Practice Midterm 2 Solutions MAT 125

Spring 2006
Name: \qquad ID number: \qquad
Recitation number (e.g., R01): \qquad
(for evening lecture, use "ELC 4")

Lecture 1	MWF 9:35-10:30	An, Daniel
R01	M 11:45am-12:40pm	Solorzano, Pedro
R02	Th 3:50pm- 4:45pm	Ostrovsky, Stanislav
R03	W 11:45am-12:40pm	Solorzano, Pedro
R04	Tu 11:20am-12:15pm	Basu, Somnath
R05	Tu 11:20am-12:15pm	Han, Zhigang
R31	M 10:40am-11:35am	Patu, Ionel
Lecture 2	TuTh 2:20pm -3:40pm	Kirillov, Alexander
R06	M 11:45am-12:40pm	Zeng, Huayi
R07	F 11:45am-12:40pm	Nowicki, Jan
R08	W 9:35am-10:30am	Ma, Xin
R09	Tu 3:50pm- 4:45pm	Ostrovsky, Stanislav
R10	F 8:30am-9:25am	Ma, Xin
Lecture 3	MW 3:50pm-5:10pm	Chen, Je-Wei
R11	M 9:35am-10:30am	Poole, Thomas
R12	F 10:40am-11:35am	Panok, Lena
R13	W 2:20pm-3:15pm	Poole, Thomas
R14	Tu 11:20am-12:15pm	Lyberg, Ivar
R15	Th 11:20am-12:15pm	Lyber,, Ivar
R32	M 2:20pm- 3:15pm	Guo, Weixin
Lec 4	TuTh 6:50pm-8:10pm	Bulawa, Andrew

Please answer each question in the space provided. Please write full solutions, not just answers. Unless otherwise marked, answers without justification will get little or no partial credit. Cross out anything the grader should ignore and circle or box the final answer. Do NOT round answers.

No books, notes, or calculators!

Do not open the exam until instructed by proctor!

1. Compute the following limits. Please distinguish between "limit is equal to ∞ ", "limit is equal to $-\infty$ " and "the limit doesn't exist even allowing for infinite values":
(a) $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x+1}{x^{3}-15 x}$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{x^{3}+2 x+1}{x^{3}-15 x}=\lim _{x \rightarrow \infty} \frac{1+\frac{2}{x^{2}}+\frac{1}{x^{3}}}{1-\frac{15}{x^{2}}}=\frac{1}{1}=1
$$

(b) $\lim _{x \rightarrow 2-} \frac{x^{2}-2 x-3}{x^{2}-5 x+6}$

Solution:
As $x \rightarrow 2-$

$$
\begin{aligned}
& x^{2}-2 x-3 \rightarrow 2^{2}-4-3=-3 \\
& x^{2}-5 x+6 \rightarrow 4-10+6=0
\end{aligned}
$$

Thus, we have limit of the form $\frac{\text { negative number }}{0}$. This gives either ∞ or $-\infty$, depending on whether the denominator is positive or negative. To find this, we factor $x^{2}-5 x+6=(x-2)(x-3)$, so as $x \rightarrow 2-, x-3 \rightarrow-1$ and $x-2 \rightarrow 0-$; thus, $x^{2}-5 x+6 \rightarrow 0+$. So we have limit of the form $\frac{\text { negative number }}{0+}=-\infty$
(c) $\lim _{x \rightarrow 3+3} \frac{x^{2}-2 x-3}{x^{2}-5 x+6}$

Solution: Straightforward computation gives $\frac{0}{0}$ which is useless. We try to factor:

$$
\frac{x^{2}-2 x-3}{x^{2}-5 x+6}=\frac{(x+1)(x-3)}{(x-2)(x-3)}=\frac{x+1}{x-2}
$$

Thus,

$$
\lim _{x \rightarrow 3+} \frac{x^{2}-2 x-3}{x^{2}-5 x+6}=\lim _{x \rightarrow 3+} \frac{x+1}{x-2}=\frac{4}{2}=2
$$

