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Abstract

In this paper we prove a conjecture of Bryant, Griffiths, and Yang concerning the characteristic variety
for the determined isometric embedding system. In particular, we show that the characteristic variety is
not smooth for any dimension greater than 4. This is accomplished by introducing a smaller yet equivalent
linearized system, in an appropriate way, which facilitates analysis of the characteristic variety.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let (Mn,g) be an n-dimensional Riemannian manifold. It is a classical problem to find an
isometric embedding

(
Mn,g

)
↪→ RN. (1.1)

✩ The first author acknowledges the support of NSF Grant DMS-0654261. The second author acknowledges the support
of NSF Grant DMS-1007156 and a Sloan Research Fellowship.

* Corresponding author.
E-mail addresses: qhan@nd.edu (Q. Han), khuri@math.sunysb.edu (M. Khuri).

0001-8708/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2011.11.011



Author's personal copy

264 Q. Han, M. Khuri / Advances in Mathematics 230 (2012) 263–293

The existence of such a global isometric embedding for some N was first proved by Nash [17].
A better N was later found by Günther [6]. In this paper we will focus exclusively on the local
isometric embedding problem.

Suppose that the metric g = gij (x) dxi dxj is given in a neighborhood of a point, say
(x1, . . . , xn) = 0. Then we seek N functions {ui}Ni=1 such that

g = (
du1)2 + · · · + (

duN
)2

.

Therefore (1.1) is equivalent to the local solvability of the following first order nonlinear system

N∑
k=1

∂xi uk · ∂xj uk = gij for 1 � i, j � n. (1.2)

There are n(n + 1)/2 equations and N unknowns in this system. Hence, this system is underde-
termined if N > n(n + 1)/2 and overdetermined if N < n(n + 1)/2. In the following, we will
always assume that N = n(n + 1)/2.

For n = 2, the existence of local isometric embeddings of surfaces into R3 is equivalent to
the existence of local solutions of Darboux’s equation, a fully nonlinear equation of the Monge–
Ampère class. The type of Darboux’s equation is determined solely by the Gauss curvature.
More precisely it is elliptic if the Gauss curvature is positive, hyperbolic if the Gauss curvature
is negative, and degenerate if the Gauss curvature has zeroes. Under various assumptions on the
Gauss curvature, the existence of local isometric embeddings was proven by Lin [14,15], Han,
Hong and Lin [10], Han [7,8], Han and Khuri [11], and Khuri [12,13]. (See [9] for details.)

The situation becomes more complicated for n � 3. Bryant, Griffiths and Yang [4] studied the
local isometric embedding problem for n-dimensional Riemannian manifolds and analyzed the
structure of the characteristic variety for the linearized system (see also [2]). They proved the
existence of local isometric embeddings of 3-dimensional Riemannian manifolds into R6 under
an appropriate assumption on the curvature. Later on Nakamura and Maeda [16] (independently
Goodman and Yang [5]) proved the existence of local isometric embeddings of 3-dimensional
Riemannian manifolds into R6 when the Riemann curvature tensor does not vanish. Poole [18]
has extended this result to the case in which the Riemann curvature tensor vanishes cleanly.

The difficulty in studying isometric embeddings of higher dimensional Riemannian manifolds
lies with the following two related facts. First the differential system (1.2) is very large, consist-
ing of n(n + 1)/2 equations for n(n + 1)/2 unknowns. Second and most importantly, it is not
at all clear how the curvature determines the type of this system. Hence, a natural first step is
to investigate whether this huge system can be simplified. Since (1.2) is nonlinear this requires
an understanding of the linearized system. However due to its invariance under the orthogonal
group, (1.2) is highly degenerate in that every direction is characteristic, so a direct study of the
linearization appears to be futile. It is thus necessary to replace the linearized equations by an
equivalent system which is easier to analyze. Bryant, Griffiths and Yang [4] pointed out that the
linearization of (1.2) is in fact equivalent to a smaller differential system of n equations for n un-
knowns. One may then focus attention on the structure of the characteristic variety for this new
system. For n = 3, they proved that the characteristic variety is smooth whenever certain param-
eters in the linearized equations lie in appropriate ranges. The smoothness of the characteristic
variety plays an essential role in the existence results in [4,5,16,18]. For higher dimensions, they
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proved that the characteristic variety is smooth for n = 4 and not smooth for n = 6,10,14, . . . .
They also conjectured that the characteristic variety is not smooth for any n � 5.

