Practice Midterm 2 Solutions MAT 125

Spring 2006

Name:

ID number:

Recitation number (e.g., R01):_____

(for evening lecture, use "ELC 4")

Lecture 1	MWF 9:35–10:30	An, Daniel
R01	M 11:45am–12:40pm	Solorzano, Pedro
R02	Th 3:50pm- 4:45pm	Ostrovsky, Stanislav
R03	W 11:45am–12:40pm	Solorzano, Pedro
R04	Tu 11:20am–12:15pm	Basu, Somnath
R05	Tu 11:20am–12:15pm	Han, Zhigang
R31	M 10:40am–11:35am	Patu, Ionel
Lecture 2	TuTh 2:20pm – 3:40pm	Kirillov, Alexander
R06	M 11:45am–12:40pm	Zeng, Huayi
R07	F 11:45am–12:40pm	Nowicki, Jan
R08	W 9:35am-10:30am	Ma, Xin
R09	Tu 3:50pm- 4:45pm	Ostrovsky, Stanislav
R10	F 8:30am–9:25am	Ma, Xin
Lecture 3	MW 3:50pm-5:10pm	Chen, Je-Wei
R11	M $9:35am-10:30am$	Poole, Thomas
R12	F $10:40 \text{am} - 11:35 \text{am}$	Panok, Lena
R13	W 2:20pm-3:15pm	Poole, Thomas
R14	Tu 11:20am-12:15pm	Lyberg, Ivar
R15	Th 11:20am–12:15pm	Lyberg, Ivar
R32	M 2:20pm- 3:15pm	Guo, Weixin
Evening Lec 4	TuTh 6:50pm-8:10pm	Bulawa, Andrew

Please answer each question in the space provided. Please write full **solutions**, not just answers. Unless otherwise marked, **answers without justification will get little or no partial credit**. Cross out anything the grader should ignore and circle or box the final answer. Do **NOT** round answers.

No books, notes, or calculators!

Do not open the exam until instructed by proctor!

1. Compute the following limits. Please distinguish between "limit is equal to ∞ ", "limit is equal to $-\infty$ " and "the limit doesn't exist even allowing for infinite values":

(a)
$$\lim_{x \to \infty} \frac{x^3 + 2x + 1}{x^3 - 15x}$$

Solution:
$$\lim_{x \to \infty} \frac{x^3 + 2x + 1}{x^3 - 15x} = \lim_{x \to \infty} \frac{1 + \frac{2}{x^2} + \frac{1}{x^3}}{1 - \frac{15}{x^2}} = \frac{1}{1} = 1$$

(b)
$$\lim_{x \to 2^-} \frac{x^2 - 2x - 3}{x^2 - 5x + 6}$$

Solution:
As $x \to 2^-$,
$$x^2 - 2x - 3 \to 2^2 - 4 - 3 = -3$$

 $x^2 - 5x + 6 \to 4 - 10 + 6 = 0$

Thus, we have limit of the form $\frac{\text{negative number}}{0}$. This gives either ∞ or $-\infty$, depending on whether the denominator is positive or negative. To find this, we factor $x^2 - 5x + 6 = (x - 2)(x - 3)$, so as $x \to 2-$, $x - 3 \to -1$ and $x - 2 \to 0-$; thus, $x^2 - 5x + 6 \to 0+$. So we have limit of the form $\frac{\text{negative number}}{0+} = -\infty$

(c)
$$\lim_{x \to 3+} \frac{x^2 - 2x - 3}{x^2 - 5x + 6}$$

Solution: Straightforward computation gives $\frac{0}{0}$ which is useless. We try to factor:

$$\frac{x^2 - 2x - 3}{x^2 - 5x + 6} = \frac{(x+1)(x-3)}{(x-2)(x-3)} = \frac{x+1}{x-2}$$

