MAT 127, MIDTERM 2 PRACTICE PROBLEMS

The midterm covers chapters 7.1-7.3 and 8.8 in the textbook. The actual exam will contain 5 problems (some multipart), so it will be shorter than this practice exam.

- 1. Calculate the second degree Taylor polynomial $T_2(x)$ about a for the following functions.
 - (a) $\sin(x^2)$ where $a = \sqrt{\pi}$.

Answer: We have: $\frac{d}{dx}\sin(x^2) = 2x\cos(x^2)$ and $\frac{d^2}{dx^2}\sin(x^2) = 2\cos(x^2) - 4x^2\sin(x^2)$. So:

$$T_2(x) = 0 + 2\sqrt{\pi} \cdot (-1)(x - \sqrt{\pi} + \frac{1}{2!}(2 \cdot (-1) - 2\sqrt{\pi}^2 \cdot 0)(x - \sqrt{\pi})^2.$$
$$T_2(x) = -2\sqrt{\pi}(x - \sqrt{\pi}) - (x - \sqrt{\pi})^2.$$

(b) $\arccos(x)$ where a = 1/2.

Answer:

We have: $\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}$ and $\frac{d^2}{dx^2}\arccos(x) = -\frac{x}{(1-x^2)^{\frac{3}{2}}}$. So:

$$T_2(x) = \frac{\pi}{3} - \frac{1}{\sqrt{1 - (\frac{1}{2})^2}} (x - \frac{1}{2}) - \frac{1}{2!} \frac{\frac{1}{2}}{(1 - (\frac{1}{2})^2)^{\frac{3}{2}}} (x - \frac{1}{2})^2.$$

$$T_2(x) = \frac{\pi}{3} - \frac{2}{\sqrt{3}} (x - \frac{1}{2}) - \frac{2}{3\sqrt{3}} (x - \frac{1}{2})^2.$$

(c) x^x around x = 1.

Answer:

We have that $x^x = e^{x \ln(x)}$. So $\frac{d}{dx}(x^x) = (\ln(x) + 1)e^{x \ln(x)} = (\ln(x) + 1)x^x$ and $\frac{d^2}{dx^2}(x^x) = (\frac{1}{x} + (\ln(x) + 1)^2)x^x$. Hence

$$T_2(x) = 1^1 + (\ln(1) + 1)1^1(x - 1) + \frac{1}{2!}(\frac{1}{1} + (\ln(1) + 1)^2)1^1(x - 1)^2.$$
$$T_2(x) = 1 + (x - 1) + (x - 1)^2.$$

2. Using Taylors inequality, how well does $T_2(x)$ (calculated above) approximate $\sin(x^2)$ in the interval $[0, 2\sqrt{\pi}]$?

Answer: Taylors inequality is $|T_2(x) - \sin(x^2)| \le \frac{M}{3!} |x - \sqrt{\pi}|^3$ where M is greater than or equal to the maximum of $|\frac{d^3}{dx^3}(\sin(x^2))| = |-12x\sin(x^2) - 8x^3\cos(x^2)|$ on the interval $[0, 2\sqrt{\pi}]$. Because $|\sin(x^2)| \le 1$ and $|\cos(x^2)| \le 1$, and $|x - \sqrt{\pi}| \le \sqrt{\pi} < 2$, we have $M \le 12 \cdot 2 + 8 \cdot 8 = 88$. So $|T_2(x) - \sin(x^2)| \le \frac{44}{3} |x - \sqrt{\pi}|^3$.

3. Estimate $\cos(0.1)$ to within 2 decimal places. (You may assume that the Maclaurin series for $\sin(x)$ is $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$.)

