Final exam practice problems with solutions MAT 127 Dec 7, 2015

Name:	ID #:
(please print)	
Your section:	(see list below)

This is a collection of practice problems for the final exam. Note that it is much longer than the actual exam.

In these solutions, we used a calculator to compute approximate decimal values of our answers. In the actual exam, you will not be required to do so: you can leave the answer as an expression involving some algebraic, trigonometric, exponential, or logarithmic functions

Lecture 01	MWF 10:00 AM $-$ 10:53 AM	Alexander Kirillov
Lecture 02	MW 5:30 PM $- 6:50$ PM	Mark McLean
Lecture 04	TUTH $5:30 \text{ PM} - 6:50 \text{ PM}$	Sabyasachi Mukherjee

1. For each of the following sequence, determine whether it converges. If it converges, find the limit.

(a)
$$a_n = \frac{n^3 + 2}{2n^4 + 1}$$

(b) $a_n = n \sin(\pi/n)$
(c) $a_n = \sqrt{2n + 1} - \sqrt{2n - 1}$
(d) $a_n = \frac{2^n}{n!}$
Answer:
(a) $\lim a_n = \lim \frac{\frac{1}{n} + \frac{2}{n^4}}{2 + \frac{1}{n^4}} = 0$
(b) Use L'Hopital's rule: $\lim_{x \to \infty} x \sin(\pi/x) = \lim_{t \to 0^+} \frac{1}{t} \sin(\pi t) = \frac{\pi}{1}$
(c) Multiplying by $\sqrt{2n + 1} + \sqrt{2n - 1}$:
 $a_n = \frac{(\sqrt{2n + 1} - \sqrt{2n - 1})(\sqrt{2n + 1} + \sqrt{2n - 1})}{\sqrt{2n + 1} + \sqrt{2n - 1}} = \frac{2}{\sqrt{2n + 1} + \sqrt{2n - 1}}$
so $\lim a_n = 0$.

n

(d) Since

$$\frac{a_{n+1}}{a_n} = \frac{2(n!)}{(n+1)!} = \frac{2}{n+1}$$

we see that $\lim a_{n+1}/a_n = 0$. Thus, we see that $\lim a_n = 0$.

2. Let the sequence a_n be defined by $a_0 = \pi/4$, $a_{n+1} = \sin(a_n)$. Prove that this sequence has a limit and find this limit.

Answer: It is known that for any $x \in (0, \pi)$, we have $0 < \sin(x) < x$. Thus, this sequence is monotonically decreasing and bounded below by 0. Thus, it must converge, and the limit L must satisfy $L = \sin(L)$. From this it is clear that $\lim(a_n) = 0$

3. For each of the series below, determine whether the series converges.

(a)

$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^2 + 4}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{2n+3}}$$
 (c)

$$\sum_{n=0}^{\infty} \frac{n^2 + 4n}{n^3 + 1}$$

(d) $\sum_{n=1}^{\infty} ne^{2n}$

$$\sum_{n=0}^{\infty} \frac{ne^{2n}}{(2n)!}$$

Answer:

- (a) Since $\lim \frac{n^2-1}{n^2+4} = 1$, this series diverges. (For a series to converge, it is necessary that $\lim a_n = 0$).
- (b) Converges by alternating series test
- (c) Let $a_n = \frac{n^2 + 4n}{n^3 + 1}$; then for large n, $a_n \approx \frac{n^2}{n^3} = \frac{1}{n}$. More precisely, if we let $b_n = \frac{1}{n}$, then $\lim a_n/b_n = 1$. Since the series $\sum b_n = \sum \frac{1}{n}$ diverges, by limit comparison test, $\sum a_n$ also diverges.
- (d) We use the ratio test:

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{n} \cdot \frac{e^{2n+2}}{e^{2n}} \cdot \frac{(2n)!}{(2n+2)!} = \frac{n+1}{n} \frac{e^2}{(2n+1)(2n+2)}$$

Thus, $\lim |a_{n+1}/a_n| = 0$, so the series converges.

4. (a) Find the radius of convergence of the following power series.

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^n}{3^n}$$

(b) Write the indefinite integral

$$F(x) = \int f(x) \, dx$$

as a power series (inside the interval of convergence of the power series for f(x).)

