
MAT 127: Calculus C, Spring 2015
Solutions to Some HW9 Problems

Below you will find detailed solutions to six problems from HW9. Since the first five of them were
WebAssign problems, your versions of these problems may have had different numerical coefficients.
However, the principles behind the solutions and their structure are as described below.

Section 8.4, Problem 7 (webassign)

Determine whether the series
∞∑
n=1

(−1)n
3n− 1

2n+ 1
converges or diverges.

Since the sequence

(−1)n
3n− 1

2n+ 1
= (−1)n

(3n− 1)/n

(2n+ 1)/n
= (−1)n

3− 1/n

2 + 1/n
−→ (−1)n

3− 1/∞
2 + 1/∞

= (−1)n · 3

2

keeps on jumping from near 3/2 to near −3/2 as n approaches ∞, the sequence (−1)n
3n− 1

2n+ 1
does

not converge to zero and thus the series

∞∑
n=1

(−1)n
3n− 1

2n+ 1
diverges by the Test for Divergence.

Section 8.4, Problem 14 (webassign)

Show that the series
∞∑
n=1

(−1)n

n5n
converges. How many terms of the series are needed to approximate

the sum with error less than .0001?

This series is (strictly) alternating, since the odd terms are negative and the even terms are positive.
Furthermore, 1/(n5n) −→ 0 as n −→ 0 and 1/((n+1)5n+1) < 1/(n5n) for all n. Thus, the series
converges by the Alternating Series Test.

We need to find m so that ∣∣∣∣ ∞∑
n=1

(−1)n

n5n
−

n=m∑
n=1

(−1)n

n5n

∣∣∣∣ ≤ 10−4 .

By the previous paragraph, we can use the Alternating Series Estimation Theorem on p587, according
to which ∣∣∣∣ ∞∑

n=1

(−1)n

n5n
−

n=m∑
n=1

(−1)n

n5n

∣∣∣∣ ≤ 1

(m+1)5m+1
.

So, we need m so that 1/(m+1)5m+1 ≤ 1/104, or (m+1)5m+1 > 104. The smallest such number m
is 4 (for m=3, we get only 4 · 54 = 2500).

Remark: Since the series involves 5n, we can also use the Ratio Test to show convergence:

|an+1|
|an|

=
1/((n+1)5n+1)

1/(n5n)
=

n

n+ 1
· 5n

5n+1
=

n/n

(n+ 1)/n
· 5n

5n · 51
=

1

1 + 1/n
· 1

5
−→ 1

1 + 1/∞
· 1

5
=

1

5
;

since 1/5 < 1, the series converges. However, this would not justify the use of the Alternating Series
Estimation Theorem to answer the second question.



Section 8.4, Problem 31 (webassign)

Determine whether the series
∞∑
n=1

(−1)n arctann

n2
converges or diverges.

Since arctann > 0 for n > 0, we need to see if the series
∞∑
n=1

arctann

n2
converges. Since 0 ≤

(arctann)/n2 ≤ (π/2)/n2 and the series

∞∑
n=1

π/2

n2
=
π

2

∞∑
n=1

1

n2

converges by the p-Series Test with p= 2 > 1, the “smaller” series

∞∑
n=1

arctann

n2
also converges by

the Comparison Test. Thus, the original series does converge absolutely.

Section 8.4, Problem 33 (webassign)

Determine whether the series

∞∑
n=1

(−1)n−1
1 · 3 · . . . · (2n−1)

(2n−1)!
converges or diverges.

We need to see if the series

∞∑
n=1

1 · 3 · . . . · (2n−1)

(2n−1)!
converges. Since there are factorials involved, try

the Ratio Test:

|an+1|
|an|

=
1 · 3 · . . . · (2n−1)(2(n+1)−1)/(2(n+1)−1)!

1 · 3 · . . . · (2n−1)/(2n−1)!

=
1 · 3 · . . . · (2n−1)(2n+1)

1 · 3 · . . . · (2n−1)
· (2n−1)!

(2n+1)!
= (2n+1)

(2n−1)!

(2n−1)!2n(2n+1)
=

2n+ 1

2n(2n+1)
=

1

2n
−→ 0 .

So the series

∞∑
n=1

1 · 3 · . . . · (2n−1)

(2n−1)!
converges, and thus the original series does converge absolutely.

Note: Since the numerator of the nth summand is the product of the odd integers between 1 and
2n−1 and the denominator is the product of all integers between 1 and 2n−1, the nth summand
is the reciprocal of the product of all even integers between 1 and 2n−1 (if n= 1, this product is
defined to be 1). Thus,

∞∑
n=1

1 · 3 · . . . · (2n−1)

(2n−1)!
=

∞∑
n=1

1

2 · 4 · . . . · (2n−2)

=
∞∑
n=1

1

2n−1 · 1 · 2 · . . . · (n−1)
=
∞∑
n=1

1

2n−1(n−1)!
=
∞∑
n=0

1

2nn!
=
∞∑
n=0

1

n!

