MAT 127, MIDTERM 2 PRACTICE PROBLEMS

The midterm covers chapters 7.1-7.3 and 8.8 in the textbook. The actual exam will contain 5 problems (some multipart), so it will be shorter than this practice exam.

- **1.** Calculate the second degree Taylor polynomial $T_2(x)$ about a for the following functions.
 - (a) $\sin(x^2)$ where $a = \sqrt{\pi}$.
 - (b) $\operatorname{arccos}(x)$ where a = 1/2.
 - (c) x^x around x = 1.
- **2.** Using Taylors inequality, how well does $T_2(x)$ (calculated above) approximate $\sin(x^2)$ in the interval $[0, 2\sqrt{\pi}]$?
- **3.** Estimate $\cos(0.1)$ to within 2 decimal places. (You may assume that the Maclaurin series for $\sin(x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$.)
- 4. For which constants b, c is $\sin(bx)e^{cx}$ a solution of (a)

$$y'' - 4y.$$

(b)

$$y'' + 2y' + 4y = 0.$$

5. Draw direction fields for the following differential equations.

(a) y = 1	(a)	y'	=	1	
-----------	-----	----	---	---	--

0	r	 		 	

- **6.** Use Eulers Method with step size 0.01 to estimate y(0.02) where y satisfies: (a) y' = y, y(0) = 1.
 - (b) y' = xy, y(0) = 3.
- 7. Solve the following differential equations:

 - (a) $y' = y^2$, y(0) = 1. (b) $y' = 1 + y^2$, y(0) = 0. (c) y' = x y, y(0) = 1 (by substituting u = x y).