(c) The product $\cos(x)f(x)$ can also be written by a power series. Write the first three terms of this power series, up to x^2 term.

Answer:

Using the ratio test:

$$\frac{a_{n+1}}{a_n} = (-1)\frac{(2n+3)x^{n+1}}{3^{n+1}}\frac{3^n}{(2n+1)x^n} = (-1)\frac{(2n+3)x}{(2n+1)x^3}$$

so $\lim |a_{n+1}/a_n| = |x/3|$. Therefore, the series converges for |x| < 3 and diverges for |x| > 3. Therefore, the radius of convergence is R = 3.

The indefinite integral can be computed term-by-term:

$$\int \sum (-1)^n \frac{(2n+1)x^n}{3^n} = \sum \int (-1)^n \frac{(2n+1)x^n}{3^n}$$
$$= C + \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)}{3^n} \frac{x^{n+1}}{n+1}$$

Finally, using only terms up to degree two:

$$f(x) = 1 - \frac{3x}{3} + \frac{5x^2}{9} + \dots = 1 - x + \frac{5}{9}x^2 + \dots$$
$$\cos(x) = 1 - \frac{x^2}{2} + \dots$$
$$\cos(x)f(x) = \left(1 - \frac{x^2}{2} + \dots\right)\left(1 - x + \frac{5}{9}x^2 + \dots\right) = 1 - x + \frac{5}{9}x^2 - \frac{x^2}{2} + \dots$$
$$= 1 - x + \frac{x^2}{18} + \dots$$

where dots stand for terms of degree three and higher.

5. Let $f(x) = \tan^{-1}(2x) - 2x$.

- (a) Write the Taylor polynomial $T_5(x)$ of degree 5 for f(x), centered at x = 0.
- (b) Use the Taylor polynomial found in the previous part to give an approximate value of f(0.1).

Answer:

It is proved in the textbook that

$$\tan^{-1}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$

Thus,

$$\tan^{-1}(2x) - 2x = \left(2x - \frac{(2x)^3}{3} + \frac{(2x)^5}{5} + \dots\right) - 2x = -\frac{8x^3}{3} + \frac{32x^5}{5} + \dots$$

Therefore,

$$T_5(x) = -\frac{8x^3}{3} + \frac{32x^5}{5}.$$

Using it, we write

$$f(0.1) \approx T_5(0.1) = -\frac{8(0.1)^3}{3} + \frac{32(0.1)^5}{5} \approx -0.00260$$

[Note: in the actual exam, since calculators are not allowed, it would be OK to leave the answer in the form $-\frac{8(0.1)^3}{3} + \frac{32(0.1)^5}{5}$.]

