Practice Midterm 2 MAT 125

Spring 2006

Name:

_____ ID number: _____

Recitation number (e.g., R01):_____

(for evening lecture, use "ELC 4")

Lecture 1	MWF 9:35–10:30	An, Daniel
R01	M 11:45am–12:40pm	Solorzano, Pedro
R02	Th 3:50pm- 4:45pm	Ostrovsky, Stanislav
R03	W 11:45am–12:40pm	Solorzano, Pedro
R04	Tu 11:20am–12:15pm	Basu, Somnath
R05	Tu 11:20am–12:15pm	Han, Zhigang
R31	M 10:40am–11:35am	Patu, Ionel
Lecture 2	TuTh 2:20pm – 3:40pm	Kirillov, Alexander
R06	M 11:45am–12:40pm	Zeng, Huayi
R07	F 11:45am–12:40pm	Nowicki, Jan
R08	W 9:35am-10:30am	Ma, Xin
R09	Tu 3:50pm– 4:45pm	Ostrovsky, Stanislav
R10	F 8:30am–9:25am	Ma, Xin
Lecture 3	MW 3:50pm-5:10pm	Chen, Je-Wei
R11	M 9:35am $-10:30am$	Poole, Thomas
R12	F 10:40am–11:35am	Panok, Lena
R13	W 2:20pm-3:15pm	Poole, Thomas
R14	Tu 11:20am-12:15pm	Lyberg, Ivar
R15	Th 11:20am–12:15pm	Lyberg, Ivar
R32	M 2:20pm- 3:15pm	Guo, Weixin
Evening Lec 4	TuTh 6:50pm-8:10pm	Bulawa, Andrew

Please answer each question in the space provided. Please write full **solutions**, not just answers. Unless otherwise marked, **answers without justification will get little or no partial credit**. Cross out anything the grader should ignore and circle or box the final answer. Do **NOT** round answers.

No books, notes, or calculators!

Do not open the exam until instructed by proctor!

1. Compute the following limits. Please distinguish between "limit is equal to ∞ ", "limit is equal to $-\infty$ " and "the limit doesn't exist even allowing for infinite values":

(a)
$$\lim_{x \to \infty} \frac{x^3 + 2x + 1}{x^3 - 15x}$$

(b)
$$\lim_{x \to 2^-} \frac{x^2 - 2x - 3}{x^2 - 5x + 6}$$

(c)
$$\lim_{x \to 3^+} \frac{x^2 - 2x - 3}{x^2 - 5x + 6}$$

(d)
$$\lim_{x \to \infty} \frac{1}{e^{(x^2)} + 1}$$

- 2. Calculate derivatives of the following functions:
 - (a) $3(x + \sqrt{x})$ (b) $xe^x - 17x$
 - (c) $\frac{2x}{x+1}$
 - (d) $\frac{1+\sqrt{x}}{1-\sqrt{x}}$
- 3. (15 points) Let $f(x) = |1 + \frac{1}{x}|$.
 - (a) Sketch the graph of f and identify the asymptotes.
 - (b) Find all values of x for which f is not continuous.
 - (c) Find all values of x for which f is not differentiable (you do not have to calculate the derivative).

4. Match the graphs of functions **I**–**IV** below with the graphs of their derivatives **A**–**D**. (Justification is not required.)

- 5. Let $f(x) = x^3 3x^2 9x + 7$.
 - (a) Calculate f'
 - (b) Calculate f''
 - (c) On which intervals does f increase? decrease?
 - (d) On which intervals is f concave up?

6. Find all tangent lines to the graph of f(x) = 1/x which have slope m = -1/4; write equations of each of these tangent lines.

- 7. (a) Write the linear approximation for the function $g(x) = \frac{1}{e^x + 1}$ near x = 0.
 - (b) Use the linear approximation you found in the previous part to estimate $\frac{1}{e^{0.01}+1}$.