(d) $\lim _{x \rightarrow \infty} \frac{1}{e^{\left(x^{2}\right)}+1}$

Solution: As $x \rightarrow \infty, x^{2} \rightarrow \infty$, so $e^{x^{2}} \rightarrow \infty$. Thus, $\frac{1}{e^{x^{2}}+1} \rightarrow 0$.
2. Calculate derivatives of the following functions:
(a) $3(x+\sqrt{x})$

Solution:

$$
(3(x+\sqrt{x}))^{\prime}=3\left(x+x^{1 / 2}\right)^{\prime}=3\left(1+\frac{1}{2} x^{-1 / 2}\right)
$$

(b) $x e^{x}-17 x$

Solution:

$$
\begin{aligned}
& \left(x e^{x}-17 x\right)^{\prime}=\left(x e^{x}\right)^{\prime}-17=x^{\prime} e^{x}+x\left(e^{x}\right)^{\prime}-17 \\
& \quad=e^{x}+x\left(e^{x}\right)-17=e^{x}(1+x)-17
\end{aligned}
$$

(c) $\frac{2 x}{x+1}$

Solution: By quotient rule,

$$
\left(\frac{2 x}{x+1}\right)^{\prime}=\frac{(2 x)^{\prime}(x+1)-(x+1)^{\prime} 2 x}{(x+1)^{2}}=\frac{2(x+1)-2 x}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}
$$

(d) $\frac{1+\sqrt{x}}{1-\sqrt{x}}$

Solution: By quotient rule,

$$
\begin{aligned}
& \left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)^{\prime}=\frac{(1+\sqrt{x})^{\prime}(1-\sqrt{x})-(1+\sqrt{x})(1-\sqrt{x})^{\prime}}{(1-\sqrt{x})^{2}} \\
& =\frac{\frac{1}{2 \sqrt{x}}(1-\sqrt{x})-(1+\sqrt{x}) \frac{1}{2 \sqrt{x}}}{(1-\sqrt{x})^{2}}=\frac{(1-\sqrt{x})-(1+\sqrt{x})}{2 \sqrt{x}(1-\sqrt{x})^{2}} \\
& =\frac{-2 \sqrt{x}}{2 \sqrt{x}(1-\sqrt{x})^{2}}=-\frac{1}{(1-\sqrt{x})^{2}}
\end{aligned}
$$

3. (15 points) Let $f(x)=\left|1+\frac{1}{x}\right|$.
(a) Sketch the graph of f and identify the asymptotes.

Solution: The graph is obtained by plotting the graph of $1+\frac{1}{x}$ and then flipping the part of the graph which is below the x axis:

Since $\lim _{x \rightarrow \infty}\left|1+\frac{1}{x}\right|=\left|\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)\right|=|1|=1$, and same for $x \rightarrow-\infty$, the horizontal asymptote is $y=1$.
Vertical asymptote is $x=0$: everywhere else this function is continuous (see part b), and as $x \rightarrow 0,1+\frac{1}{x} \rightarrow \pm \infty$, so $\left|1+\frac{1}{x}\right| \rightarrow \infty$.
(b) Find all values of x for which f is not continuous.

Solution: f is continuous everywhere where it is defined, i.e. everywhere except $x=0$. So it is not continuos when $x=0$.
(c) Find all values of x for which f is not differentiable (you do not have to calculate the derivative).
Solution: First of all, f is not differentiable for $x=0$, since f is not defined at this point. Next, looking at the graph we see that it has a corner at $x=-1$ (when $1+\frac{1}{x}=0$); thus, at this point f is not differentiable. It can be verified by
direct computation of derivative as limit:

$$
\begin{aligned}
f^{\prime}(-1) & =\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h} \\
& =\lim _{h \rightarrow 0}\left(\left|1+\frac{1}{-1+h}\right|-\left|1+\frac{1}{-1}\right|\right) h^{-1} \\
& =\lim _{h \rightarrow 0}\left(\left|\frac{1+(-1)+h}{-1+h}\right|-0\right) h^{-1}=\lim _{h \rightarrow 0}\left|\frac{h}{-1+h}\right| h^{-1}
\end{aligned}
$$

For $h>0$ and small, $\frac{h}{-1+h}<0$, so $\left|\frac{h}{-1+h}\right|=\frac{-h}{-1+h}$ and

$$
\lim _{h \rightarrow 0+}\left|\frac{h}{-1+h}\right| h^{-1}=\lim _{h \rightarrow 0+} \frac{-h}{-1+h} h^{-1}=\frac{-1}{-1+0}=1
$$