6. Draw direction fields for the following differential equations.

(a)	y' =	= y	2 _	1						0							
	Ĭ—	ŀ	1	1	1	I	1	1		↓	1	- 1	- 1	-	1	+	
	1	I	1	L	l.	I	ł	I	1 1	1	1	1 1	I	1	I	ł	I
	-	1	1	1	+	1	1	1		+ +	-	- 1	- 1	-	1	+	1
	1	L	1	I -	1	L	1	L	1 1	1	1	i i	I	I	T	1	I I
	-	1	1	1	1	1	1	1	 	+ +			- 1	-1-	-1	+	1
	1	1	1	1		1	1	1	1 1	1		i i	1	1	1		1
		<i>i</i>	/	1	<u> </u>	<i>i</i>	/		, ,	 ,		-				-	<i>i</i>
		/		/		/		/				, ,	, ,	/	/		, ,
				_													
								、.								Į.	、、
		Ì		Ì		Ì							Ì		Ì		<u> </u>
		<u> </u>		<u> </u>													$\overline{}$
										\uparrow		$\left \right $					
	+	_	1	_	1	_	1			1 -	+			+	_	+	
	1	/	1	/	1	/	1	/ .	/ /	1 1	1.	/ /	' /	1	/	1.	/ /
	\vdash	/		/	$t \rightarrow t$	/	1	1		1 /	1	/ /	' <i> </i>	1	1	1	<i>i</i>
	1	I	1	1	1	I	1	I	1 1	1	1	1 1	1	1	Ι	1	1
	1	ł	1	1	1	1	+	1	1 1	1 1	-		- 1	-1-	1	+	1
	1	L	1	I -	1	L	1	I –	1 1	1	1	i i	I	1	T	1	L
	—	1	1	1	1	1		1		1 1			- 1	-	1	<u> </u>	1
(b)	y' =	= x	2 _	- <i>x</i> .													
, í	-		-	-	-			/ /	/	↑ ~	T /	· /	-1	1	1		
				Ι.		1 1		, ,	/ /	+ ~	+ /	• •	1	1	I .	1 1	- 1
				I	-		-	/ /	/	╂ ∼	+ /	· /	-1-	+	1		
				ι.		1		, ,	1	+ ~	+ /	• •	1	1	Ι	1 1	1
		-	-	I		-		,	/	+ ~	+ /	. ,	-1-	-	1		_
				ι.		1		, ,	/	+ ~	+ /	. ,	1		ι.	1 1	
				-				, ,	/	L ~	L /	. ,	-1-		1		
						,		, ,		L _	\perp	. ,	1		i		
											\perp						
						,		, 1				,	',				
								. 1			T 1	. 1	',				
													-/-				→
						1		' '		† `	† 1	. 1	1	1	I.		
				-			-	/ /		† ~	+ 1	-+		+	1		\neg
						1		/ /	//	† ~	+ ~	· /	1	1	I .		
		-		—	-		-	/ /	//	+ ~	+ /	-+		+	1	+	
				I.		1		, ,	/	+ ~	+ ~	· /	1	1	Ι	1 1	1
		-		I .		-		, ,	/	+ ~	+ -		-1-	-	1		_
				Ι.		1		, ,	/	+ ~	+ /	• 1	1	1	Ι.	1	
							,	,	/		\perp ,	. ,			1		

$(d) \ y' = (x - 1)(y - 1) \\ (d) \ y' = (x - 1)(y - 1)(y - 1) \\ (d) \ y' = (x - 1)(y $	(c) $y' = x$									
$(d) \ y' = (x - 1)(y - 1) \\ (d) \ y' = (x - 1)(y - 1)(y - 1) \\ (d) \ y' = (x - 1)(y - 1)(y - 1) \\ (d) \ y' = (x - 1)(y $, , ,	, ,	· 1					
$(d) \ y' = (x - 1)(y - 1)$	<u> </u>		· , ,	_/ /	-, -				1 1	1 1
$(d) \ y' = (x - 1)(y - 1)$	× ×		- / /	, ,	' /	, ,	1	1 1	1 1	1 1
$(d) \ y' = (x - 1)(y - 1)$	\sim	$\land \land$	/	_/_/	/ /		-1		1 1	1 1
$(d) \ y' = (x - 1)(y - 1) \\ (d) \ y' = (x - 1)(y - 1)(y - 1) \\ (d) \ y' = (x - 1)(y $			· - /	//		/ /			1 1	1 !
(d) y' = (x - 1)(y - 1)							· / ·			
(d) y' = (x - 1)(y - 1)	, ,	$\langle \cdot \rangle$					· / ·	, , , , , , , , , , , , , , , , , , ,		
(d) y' = (x - 1)(y - 1)	N N	\ \ \		、 -	. – ł	. , ,	· / .	, ,	1 1	1 1
(d) y' = (x - 1)(y - 1)	┝ ─ \	+ $+$		- \ -\	· · · -		· / ,	<i>~ ,</i>	, ,	, ,
(d) y' = (x - 1)(y - 1)	1 1	1 1 1		\ \	·	. – /	• • •	· /	1 1	1 1
(d) y' = (x - 1)(y - 1)				<u> </u>			- / ,			
$(d) \ y' = (x - 1)(y - 1)$							· - ·			, ,
$(d) \ y' = (x - 1)(y - 1)$, ,					- /	, ,
(d) y' = (x - 1)(y - 1)										
(d) $y' = (x - 1)(y - 1)$	<u>↓</u> ↓	• • •	· · · ·	- 1	_ \				+ /	
(d) $y = (x - 1)(y - 1)$		<u> </u>		- 	``	\ \ \				- 1
									-	
	(d) $y' = (a)$	x - 1)(y-1)				- / - /			- / - /
	(d) $y' = (1 + 1)$	x - 1)(y-1)				- / /			
	(d) $y' = ($	x - 1)(y-1							
	(d) $y' = ($	x - 1)(y-1)				- / /			
	(d) $y' = (x + y)$	x - 1)(y - 1)				- / ,			
	(d) $y' = ($	x - 1)(y-1)							
	(d) $y' = (, , , , , , , , , , , , , , , , , , $	x - 1)(
	(d) $y' = ($	x - 1)(y - 1)							
+ + + + + + + + + + + + + + + + + + +	(d) $y' = ($	x - 1)(
	(d) $y' = ($	x - 1)(
	(d) $y' = ($	x - 1)(
	(d) $y' = (, , , , , , , , , , , , , , , , , , $	x - 1)(
· · · · · · · · · · · · · · · · · · ·	(d) $y' = ($	x - 1)(
	(d) $y' = (, , , , , , , , , , , , , , , , , , $	x - 1)(
	(d) $y' = ($	x - 1)(

