
MAT 127: Calculus C, Spring 2015
Solutions to a HW5 Problem

Below you will find a detailed solution to a problem from HW5. Since it was part of the WebAssign
portion of this homework, your version of this problem likely had different numerical coefficients.
However, the principles behind the solutions and their structure are as described below.

Section 7.6, Problem 10 (webassign)

Populations of aphids A and ladybugs L are modeled by the following equations:

{

dA
dt = 2A− .01AL
dL
dt = −.5L+ .0001AL

(1)

(a) Find all equilibrium solutions and explain their significance.

The equilibrium (constant) solutions of (1) are pairs of numbers (A,L) such that

{

2A− .01AL = A
100

(200− L) = 0

−.5L+ .0001AL = − L
10,000(5000−A) = 0

These pairs satisfy both of the following conditions

{

A = 0 or 200− L = 0

L = 0 or 5000−A = 0.

If we choose the first option on the first line, i.e. A=0, then we must choose the first option on
the second line, i.e. L = 0 (because the second option on the second line contradicts our choice
from the first line). This gives the equilibrium solution (A,L)= (0, 0), which means there are no
aphids or ladybugs ever. On the other hand, if we choose the second option from the first line,
i.e. L=200, then we must choose the second option on the second line as well, i.e. A=5000. So
the only other equilibrium solution is (A,L)=(5000, 200); so 5000 aphids are precisely enough to
support 200 ladybugs and be contained by them.

Note: A more systematic approach to extracting the equilibrium solutions from the last system of
equations above is to write a system of equation for each pair consisting of a condition from the
first line and a condition from the second line. In this case, we get 2·2=4 systems:

{

A = 0

L = 0

{

A = 0

5000−A = 0

{

200− L = 0

L = 0

{

200− L = 0

5000−A = 0

We must then find ALL solutions (A,L) of each of these systems. In this case, the second and
third systems of equations have no solutions, while the first and the forth give us (A,L) = (0, 0)
and (A,L) = (5000, 200), respectively.



(b) Find an expression for dL/dA.

Just divide the second equation in (1) by the first:

dL

dA
= −

L

100A
·
5000−A

200− L
.

(c) The figure on p546 in the book shows the direction field for the differential equation in part (b).
Use it to sketch a phase plane portrait. What do the phase trajectories have in common?

The trajectories for the system of the differential equations in (1) travel along the solution curves
for the differential equation in (b). These solution curves are everywhere tangent to the lit-
tle slope lines. In this case, the solution curves are loops going around the equilibrium point
(A,L) = (5000, 200), as can be seen from the direction field and is proved in Problem E below
(the non-trivial part is that these curves are necessarily closed, i.e. circle back to themselves). If
A=5000 and L∈ (0, 200), i.e. at a point directly below this equilibrium point, dA/dt > 0 by the
first equation in (1), while dL/dt = 0. Thus, at t increases, the point (A(t), L(t)) travels counter-
clockwise along such a closed curve.

(d) Suppose that at time t = 0 there are 1000 aphids and 200 ladybugs. Draw the corresponding
phase trajectory and use it do describe how both population change.

This trajectory starts at (A,L)=(1000, 200); this point lies 1/5 of the way from the y-axis to the
equilibrium point (5000, 200). By part (c), this trajectory then circles around the point (5000, 200)
counter-clockwise. So at first A increases, while L decreases. The trajectory reaches its lowest point
when A= 5000 (at which point L looks like it might around 100); A then continues to increase,
while L starts to increase as well. The trajectory reaches its right-most point when L=200, while
A looks like it might be around 15000; A then starts to decrease, while L continues to increases.
The trajectory reaches its highest point when A=5000 (at which point L looks like it might around
300); A then continues to decrease, while L starts to decrease as well. The trajectory reaches its
left-most point when it returns to the starting point (A,L) = (1000, 200), after which the entire
cycle repeats. This is illustrated in the first diagram in Figure 1.
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Figure 1: The left diagram shows a phase trajectory. The right diagram shows the corresponding
graphs of the functions A(t) and L(t).
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Note: we can find an equation for the curve traced by the above trajectory by solving the separable
differential in (b) and using the initial condition (A,L)=(1000, 200) to determine the constant. In
fact, we can simply use the solution Problem E below, with

a = 2, b =
1

100
, c =

1

2
, d =

1

10, 000
=⇒ L2e−L/100 = CA−1/2eA/10000

=⇒ 2002e−200/100 = C · 1000−1/2e1000/10000

=⇒ C = 4
√
10 · 105 · e−21/10

=⇒ L2e−L/100 = 4 · 1011/2e−21/10A−1/2eA/10000 .

From this, we find that the largest possible value of A is roughly 14302, while the minimum and
maximum values of L are roughly 98 and 356, respectively.

(e) Use part (d) to make rough sketches of the aphid and ladybug populations as functions of t.
How are the graphs related to each other?

First, mark the key points on the phase trajectory in the order they are traversed as t increases
(counter-clockwise in the first diagram in Figure 1). These are

• the left-most point P0 = (1000, 200);

• the lowest point P1 ≈ (5000, 100);

• the right-most point P2 ≈ (15000, 200);

• the highest point P3 ≈ (5000, 350).

Note that both coordinates of P0 are exact, since this initial point is specified. The first coordinates
of P1 and P3 are also exact and can be determined from the second equation in (1), since this is
where dL/dt = 0. The second coordinate of P2 is exact as well and can be determined from the
first equation in (1), since this is where dA/dt = 0. The graphs of A=A(t) and L=L(t) can now
be sketched by marking the coordinates of each of the key points of the trajectory on a diagram
with horizontal t-axis and two separate vertical axes: A-axis and L-axis. The first coordinates then
should be connected by one curve, corresponding to the graph of A(t), while the second coordinates
should be connected by another curve, corresponding to the graph of L(t). The two graphs should
have no other maxima or minima. While both graphs start at t=0, the intermediate t-values cannot
be determined from the phase trajectory and so should not be marked on the t-axis. What matters
is that the values of A and L for the marked points lie on the same vertical lines; they correspond to
the same moments in time, but what these “moments in time” are cannot be determined (except for
t=0). However, after the A and R return to their starting values, the cycle repeats exactly, taking
the same amount of time from the P0-coordinates to the P1-coordinates as the first time, and so on.

A rough way in which the two graphs are related is that the L-graph (blue) is a “quarter” of a cycle
behind the A-graph (green): the maxima and minima of the former occur a bit after the maxima
and minima of the latter.

Note: In order to avoid mixing up the first coordinates (that are used for the A-graph) and the
second coordinates (that are used for the L-graphs), either mark them in different colors or with
dots and stars, etc. Do not forget to label the axes (t, A, and L in this case) and marked the
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appropriate scales on the vertical (A and L) axes; these axes should have the same points marked
as the corresponding axes in the first diagram in Figure 1. However, the t-axis should carry no
scale markings (e.g. t=1), since the values of t at which the maxima and minima of A(t) and R(t)
occur in the second diagram in Figure 1 cannot be determined from the phase trajectory in the
first diagram in Figure 1.
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