Problem. Let $f(x)$ and $g(x)$ be two functions such that:
$\int_{-1}^{2}[f(x)+g(x)] d x=3, \int_{-1}^{2}[f(x)-2 g(x)] d x=1, \int_{-1}^{0} f(x) d x=-1$
Find $\int_{0}^{2} f(x) d x$
Proof.

$$
\begin{align*}
\int_{0}^{2} f(x) d x & =\int_{-1}^{2} f(x) d x-\int_{-1}^{0} f(x) d x \tag{1}\\
& =\int_{-1}^{2} f(x) d x-(-1) \tag{2}
\end{align*}
$$

and we have:

$$
\begin{align*}
\int_{-1}^{2} f(x) d x & =\frac{1}{3}\left(2 \int_{-1}^{2}[f(x)+g(x)] d x+\int_{-1}^{2}[f(x)-2 g(x)] d x\right) \tag{3}\\
& =\frac{1}{3}(2 \cdot 3+1) \tag{4}\\
& =\frac{7}{3} \tag{5}
\end{align*}
$$

so we can conclude that:
$\int_{0}^{2} f(x) d x=\frac{7}{3}+1=\frac{10}{3}$
Problem. 1) find $\frac{d}{d x}\left(e^{x^{2}}\right)$
2)Evaluate
$\int_{0}^{2} x e^{x^{2}} d x$
Proof. 1) we use the chain rule to get: $\frac{d}{d x}\left(e^{x^{2}}\right)=2 x e^{x^{2}}$
2) Note that by part (1), the antiderivative of $x e^{x^{2}}$ is $\frac{1}{2} e^{x^{2}}$. Now apply the FUNDAMENTAL THEOREM OF CALCULUS to get:
$\left.\int_{0}^{2} x e^{x^{2}} d x=\frac{1}{2} e^{x^{2}}\right]_{0}^{2}=\frac{1}{2}\left(e^{4}-e^{0}\right)=\frac{1}{2}\left(e^{4}-1\right)$
Problem. Find the antiderivative of:

1. $\frac{\sin (2 x)}{\cos (x)}$
2. $e^{x+7} 2^{-2 x}$
3. $\frac{x^{2}}{x^{3}}$

Proof. 1. Use the 'double angle formula': $\sin (2 x)=2 \sin (x) \cos (x)$ and then the problem becomes VERY simple:
$\int \frac{\sin (2 x)}{\cos (x)} d x=\int \frac{2 \sin (x) \cos (x)}{\cos (x)} d x=\int 2 \sin (x) d x=-2 \cos (x)+C$
2. So this problem seems like it may contain integration by part or substitution, but if we SIMPLIFY well we can avoid both:

$$
e^{x+7} 2^{-2 x}=e^{7} e^{x}\left(\frac{1}{4}\right)^{x}=e^{7}\left(\frac{e}{4}\right)^{x}
$$

Now there is only ONE function and it is NOT composite thus:

$$
\begin{align*}
\int e^{x+7} 2^{-2 x} d x & =\int e^{7}\left(\frac{e}{4}\right)^{x} d x \tag{6}\\
& =e^{7} \int\left(\frac{e}{4}\right)^{x} d x \tag{7}\\
& =e^{7} \frac{1}{\ln \left(\frac{e}{4}\right)}\left(\frac{e}{4}\right)^{x}+C \tag{8}\\
& =\frac{e^{7}}{1-\ln (4)}\left(\frac{e}{4}\right)^{x}+C \tag{9}
\end{align*}
$$

3. If there is one thing you should be noticing by now, it is this: TRY TO REDUCE THE FUNCTION BEFORE INTEGRATING OR DERIVATING! This last one is very simple one line calculation if we just notice that: $\frac{x^{2}}{x^{3}}=x^{-1}$ (REDUCTION OF FRACTIONS HAS COME UP A LOT SO PAY ATTENTION TO IT!)

And so
$\int \frac{x^{2}}{x^{3}} d x=\int x^{-1} d x=\ln (x)+C$