Answer:

$$y_0 = 2$$

$$y_1 \approx y_0 + 0.01 \cdot (3y_0) = 2 + 0.01 \cdot 6 = 2.06$$

$$y_2 \approx y_1 + 0.01 \cdot (3y_1) = 2.06 + 0.01 \cdot 3 \cdot 2.06 = 2.1218$$

$$y_3 \approx y_2 + 0.01 \cdot (3y_2) = 2.12.18 + 0.01 \cdot 3 \cdot 2.1218 \approx 2.1855$$

$$y_4 \approx y_3 + 0.01 \cdot (3y_3) = 2.1855 + 0.01 \cdot 3 \cdot 2.1855 \approx 2.2511$$

8. Find the orthogonal trajectories of the family of curves $y^2 = kx^3$.

Answer:

For the original family of curves, the slope at point (x, y) can be found by implicit differentiation:

$$2y \, dy = 3kx^2 \, dx$$
$$\frac{dy}{dx} = \frac{3kx^2}{2y} = \frac{3x^2(y^2/x^3)}{2y} = \frac{3y}{2x}$$

where we used $k = y^2/x^3$ to get rid of k in the formula.

Since the slope of the orthogonal curve is negative reciprocal of the slope of the original curve, for the orthogonal family we get

$$\frac{dy}{dx} = -\frac{2x}{3y}$$
$$3y \, dy = -2x \, dx$$
$$\frac{3}{2}y^2 = -x^2 + C$$
$$3y^2 + 2x^2 = 2C$$

9. Solve the following initial value problems:

(a)
$$\frac{dy}{dx} = x^2(y^2 + 2y - 3), \ y(0) = 2.$$

Answer:

$$\begin{aligned} \frac{dy}{y^2 + 2y - 3} &= x^2 \, dx \\ \int \frac{dy}{(y+3)(y-1)} &= \int x^2 \, dx + C \\ \int \frac{dy}{(y+3)(y-1)} &= \frac{1}{3}x^3 + C \end{aligned}$$

To compute the intergal in the left hand side, use partial fractions:

$$\frac{1}{(y+3)(y-1)} = \frac{A}{y+3} + \frac{B}{y-1}$$

To find A, B, multiply both sides by (y + 3)(y - 1); this gives

$$A(y-1) + B(y+3) = 1$$

 $(A+B)y + 3B - A = 1$
 $A+B = 0, \qquad 3B - A = 1$

Solving this gives $B = \frac{1}{4}, A = -\frac{1}{4}$, so

$$\int \frac{dy}{(y+3)(y-1)} = \int \left(\frac{-1/4}{y+3} + \frac{1/4}{y-1}\right) dy = \frac{1}{4} \left(-\ln|y+3| + \ln|y-1|\right)$$
$$= \frac{1}{4} \ln\left|\frac{y-1}{y+3}\right|$$