Thus,

$$\lim_{x \to 3+} \frac{x^2 - 2x - 3}{x^2 - 5x + 6} = \lim_{x \to 3+} \frac{x + 1}{x - 2} = \frac{4}{2} = 2$$

- (d) $\lim_{x \to \infty} \frac{1}{e^{(x^2)} + 1}$ Solution: As $x \to \infty$, $x^2 \to \infty$, so $e^{x^2} \to \infty$. Thus, $\frac{1}{e^{x^2} + 1} \to 0$.
- 2. Calculate derivatives of the following functions:
 - (a) $3(x + \sqrt{x})$ Solution:

$$(3(x+\sqrt{x}))' = 3(x+x^{1/2})' = 3(1+\frac{1}{2}x^{-1/2})$$

(b) $xe^x - 17x$ Solution:

$$(xe^{x} - 17x)' = (xe^{x})' - 17 = x'e^{x} + x(e^{x})' - 17$$
$$= e^{x} + x(e^{x}) - 17 = e^{x}(1+x) - 17$$

(c) $\frac{2x}{x+1}$ Solution: By quotient rule,

$$\left(\frac{2x}{x+1}\right)' = \frac{(2x)'(x+1) - (x+1)'2x}{(x+1)^2} = \frac{2(x+1) - 2x}{(x+1)^2} = \frac{2}{(x+1)^2}$$

(d) $\frac{1+\sqrt{x}}{1-\sqrt{x}}$ Solution: By quotient rule,

$$\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)' = \frac{(1+\sqrt{x})'(1-\sqrt{x})-(1+\sqrt{x})(1-\sqrt{x})'}{(1-\sqrt{x})^2}$$

$$= \frac{\frac{1}{2\sqrt{x}}(1-\sqrt{x})-(1+\sqrt{x})\frac{1}{2\sqrt{x}}}{(1-\sqrt{x})^2} = \frac{(1-\sqrt{x})-(1+\sqrt{x})}{2\sqrt{x}(1-\sqrt{x})^2}$$

$$= \frac{-2\sqrt{x}}{2\sqrt{x}(1-\sqrt{x})^2} = -\frac{1}{(1-\sqrt{x})^2}$$

- 3. (15 points) Let $f(x) = |1 + \frac{1}{x}|$.
 - (a) Sketch the graph of f and identify the asymptotes.

Solution: The graph is obtained by plotting the graph of $1 + \frac{1}{x}$ and then flipping the part of the graph which is below the x axis:

Since $\lim_{x\to\infty} \left|1+\frac{1}{x}\right| = \left|\lim_{x\to\infty} (1+\frac{1}{x})\right| = |1| = 1$, and same for $x \to -\infty$, the horizontal asymptote is y = 1.

Vertical asymptote is x = 0: everywhere else this function is continuous (see part b), and as $x \to 0$, $1 + \frac{1}{x} \to \pm \infty$, so $\left|1 + \frac{1}{x}\right| \to \infty$.

- (b) Find all values of x for which f is not continuous. Solution: f is continuous everywhere where it is defined, i.e. everywhere except x = 0. So it is not continuous when x = 0.
- (c) Find all values of x for which f is not differentiable (you do not have to calculate the derivative). Solution: First of all, f is not differentiable for x = 0, since f is not defined at

this point. Next, looking at the graph we see that it has a corner at x = -1 (when $1 + \frac{1}{x} = 0$); thus, at this point f is not differentiable. It can be verified by

direct computation of derivative as limit:

$$f'(-1) = \lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h}$$
$$= \lim_{h \to 0} \left(\left| 1 + \frac{1}{-1+h} \right| - \left| 1 + \frac{1}{-1} \right| \right) h^{-1}$$
$$= \lim_{h \to 0} \left(\left| \frac{1 + (-1) + h}{-1 + h} \right| - 0 \right) h^{-1} = \lim_{h \to 0} \left| \frac{h}{-1 + h} \right| h^{-1}$$

