y-axis) (such perpendiculars exist and are

unique by Theorem 6.4). So we have two “projections” of P on
the axes. Next, define the x and y coordinates x = fx(Px), y =
fy(Py) by using the coordinate systems fx on the x-axis and fy

on the y-axis. Thus, we have defined a map which for a given
point P gives pair of real numbers x and y. We will say that
x, y are coordinates of P , or that P has coordinates x, y.

O

P

P

P

x

y

A

B

Conversely, let x, y be real numbers. To show that there is a unique point P with coordi-
nates x, y, let Px be the point on the x-axis such that fx(Px) = x (such a point exists and is
unique by the Ruler Axiom); similarly, let Py be the point on y-axis such that fy(Py) = y.
Let l be the perpendicular to x-axis through Px (exists by Protractor Axiom), and m the
perpendicular to y-axis through Py. Let P be the intersection point of l and m. Then we
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claim that P has coordinates (x, y) we started with, and moreover, P is the only point that
has these coordinates. The proofs of these two statements is left as an easy exercise to the
reader. �

As usual, we will write P = (x, y) to say “point P has coordinates (x, y)”. We will also
commonly use word “horizontal” for a line which is parallel to x-axis and “vertical” for a
line which is parallel to y-axis.

Exercise 9.1: Show that any horizontal line is perpendicular to any vertical line.

Exercise 9.2: Show that two distinct points A, B have the same coordinate iff
←→
AB is a

vertical line.

9.2. Equation of a line. In this section we will show that any line l not parallel to y
axis can be described by an equation y = mx + b. This is not quite easy and requires
some preparation. Throughout this section, we assume that we have chosen some coordinate
system on the plane.

Exercise 9.3: Let A = (x1, y1), B = (x2, y2) be distinct points. Prove that
←→
AB is parallel

to the y-axis iff x1 = x2.

Definition 9.2. Let A = (x1, y1), B = (x2, y2) be points such that x1 6= x2. Then we define
slope of segment AB by

m(AB) =
y2 − y1

x2 − x1

Theorem 9.2. Let l be a line which is not parallel to the y-axis, and let A, B, A′, B′ be
points on l such that A 6= B, A′ 6= B′. Then the slopes of segments AB and A′B′ are equal:
m(AB) = m(A′B′).

Proof.

O

A

B

C

A
B

C

l m
n

Let m be the line through A parallel to x-axis (exists and
is unique by Parallel lines axiom), and n the line through
B parallel to y-axis. By Exercise 9.1, m ⊥ n. Let C be
the intersection point of m,n. Then 4ABC is the right
triangle: m∠C = π/2, and |AC| = x2 − x1, |BC| = y2 − y1

where A = (x1, y1), B = (x2, y2).
Similarly, let m′ be the line through A′ parallel to x-axis,
and n′ the line through B′ parallel to y-axis, and let C ′ be
the intersection point of m′, n′. Then 4A′B′C ′ is the right
triangle: m∠C ′ = π/2, and |A′C ′| = x′2−x′1, |B′C ′| = y′2−y′1
where A′ = (x′1, y

′
1), B

′ = (x′2, y
′
2).

Using Theorem 6.2, we see that m∠A = m∠A′, m∠B = m∠B′. Thus, 4ABC ∼ 4A′B′C ′

by AAA. Thus, by definition of similar triangles, |A
′C′|
|AC| = |B′C′|

|BC| . Denoting this ratio by k, we

get x′2 − x′1 = k(x2 − x1), y
′
2 − y′1 = k(y2 − y1), so

y′2 − y′1
x′2 − x′1

=
y2 − y1

x2 − x1

�

Exercise 9.4: This proof actually has the same deficiencies as our (incorrect) proof of the
theorem about central angles: it uses some information about relative positions of points on
the line l which is true in the figure shown but was not proved (and, in fact, may be false)
in general. Can you identify what information it uses and in which step?
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Fortunately, the theorem is still true: even though the proof above has gaps, it can be
fixed. Can you do this?

This theorem implies that for a line l not parallel to y-axis, we can define its slope m(l)
as the slope of any segment on this line. According to the theorem above, the result doesn’t
depend on which segment we used.

Now we are ready to prove the main result about equation of a line.

Theorem 9.3. Let l be a line with slope m which contains point P = (x0, y0). Then a point
A = (x, y) lies on l iff x, y satisfy the equation

y − y0 = m(x− x0)

Proof. First, we prove that if A ∈ l then x, y satisfy this equation. Indeed, by Theorem 9.2
and the definition of the slope of a line, the slope of AP must be equal to the slope of l, so
y−y0

x−x0
= m. This is equivalent to the equation above.

Conversely, assume that x, y satisfy y − y0 = m(x− x0). We need to prove that A ∈ l.
Consider the line going through A and parallel to y-axis. Let A′ = (x′, y′) be the point of

intersection of this line with l. Since
←→
AA′ is parallel to y-axis, points A and A′ have the same

x-coordinate. Thus, x = x′. Next, by previous argument, y′− y0 = m(x′− x0) = m(x− x0).
Thus, y′ = m(x− x0) + y0 = y. So A = A′. Since by construction ‘A′ ∈ l, this gives A ∈ l.

�

Of course, writing the equation of a line is only the beginning. We could continue in this
vein and develop equations of a circle, develop trigonometry and so on. However, as we do
not have time to cover all this (and most of this you have already seen in other courses), we
stop here.

9.3. Advantages and disadvantages of coordinate method. One of the natural
questions people ask after seeing the coordinate method is this: why don’t we just forget
axiomatic approach to Euclidean geometry and start by defining the plane to be the set R2,
let lines be defined by equations like y = mx+b, and so on? In fact, some mathematicians (for
example, French mathematician J. Dieudonne) have suggested this approach to the study of
geometry. However, this has some serious drawbacks. For example, consider Corollary 8.14:
three angle bisectors in a triangle intersect at a single point. The proof given in these
notes (and going back to Euclid) is rather nice and is based essentially on the fact that
there is a unique inscribed circle. However, proving the same theorem using the coordinate
approach, by writing equations of the three angle bisectors and then showing that these three
equations have a common solution, while not impossible, results in 2 pages of extremely
messy computations. So the coordinate approach, while powerful, is not a replacement for a
more traditional approach: the best way would to to combine them. By the way, Descartes
himself was fully aware of the drawbacks of the coordinate approach and never suggested
that it is a is a magical cure-all.

And for the purposes of MAT 200, we certainly want the axiomatic approach: the whole
point of this part of the course was to show you logic in action, proving results starting
with the axioms and advancing to more and more complicated ones. Axiomatic approach to
Euclidean geometry provides a very good example of this.
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