Thus, we get

$$\frac{1}{4} \ln \left| \frac{y-1}{y+3} \right| = \frac{1}{3}x^3 + C$$
$$\ln \left| \frac{y-1}{y+3} \right| = \frac{4}{3}x^3 + 4C$$
$$\frac{y-1}{y+3} = \pm e^{\frac{4}{3}x^3 + 4C} = Ke^{\frac{4}{3}x^3}$$
$$(y-1) = (y+3)Ke^{\frac{4}{3}x^3}$$
$$y(1-Ke^{\frac{4}{3}x^3}) = 1 + 3Ke^{\frac{4}{3}x^3}$$
$$y = \frac{1-Ke^{\frac{4}{3}x^3}}{1+3Ke^{\frac{4}{3}x^3}}$$

for some constant K. To find K, we use the initial condition y(0) = 2, which gives

$$2 = \frac{1-K}{1+3K}$$

Solving it, we get K = 0.2, so the final answer is

$$y = \frac{1 - 0.2e^{\frac{4}{3}x^3}}{1 + 0.6e^{\frac{4}{3}x^3}}.$$

(b)
$$y' = y^2 - 1$$
, $y(0) = 2$

Answer:

Hence:

$$\frac{1}{y^2 - 1}y' = 1.$$

$$\int \frac{1}{y^2 - 1}dy = \int 1dx,$$

$$\int \frac{1}{(y - 1)(y + 1)}dy = x + C,$$

Hence:

$$\begin{aligned} \frac{1}{2}\ln(y-1) &- \frac{1}{2}\ln(y+1) = x + C, \\ &\frac{1}{2}\ln(\frac{y-1}{y+1}) = x + C, \\ &\frac{y-1}{y+1} = Ae^{2x} \end{aligned}$$

for some constant A. Hence

$$y - 1 = Ae^{2x}(y + 1),$$

$$y - 1 = Ae^{2x}y + Ae^{2x},$$

$$y = 1 + Ae^{2x}y + Ae^{2x},$$

$$y - Ae^{2x}y = 1 + Ae^{2x},$$

$$(1 - Ae^{2x})y = 1 + Ae^{2x},$$

$$y = \frac{1 + Ae^{2x}}{1 - Ae^{2x}}.$$

Now y(0) = 2 and so

$$y(0) = \frac{1 + Ae^{2 \times 0}}{1 - Ae^{2 \times 0}},$$
$$y(0) = \frac{1 + A}{1 - A} = 2.$$

Hence:

$$1 + A = 2(1 - A),$$

$$1 + A = 2 - 2A$$

$$1 + A + 2A = 2$$

$$1 + 3A = 2$$

$$3A = 2 - 1$$

$$A = \frac{1}{3}.$$

$$y = \frac{1 + \frac{1}{3}e^{2x}}{1 - \frac{1}{2}x}.$$

Hence

$$y = \frac{1 + \frac{1}{3}e^{2x}}{1 - \frac{1}{3}e^{2x}}$$

(c)
$$y' = \frac{1}{y(\sqrt{1-x^2})}, y(0) = 1.$$

Answer:

$$yy' = \frac{1}{\sqrt{1 - x^2}},$$

$$\int y \, dy = \int \frac{1}{\sqrt{1 - x^2}} dx,$$

$$\frac{y^2}{2} = \arcsin(x) + C,$$

$$y^2 = 2\arcsin(x) + 2C,$$

$$y = \sqrt{2}\arcsin(x) + 2C.$$

Now y(0) = 1 and so:

$$1 = \sqrt{2 \arcsin(0)} + 2C,$$

$$1 = \sqrt{2C}$$

$$1 = 2C.$$

Hence

$$y = \sqrt{2 \arcsin(x) + 1}.$$

10. A tank contains 100 L of pure water. Brine that contains 0.1 kg of salt per liter enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank after 6 minutes?