Similarly, for $h<0$

$$
\lim _{h \rightarrow 0+}\left|\frac{h}{-1+h}\right| h^{-1}=\lim _{h \rightarrow 0+} \frac{h}{-1+h} h^{-1}=\frac{1}{-1+0}=-1
$$

Since these limits do not match, $f^{\prime}(-1)$ does not exist.
Thus, the answer is $x=0,-1$.
4. Match the graphs of functions $\mathbf{I}-\mathbf{I V}$ below with the graphs of their derivatives $\mathbf{A}-\mathbf{D}$. (Justification is not required.)

Solution: Looking at graph I, we see that $f_{I}^{\prime}(0)>0$; the only function among A-D which satisfies this is C, so
I-C
Similarly, by looking at points where f increases/decreases/has derivative zero, we get the remaining ones:

II-D

III-A
IV-B
5. Let $f(x)=x^{3}-3 x^{2}-9 x+7$.
(a) Calculate f^{\prime}

Solution: $f^{\prime}(x)=3 x^{2}-6 x-9$
(b) Calculate $f^{\prime \prime}$

Solution: $f^{\prime \prime}(x)=6 x-6$
(c) On which intervals does f increase? decrease?

Solution: f increases when $f^{\prime}(x)>0$, which gives

$$
\begin{gathered}
3 x^{2}-6 x-9>0 \\
x^{2}-2 x-3>0 \\
(x-3)(x+1)>0 \\
x<-1 \text { or } x>3
\end{gathered}
$$

Similarly, f decreases when $f^{\prime}(x)<0$, which gives $x \in(-1,3)$.
(d) On which intervals is f concave up?

Solution: f is concave up when $f^{\prime \prime}(x)>0$, i.e. when $6 x-6>0,6(x-1)>$ $0, x>1$.
6. Find all tangent lines to the graph of $f(x)=1 / x$ which have slope $m=-1 / 4$; write equations of each of these tangent lines.
Solution: The slope of tangent line to the graph of f at $x=a$ is $f^{\prime}(a)$. Thus, to find for which a we have slope $-1 / 4$, we have to solve

$$
\begin{gathered}
f^{\prime}(a)=-1 / 4 \\
-\frac{1}{a^{2}}=-1 / 4 \\
a^{2}=4 \\
a= \pm 2
\end{gathered}
$$

Now let us find the equation of the tangent line for each of these a, using general formula: $y=f(a)+f^{\prime}(a)(x-a)$.
For $a=2$:

$$
y=\frac{1}{2}+\left(-\frac{1}{4}\right) \cdot(x-2)=\frac{1}{2}+\frac{1}{2}-\frac{x}{4}=1-\frac{x}{4}
$$

For $a=-2$:

$$
y=\frac{1}{-2}+\left(-\frac{1}{4}\right) \cdot(x+2)=-\frac{1}{2}-\frac{1}{2}-\frac{x}{4}=-1-\frac{x}{4}
$$

7. (a) Write the linear approximation for the function $g(x)=\frac{1}{e^{x}+1}$ near $x=0$.

Solution: General formula is

$$
g(a+h) \approx g(a)+g^{\prime}(a) h
$$

(or, equivalently, denoting $x=a+h, g(x)=g(a)+g^{\prime}(a)(x-a)$).
In this case $a=0, g(a)=\frac{1}{e^{0}+1}=\frac{1}{2}$, and

$$
g^{\prime}(x)=\frac{-\left(e^{x}+1\right)^{\prime}}{\left(e^{x}+1\right)^{2}}=\frac{-e^{x}}{\left(e^{x}+1\right)^{2}}
$$

so $g^{\prime}(0)=\frac{-1}{2^{2}}=-\frac{1}{4}$. This gives

$$
g(h) \approx \frac{1}{2}-\frac{1}{4} h
$$

(b) Use the linear approximation you found in the previous part to estimate $\frac{1}{e^{0.01}+1}$. Solution:

$$
g(0.01) \approx \frac{1}{2}-\frac{0.01}{4}=0.5-0.0025=0.4975
$$