In this paper, we will put this equivalent linearized system in an explicit form by introducing
appropriate parameters. Based on this explicit expression, we will prove that the characteristic
variety is indeed not smooth for all higher dimensions when these parameters are sufficiently
small.

To motivate our study, let u be a solution of (1.2) and consider the linearization of (1.2) at u.
It has the following form

∂ju · ∂iv + ∂iu · ∂j v = fij for any 1 � i, j � n. (1.3)

To find a better equation for v, we rewrite this as

∂i(∂ju · v) + ∂j (∂iu · v) − 2∂ij u · v = fij for any 1 � i, j � n. (1.4)

We note that the inner product ∂ju · v is a component of the projection of v into the tangent
space spanned by {∂1u, . . . , ∂nu}. It is clear from (1.4) that the derivatives are only applied to
tangential components of v. This suggests that we should decompose v relative to the tangent
space and normal space of the embedding u. In other words, we uncouple the system by breaking
v into tangential and normal components. It turns out that the normal components of v satisfy an
algebraic system which we solve first. Then the tangential components of v satisfy a differential
system of first order, which consists of n equations for n unknowns. This new system is much
easier to study than (1.3). Moreover, the curvature tensor of g has an explicit expression in terms
of coefficients of this new system. In summary the linearized isometric embedding system, an
n(n + 1)/2 × n(n + 1)/2 system, can be reduced to an n × n system which can be put into an
explicit form. We point out that (1.4) appears in [4] as (2.c.5) and (4.d.4), and that the equivalent
n × n system is given by (4.d.5).

Now we describe this new n×n differential system in a more explicit way. To start with, let g

be a smooth metric in a neighborhood of the origin in Rn. For i, j, k = 1, . . . , n, let c = {ckj
i }k �=j

be a collection of parameters with

c
kj
i = c

jk
i for any i, j, k with j �= k,

and set

cii
i = 1 for any i,

c
jj
i = 0 for any i �= j.

There are n2(n − 1)/2 elements in c. Now define n × n matrices A1, . . . ,An by

(
Ak

)
ij

= (
c
kj
i

)
.

We may then formulate a differential system in the following way

A1∂1V + · · · + An∂nV = F, (1.5)
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where V , F are vector-valued functions of n components. This system has constant coefficients
which are related to the curvature of g at the origin; this will be described in detail in Section 3.
An important result, stated in Lemma 3.1, asserts that (1.5) is the equivalent linearized isometric
embedding system evaluated at x = 0.

As mentioned above, the main step of changing (1.3) into an equivalent n × n differential
system was already observed in [4], and a version of this equivalent system was given by (4.d.5).
However, the explicit form of (1.5) in this paper is new. As we will see, this explicit form has
natural advantages when it comes to analyzing the characteristic variety in detail.

To better understand (1.5), it is important to study its characteristic variety. For each ξ =
(ξ1, . . . , ξn) ∈ Rn define

P = P(ξ, c) =
n∑

i=1

ξkA
k,

where c is as above. This is the principal symbol, and the associated characteristic variety is then
given by

Σ(c) = {
ξ ∈ Rn \ {0} ∣∣ detP(ξ, c) = 0

}
.

In dimension 3, and under the assumption that the matrices Ak are symmetric, it was shown
[4] that Σ(c) is smooth in R3 \ {0} except for three choices of c. Moreover in higher dimensions,
it was shown that Σ(c) is generally smooth in Rn \ {0} for n = 4 but not smooth in Rn \ {0} for
n = 6,10,14, . . . . (See Corollary 1.c.6 in [4].) The following conjecture was posed in [4].

Conjecture 1.1. Σ(c) is not smooth in Rn \ {0} for n � 5.

Based on the explicit form of the principal symbol, we will give an affirmative answer to
this conjecture for small c. We will say that the parameters c satisfy a generic condition if they
satisfy a finite number of (homogeneous) polynomial inequalities. For a precise statement of the
following result, see Theorems 4.3 and 4.4 below.

