Practice Midterm 2 MAT 126 October 2012

Name:

(please print)

ID #:

Your recitation:

(see list below)

Lec. 1	TuTh 10am	Michael Movshev
R01	F 10am	Matthew Wroten
R02	M $10am$	Jan Gutt
R03	Tu $1 \mathrm{pm}$	Jan Gutt
R04	Th 4pm	Chengjian Yao
R05	W $5:30 \text{pm}$	Chengjian Yao
Lec. 2	MWF 10am	Alexander Kirillov
R06	M 12 pm	Claudio Meneses
R07	Th 10am	Mark Flanagan
R08	Tu 8:30am	Matthew Wroten
R10	W 11am	Claudio Meneses
Lec. 3	TuTh 5:30pm	Ming-Tao Chuan
R13	M 4 pm	Kirill Lazebnik
R14	Th $2:30 \text{pm}$	Mark Flanagan
R16	Th $7\mathrm{pm}$	Kirill Lazebnik

No notes, books or calculators.

You must show your reasoning, not just the answer. Answers without justification will get only partial credit.

Please cross out anything that is not part of your solution — e.g., some preliminary computations that you didn't need.

All answers should be simplified if possible — e.g., $\sin(0)$ should be replaced by 0. However, unless instructed, do not replace exact answers by approximate ones — e.g. do not replace $\sqrt{2}$ by 1.41

Each problem is worth 10 pts.

1. Find the derivative of the following function:

$$s(x) = \int_{\frac{1}{2}\sin(x)}^{\frac{1}{2}} \frac{dt}{\sqrt{1-t^2}}$$

- Evaluate the following indefinite integrals:
 (a)
 - (b) $\int x^5 \ln(x) dx$ $\int \frac{\cos^3(x)}{\sin(x)} dx$

3. Evaluate the following definite integrals:

(a)

(b)
(c)
(d)

$$\int_{1/\pi}^{2/\pi} \frac{\sin(1/x)}{x^3} dx$$

$$\int_{0}^{2} x^2 \sqrt{4 - x^2} dx$$

$$\int_{1}^{e^{\pi}} \frac{\cos(\ln x) \sin^2(\ln x)}{x} dx$$

$$\int_{1}^{2/\pi} \frac{\sin(1/x)}{x^2} dx$$

(b)

4. Evaluate the integrals(a)

$$\int_{0}^{1} \frac{9}{x^{2}+3} dx$$
$$\int_{0}^{1} \frac{x+1}{x^{2}-9} dx$$

5. (a) Decompose the rational function into partial fractions

$$\frac{x^3 - 2x^2 - 7x + 10}{x^2 - 5x + 6}$$

(b) Compute the integral

$$\int \frac{x^3 - 2x^2 - 7x + 10}{x^2 - 5x + 6} \, dx$$