Answer:

First of all we need to find out how many terms we need to calculate using Taylors inequality. We have that: $|T_n(x) - \cos(x)| \le \frac{M}{(n+1)!} |x|^{n+1}|$ in the interval $-0.1 \le x \le 0.1$. Here M is the maximum of $|\frac{d^{n+1}}{dx^{n+1}}\cos(x)|$ on the interval $-0.1 \le x \le 0.1$. Since $\frac{d^{n+1}}{dx^{n+1}}\cos(x)$ is equal to one of $\sin(x), \cos(x), -\sin(x), -\cos(x)$, we can assume that M = 1. So $|T_n(x) - \cos(x)| \le \frac{1}{(n+1)!} |x|^{n+1}$. So $|T_n(0.1) - \cos(0.1)| \le \frac{1}{(n+1)!} 0.1^{n+1}$. We want to find n large enough so that $|T_n(0.1) - \cos(0.1)| \le 0.01$. So it is sufficient find n so that: $\frac{1}{(n+1)!} 0.1^{n+1} \le 0.01$. We have: $\frac{1}{1!} 0.1 = 0.1 > 0.01$, $\frac{1}{2!} 0.1^2 = \frac{1}{2} 0.01 < 0.01$. So n = 2 will do. So $T_2(0.1) = 1 - 0.1^2 = 0.99$.

4. For which constants b, c is $\sin(bx)e^{cx}$ a solution of (a)

$$y'' + 4y = 0$$

 $y' = b\cos(bx)e^{cx} + c\sin(bx)e^{cx}$. $y'' = -b^2\sin(bx)e^{cx} + bc\cos(bx)e^{cx} + c^2\sin(bx)e^{cx}$.

Answer:

So $y'' + 4y = (-b^2 + c^2 - 4)\sin(bx)e^{cx} + (bc)\cos(bx)e^{cx} = 0$. So $-b^2 + c^2 + 4 = 0$ and bc = 0. If b = 0 then $c^2 + 4 = 0$ which has no solution. Hence c = 0 and $-b^2 + 4 = 0$. Hence $b = \pm 2$.

Therefore $b = \pm 2$ and c = 0. Hence $y = \sin(\pm 2x)e^{0x}$. Hence $y = \sin(2x)$ and $y = \sin(-2x)$ are the only solutions of the form $\sin(bx)e^{cx}$.

$$y'' + 2y' + 4y = 0,$$

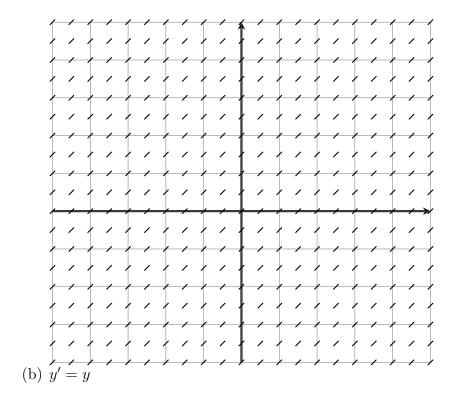
Answer:

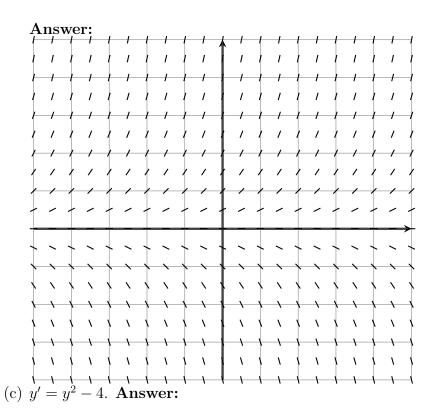
Then $y'' + 2y' + 4 = (c^2 - b^2 + 2c + 4)\sin(bx)e^{cx} + (bc + b)\cos(bx)e^{cx} = 0$. Hence b(c+1) = 0 and so b = 0 or c = -1. If b = 0 then $c^2 + 2c + 4 = 0$ which is impossible as this quadratic equation in c has no roots. Hence c = -1 and so $1 - b^2 - 2 + 4 = 0$ and so $b^2 = 3$ and so $b = \pm \sqrt{3}$. Hence c = -1 and $b = \pm \sqrt{3}$. I.e. $\sin(\pm \sqrt{3}x)e^{-x}$ is a solution.

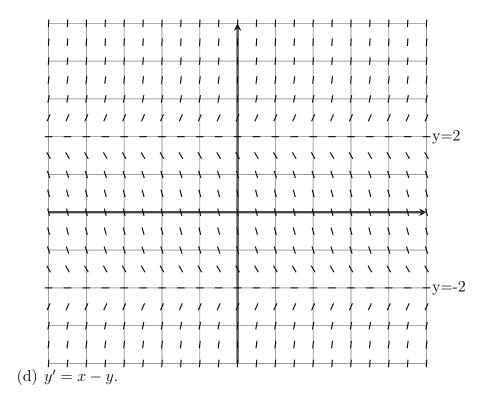
5. Draw direction fields for the following differential equations.

