INTRODUCTION TO LIE GROUPS AND LIE ALGEBRAS - ERRATA

ALEXANDER KIRILLOV, JR.

Thanks to everyone who sent corrections – and first of all, to Binyamin Balsam. If you found a misprint not listed here, please send it to kirillov@math.sunysb.edu

Page	Written	Should be
p. 12, First paragraph of section 2.5, 3rd line	G_m	Gm
p. 15, Theorem 2.27, last word	spaces	fields
p. 18, Corollary 2.31	$\operatorname{Sp}(2n,\mathbb{K})$	$\operatorname{Sp}(n,\mathbb{K})$
p. 32, title of Section 3.4	Subalgebras, ideals, and center	Subalgebras and ideals
p. 36, Proof of theorem 3.29, line 6 (twice)	exp(th)	exp(tx)
p. 49, Exercise 3.9 (1)	$\operatorname{Aut}(G)$	$\operatorname{Aut}(\mathfrak{g})$
p. 60, Example 4.24	$Z(\mathrm{SO}(n,R)) = \{\pm 1\}$	$Z(\mathrm{SO}(n,R)) = \begin{cases} \{\pm 1\}, & n \text{ even}, n > 2\\ \{1\}, & n \text{ odd} \end{cases}$
p. 63, Thm 4.34 (3)	The form ω is left-invariant only if G is connected. Otherwise, ω is left invariant up to a sign.	
p. 65, Proof of Theorem 4.40	B(hv, hw) = B(v, w)	$\tilde{B}(hv,hw) = \tilde{B}(v,w)$
p. 66, Theorem 4.41 (4 occurences)	$ ho_{ij}^V(g)$	$ ho_{ij}^V$
p. 66, Proof of Lemma 4.42, line 4	$(\operatorname{tr}(f)/\dim V)$ id	$\lambda = \operatorname{tr}(f) / \dim V$
p. 71, line 3	as was proved earlier	as will be proved later
p. 80, Exercise 4.6	cover map	covering map
p. 85, Example 5.3	ef - ef = h	ef - fe = h
p. 86, Example 5.6, last two lines of computation	+ sign should be added in front of $\frac{1}{2}h$	
p. 88, second displayed formula	$\mod U_{p+q-1}\mathfrak{g}$	$\mod U_{p+q}\mathfrak{g}$
p. 90, Lemma 5.17, last line	$\mathfrak{g}/\operatorname{Ker} f$	$\mathfrak{g}_1/\operatorname{Ker} f$
p. 122, line 6 (second dipslayed formula)	$(lpha,\mu)$	(λ,μ)
p. 127, line 2	$\mathfrak{h} = C(\mathfrak{h})$	$\mathfrak{h} = C(h)$
p. 128, proof of Proposition 6.52, first line	Lie group with Lie algebra G	Lie group with Lie algebra ${\mathfrak g}$
p. 131, Exercise 6.7	delete "(see Exercise 6.7)"	
p. 135, Theorem 7.9, 4(a)	$n_{\alpha\beta} = 3, n_{\beta\alpha} = 1$	$n_{\alpha\beta} = -3, \ n_{\beta\alpha} = -1$
p. 135, Theorem 7.9, 4(b)	$n_{\alpha\beta} = -3, n_{\beta\alpha} = -1$	$n_{\alpha\beta} = 3, \ n_{\beta\alpha} = 1$
p. 138, Lemma 7.15	$\alpha, \beta \in R_+$ are simple,	$ \alpha, \beta \in R_+ \text{ are simple, } \alpha \neq \beta, $
p. 139, Lemma 7.17	Condition " $(v_i, t) > 0$ for some non-zero vector t" must be added	

Date: Last updated Sept 30, 2009.

ALEXANDER KIRILLOV, JR.

Page	$\mathbf{Written}$	Should be
p. 147, Example 7.32	all \leq should be replaced by $<$	
p. 155, equations (7.30), (7.31)	add condition $i \neq j$	
p. 156, proof of Lemma 7.53, last para- graph	by (7.29) , its weight	by (7.28) , its weight
p. 161, Exercise 7.11	$A_1 \times A_1$	$A_1 \cup A_1$
p. 162 Exercise 7.17	$R = \{\pm e_i \pm e_i, i \neq j\}$	$R = \{\pm e_i \pm e_j, i \neq j\}$
p. 168, Theorem 8.14	$\lambda \in \mathfrak{h}_*$	$\lambda \in \mathfrak{h}^*$
p.170, Theorem 8.15,	all occurences of M_{λ} should be replaced by V	
p.171, 4th line from bottom	every finite-dimensional representation	every irreducible finite- dimensional representation
p.171, 3rd line from bottom	Theorem 8.15	Theorem 8.10
p. 181, Theorem 8.39	$\frac{q^{(\lambda+\rho,\alpha)}-q^{(\lambda+\rho,\alpha)}}{q^{(\rho,\alpha)}-q^{(\rho,\alpha)}}$	$\frac{q^{(\lambda+\rho,\alpha)}-q^{-(\lambda+\rho,\alpha)}}{q^{(\rho,\alpha)}-q^{-(\rho,\alpha)}}$
p. 181, proof of Theorem 8.39, last line	$\prod_{\alpha \in R_+} (q^{(\lambda+\rho,\alpha)} - q^{(\lambda+\rho,\alpha)})$	$\prod_{\alpha \in R_+} (q^{(\lambda+\rho,\alpha)} - q^{-(\lambda+\rho,\alpha)})$
p. 181, Theorem 8.40	$\alpha \in P_+$	$\lambda \in P_+$
p. 189, 4th line from the bottom	$HC(z)(\lambda)v_{\lambda}$	$HC(u)(\lambda)v_{\lambda}$
p. 190, formula (8.34) and p. 191, line 1	χ_z	X
pp. 203, 206, 208	Dynkin diagrams for types A_n , C_n , D_n are incorrect. Correct diagrams can be found on p. 153.	