Answer:

Let S(t) be the amount of salt (in kg) at time t (measured in minutes). Then the concentration of salt (in kg/L) is S(t)/100. This gives the differential equation

$$\frac{dS}{dt} = (0.1) \cdot 10 - \frac{S(t)}{100} \cdot 10 = 1 - 0.1S(t)$$

This is a separable equation:

$$\frac{dS}{1-0.1S} = dt$$

$$\frac{10 \, dS}{10-S} = dt$$

$$\int \frac{10 \, dS}{10-S} = t+C$$

$$-10 \ln(10-S) = t+C$$

$$\ln(10-S) = -\frac{t+C}{10}$$

$$10-S = e^{-(t+C)/10} = Ae^{-t/10}$$

$$S = 10 - Ae^{-t/10}$$

At t = 0, we have S = 0, so $10 - Ae^0 = 0$. Thus, A = 10, so $S(t) = 10 - 10e^{-t/10}$

$$S(6) = 10 - 10e^{-0.6} \approx 4.512$$

(a) What is the half-life of Tritium-3?

(b) How long would it take the sample to decay to 20% of its original amount?

Answer:

The equation of radioactive decay is

$$M(t) = M(0)e^{-kt}$$

where M(t) is amount after time t, and k depends on the material. From the information given, M(1) = 0.945M(0), so

 $e^{-k} = 0.945$

Solving it, we get

$$k = -\ln(0.945) \approx 0.05657$$

Half-life T is determined by $M(T) = \frac{1}{2}M(0)$, i.e.

$$e^{-kT} = \frac{1}{2}$$

which gives $-kT = \ln(1/2)$, or

$$T = \ln(2)/k \approx 12.25$$
 years

To find the time it takes to decay to 20%, we need to solve

$$e^{-kt} = 0.2$$

or

$$t = -\ln(0.2)/k \approx 28.45$$
 years

12. A population of bees in a particular region satisfies the logistic equation with carrying capacity 10000. Suppose that there are only 1000 bees initially and 2000 bees after 2 years. How many bees are there after 3 years?

Answer:

Let P be the population of bees and t the time in years. Then

$$P' = kP(1 - \frac{P}{10000}).$$

The solution to this equation is:

$$P = \frac{10000}{1 + Ae^{-kt}}.$$

There are initially 1000 bees and so:

$$P(0) = \frac{10000}{1+A} = 1000.$$

Therefore:

$$\frac{10000}{1+A} = 1000,$$

$$1+A = \frac{10000}{1000},$$

$$1+A = 10,$$

$$A = 9.$$

Therefore:

$$P = \frac{10000}{1 + 9e^{-kt}}.$$

Also, P(2) = 2000 and so:

$$P(2) = \frac{10000}{1 + 9e^{-2k}} = 2000,$$

$$\frac{10000}{1 + 9e^{-2k}} = 2000,$$

$$1 + 9e^{-2k} = \frac{10000}{2000},$$

$$1 + 9e^{-2k} = 5,$$

$$9e^{-2k} = 4,$$

$$e^{-2k} = \frac{4}{9},$$

$$-2k = \ln \frac{4}{9},$$

$$-2k = -\ln \frac{9}{4},$$

$$2k = \ln \frac{9}{4},$$

$$k = \frac{1}{2} \ln \frac{9}{4}.$$

$$P = \frac{10000}{2000}$$

Therefore:

$$P = \frac{10000}{1 + 9e^{-\frac{1}{2}\ln\frac{9}{4}t}}.$$

Hence

$$P(3) = \frac{10000}{1 + 9e^{-\frac{1}{2}\ln\frac{9}{4} \times 3}}.$$

Hence there are

$$P(3) = \frac{10000}{1 + 9e^{-\frac{3}{2}\ln\frac{9}{4}}} \approx 2727$$

bees after 3 years.

13. Find all equilibrium solutions of the following system of differential equations:

$$\frac{dW}{dt} = R^2 + RW$$
$$\frac{dR}{dt} = W^2 - R.$$

Answer:

We need to solve:

$$0 = R^2 + RW$$
$$0 = W^2 - R.$$

Hence:

$$0 = R(R + W)$$

and so R = 0 or R = -W. If R = 0 then $0 = W^2$ and so W = 0. If R = -W then $W^2 - (-W) = 0$ and so $W^2 + W = 0$ and so W(W + 1) = 0 and hence W = 0 or -1. If W = 0 then R = -W = 0 and if W = -1 then R = 1.

Therefore:

$$(R, W) = (0, 0), \quad (R, W) = (1, -1)$$

are the equilibrium solutions.