(a)
$$y' = 1$$

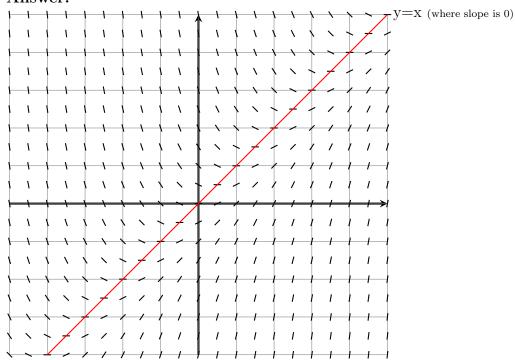
Answer:







Answer:



6. Use Eulers Method with step size 0.01 to estimate y(0.02) where y satisfies: (a) y' = y, y(0) = 1.

Answer:

 $x_0 = 0, x_1 = 0.01, x_2 = 0.02.$ So $y_0 = 1, y_1 = 1 + 1 \times 0.01 = 1.01, y_2 = 0.02$ $1.01 + 1.01 \times 0.01 = 1.01 + 0.0101 = 1.0201.$

(b) y' = xy, y(0) = 3.

Answer:

 $x_0 = 0, x_1 = 0.01, x_2 = 0.02.$ So $y_0 = 3, y_1 = 3 + 0 \times 3 \times 0.01 = 3, y_2 = 0.02$ $3 + 0.01 \times 3 \times 0.01 = 3.0003$.

- 7. Solve the following differential equations:
 - (a) $y' = y^2$, y(0) = 1.

Answer:

Solve using separation of variables. So $\frac{1}{u^2}y'=1$ and hence $\int \frac{1}{u^2}dy=\int 1dx$. Hence $-\frac{1}{y} = x + C$. Therefore $y = \frac{1}{C-x}$. We also have y(0) = 1. Hence $\frac{1}{C-0} = 1$ which implies that C = 1. Hence $y = \frac{1}{1-x}$.

(b) $y' = 1 + y^2, y(0) = 0.$

Answer: Solve using separation of variables. $\int \frac{1}{1+y^2} dy = \int 1 dx = x + C$.

We have that $\int \frac{1}{1+y^2} dy = \arctan(y)$. Hence $\arctan(y) = x + C$. Hence y = $\tan(x+C)$.

We have $y(0) = \tan(0 + C) = 0$ and so C = 0. Hence $y = \tan(x)$.

(c) y' = x - y, y(0) = 1 (by substituting u = x - y).

Answer:

We have y' = u. Hence $y' = \frac{dy}{du} \frac{du}{dx} = \frac{dy}{du} (1 - y') = \frac{dy}{du} (1 - u) = u$. Therefore

Hence $y = \int \frac{u}{1-u} du$. Substitute v = 1 - u then dv = -du. Hence $y = -\int \frac{1-v}{v} dv = -\int \frac{1}{v} + 1 dv = -\ln|v| + v + C = -\ln|1-u| + 1 - u + C = -\ln|1-x+y| + 1 - x + y + C$.

Hence $y = -\ln|1-x+y|+1-x+y+C$. Therefore $0 = -\ln|1-x+y|+1-x+C$. Hence $\ln |1-x+y| = 1-x+C$. Hence $|1-x+y| = e^{1-x+C}$. Hence $1-x+y = Ae^{1-x}$ for some constant A. Therefore $y = Ae^{1-x} + x - 1$.

Now y(0) = 1 and hence 1 = Ae + 0 - 1. Hence Ae = 2, so $A = 2e^{-1}$. Hence $y = 2e^{-1}e^{1-x} + x - 1 = 2e^{-1}e^{1}e^{-x} + x - 1 = 2e^{-x} + x - 1.$

Therefore $y = 2e^{-x} + x - 1$ is our solution.