(
1

2

)n

.

We will see in Section 8.7 that this sum is e1/2.
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Section 8.4, Problem 37 (webassign)

For which of the following series is the Ratio Test inconclusive?

(a)
∞∑
n=1

1

n3
, (b)

∞∑
n=1

n

2n
, (c)

∞∑
n=1

(−3)n−1√
n

, (d)
∞∑
n=1

√
n

1 + n2
.

Compute the limit of the ratio of the absolute values of two consecutive terms:

(a)
|an+1|
|an|

=
1/(n+1)3

1/n3
=

1

(n+1)3/n3
=

1

((n+1)/n)3
=

(
1

1 + 1/n

)3

−→
(

1

1 + 1/∞

)3

= 1;

(b)
|an+1|
|an|

=
(n+1)/2n+1

n/2n
=

(n+1)

n
· 2n

2n · 21
=

(
1 +

1

n

)
1

2
−→

(
1 +

1

∞

)
1

2
=

1

2
;

(c)
|an+1|
|an|

=
3(n+1)−1/

√
n+1

3n−1/
√
n

=
3n−1 · 31

3n−1
·
√
n√

n+1
= 3

1√
n+1/

√
n

=
3√

1 + 1/n
−→ 3√

1 + 1/∞
= 3;

(d)
|an+1|
|an|

=

√
n+1/(1+(n+1)2)√

n/(1 + n2)
=

√
n+1√
n
· 1 + n2

1+(n+1)2
=

√
n+1

n
· 1/n2 + 1

1/n2 + (n+1)2/n2

=

√
1 +

1

n
· 1/n2 + 1

1/n2 + ((n+1)/n)2

=

√
1 +

1

n
· 1/n2 + 1

1/n2 + (1+1/n)2
−→

√
1 +

1

∞
· 1/∞+ 1

1/∞+ (1+1/∞)2
= 1.

Thus, the Ratio Test is inconclusive in (a),(d)

Remark: This problem illustrates the principle that the Ratio Test is not suitable for series that
involve only powers of n, and not something with faster growth such as 2n, n!, or nn. While the
Ratio Test says nothing about the series in (a) and (d), both converge: (a) by the p-series test
and (d) because it looks like

√
n/n2 = 1/n3/2 (so by Limit Comparison and p-series). By the Ratio

Test, the series in (b) converges, while the series in (c) diverges. These two examples illustrate the
principle that the limit obtained in applying the Ratio Test is not affected by factors of n and is just
the absolute value of the common ratio r for a geometric series.
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Section 8.4, Problem 42

(a) Show that the series
∞∑
n=0

(4n)!(1103+26390n)

(n!)43964n
converges.

Since all terms are nonzero and involve n! (as well n in the exponent), try the Ratio Test:

an+1

an
=

(4(n+1))!(1103+26390(n+1))/
(
((n+1)!)43964(n+1)

)
(4n)!(1103+26390n)/

(
(n!)43964n

)
=

(4n+4)!

(4n)!
· 1103+26390(n+1)

1103+26390n
· (n!)4

((n+1)!)4
· 3964n

3964n+4

=
(4n+1)(4n+2)(4n+3)(4n+4)

1
· 1103+26390(n+1)

1103+26390n
· 1

(n+1)4
· 1

3964

=
(4+1/n)(4+2/n)(4+3/n)(4+4/n)(1103/n+26390(1+1/n))

((n+1)/n)4 · (1103/+26390)3964

−→ 44 · 26390

14 · 26390 · 3964
=

(
4

396

)4

=

(
1

99

)4

.

Since (1/99)4 < 1, the sum converges.

(b) Assuming
1

π
=

2
√

2

9801

∞∑
n=0

(4n)!(1103+26390n)

(n!)43964n
, how many correct decimal places of π do you get

with just one and two terms of this series?

s0 =
2
√

2

9801

0! · 1103

(0!)43960
=

2206
√

2

9801
;

s1 =
2
√

2

9801

(
0! · 1103

(0!)43960
+

4!(1103+26390)

(1!)43964

)
=

1130173253125
√

2

5021227463472
.

Since π ≈ 3.1415926535897932, 1/s0 ≈ 3.14159273, and 1/s1 ≈ 3.1415926535897939, the one-term
estimate gives 6 or 7 (depending on one’s definition) decimal places of π, while the two-term esti-

mate gives 15 decimal places.

Remark: By the Ratio Test computation in (a), at least for large n the series converges as fast as
the geometric series with r= (1/99)4; the latter adds about 8 decimal places with each extra term.
So computing the first 17 million digits of π should have required fewer than 2 million terms of the
above series.
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