For h > 0 and small, $\frac{h}{-1+h} < 0$, so $\left|\frac{h}{-1+h}\right| = \frac{-h}{-1+h}$ and

$$\lim_{h \to 0+} \left| \frac{h}{-1+h} \right| h^{-1} = \lim_{h \to 0+} \frac{-h}{-1+h} h^{-1} = \frac{-1}{-1+0} = 1$$

Similarly, for h < 0

$$\lim_{h \to 0+} \left| \frac{h}{-1+h} \right| h^{-1} = \lim_{h \to 0+} \frac{h}{-1+h} h^{-1} = \frac{1}{-1+0} = -1$$

Since these limits do not match, f'(-1) does not exist. Thus, the answer is x = 0, -1. 4. Match the graphs of functions **I**–**IV** below with the graphs of their derivatives **A**–**D**. (Justification is not required.)

Solution: Looking at graph I, we see that $f'_I(0) > 0$; the only function among A–D which satisfies this is C, so

$\mathbf{I}\!\!-\!\!\mathbf{C}$

Similarly, by looking at points where f increases/decreases/has derivative zero, we get the remaining ones:

II–D III–A IV–B

- 5. Let $f(x) = x^3 3x^2 9x + 7$.
 - (a) Calculate f'Solution: $f'(x) = 3x^2 - 6x - 9$
 - (b) Calculate f''Solution: f''(x) = 6x - 6
 - (c) On which intervals does f increase? decrease? Solution: f increases when f'(x) > 0, which gives

$$3x^{2} - 6x - 9 > 0$$

$$x^{2} - 2x - 3 > 0$$

$$(x - 3)(x + 1) > 0$$

$$x < -1 \text{ or } x > 3$$

Similarly, f decreases when f'(x) < 0, which gives $x \in (-1,3)$.

(d) On which intervals is f concave up? Solution: f is concave up when f''(x) > 0, i.e. when 6x - 6 > 0, 6(x - 1) > 0, $\overline{(x > 1)}$. 6. Find all tangent lines to the graph of f(x) = 1/x which have slope m = -1/4; write equations of each of these tangent lines.

Solution: The slope of tangent line to the graph of f at x = a is f'(a). Thus, to find for which a we have slope -1/4, we have to solve

$$f'(a) = -1/4$$
$$-\frac{1}{a^2} = -1/4$$
$$a^2 = 4$$
$$a = \pm 2$$

Now let us find the equation of the tangent line for each of these a, using general formula: y = f(a) + f'(a)(x - a).

For a = 2:

$$y = \frac{1}{2} + \left(-\frac{1}{4}\right) \cdot (x-2) = \frac{1}{2} + \frac{1}{2} - \frac{x}{4} = \boxed{1 - \frac{x}{4}}$$

For a = -2:

$$y = \frac{1}{-2} + \left(-\frac{1}{4}\right) \cdot (x+2) = -\frac{1}{2} - \frac{1}{2} - \frac{x}{4} = \boxed{-1 - \frac{x}{4}}$$

7. (a) Write the linear approximation for the function $g(x) = \frac{1}{e^x+1}$ near x = 0. Solution: General formula is

$$g(a+h) \approx g(a) + g'(a)h$$

(or, equivalently, denoting x = a + h, g(x) = g(a) + g'(a)(x - a)). In this case a = 0, $g(a) = \frac{1}{e^0 + 1} = \frac{1}{2}$, and

$$g'(x) = \frac{-(e^x + 1)'}{(e^x + 1)^2} = \frac{-e^x}{(e^x + 1)^2}$$

so $g'(0) = \frac{-1}{2^2} = -\frac{1}{4}$. This gives

$$g(h) \approx \frac{1}{2} - \frac{1}{4}h$$

(b) Use the linear approximation you found in the previous part to estimate $\frac{1}{e^{0.01}+1}$. Solution:

$$g(0.01) \approx \frac{1}{2} - \frac{0.01}{4} = 0.5 - 0.0025 = 0.4975$$