Theorem 1.2. For any n � 5 and any small c satisfying a generic condition, Σ(c) is not smooth
in Rn \ {0}.

As is shown in the proof, the generic condition will be given explicitly. In the case of dimen-
sion 4, we will show that under generic conditions and the smallness assumption the character-
istic variety is smooth; a more general result of this nature has already been obtained in [4]. Our
proof here is different.

Let Σsing(c) be the singular part of Σ(c). We will prove that for n = 5 the set Σsing(c) ∩ P4

generically consists of exactly 10 + α + 2β + 3γ points when c is sufficiently small, where α,
β , γ are nonnegative integers with α + γ = 10 and β � 5, and where P4 denotes real projective
space. These points can be located in terms of the components of c. In the general case n � 6, it
will be shown that Σsing(c) ∩ Sn−1 contains a smooth surface of dimension n − 5 for sufficiently
small c (also assuming generic conditions). We believe that Σsing(c) ∩ Sn−1 itself consists of an
algebraic variety of dimension n − 5, possibly under extra assumptions on c. Such an algebraic
variety may have singularities. For example for n = 6, Σsing(c) ∩ S5 should consist of finitely
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many curves which intersect at finitely many points. We note that it would be desirable to have a
stratification of Σsing(c) ∩ Sn−1 for any n � 5. Of course, it also remains a challenge to remove
the smallness assumption on c.

This paper is organized in the following way. In Section 2 we construct appropriate ap-
proximate solutions to the isometric embedding system. In Section 3 we discuss the linearized
equations and introduce our explicit equivalent n × n system. Lastly in Section 4, we examine
the characteristic variety and prove Theorem 1.2.

2. Constructing approximate solutions

In this section we construct an appropriate approximate isometric embedding, which plays an
important role in later discussions.

We first briefly review the theory of surfaces in Euclidean spaces. In this paper, we will ex-
clusively discuss n-dimensional surfaces in Euclidean space of dimension sn. Here

sn = 1

2
n(n + 1).

Hence, the codimension is

sn − n = 1

2
n(n − 1).

The Einstein summation convention will be used with respect to indices 1 � i, j, k, . . . � n and
1 � μ,τ, . . . � n(n − 1)/2.

Let u : Rn → Rn(n+1)/2 be a smooth embedding. Denote the corresponding embedded
submanifold by Mn. Then {∂iu(x)}ni=1 spans TxMn for each x. Let {Nμ(x)}n(n−1)/2

μ=1 span

(TxMn)⊥, the orthogonal complement of TxMn in Rn(n+1)/2. Denote the induced metric on
Mn by

pij = ∂iu · ∂ju.

Now recall the fundamental equations for the surface induced by u. Namely ∂ij u has a decom-
position into its tangential and normal components, with respect to u, given by

∂ij u = Γ k
ij ∂ku + Hij , (2.1)

where Γ k
ij are Christoffel symbols corresponding to pij and Hij is the second fundamental form.

Moreover we have

∂jNμ · ∂iu = −Nμ · ∂ij u = −Nμ · Hij . (2.2)

By setting H
μ
ij = Hij · Nμ, 1 � μ � n(n − 1)/2, we have

Hij =
n(n−1)/2∑

μ=1

H
μ
ij Nμ.
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Also the Gauss equations are given by

Rijkl =
n(n−1)/2∑

μ=1

H
μ
ikH

μ
jl − H

μ
il H

μ
jk, (2.3)

where Rijkl is the curvature tensor associated with the metric pij .
Next we construct approximate solutions to the isometric embedding system. Let g be a metric

defined in a neighborhood of the origin in Rn. Take normal coordinates so that

gij (0) = δij and ∂kgij (0) = 0 for any 1 � i, j, k � n. (2.4)

Consider a map u = (u1, . . . , un(n+1)/2) : Rn → Rn(n+1)/2 whose components are given by

ul = xl + 1

3!
∑

1�i,j,k�n

αl
ijkx

ixj xk for any l = 1, . . . , n,

un+μ = 1

2

∑
1�i,j�n

h
μ
ij x

ixj for any μ = 1, . . . , n(n − 1)/2, (2.5)

for some constants αl
ijk and h

μ
ij , i, j, k, l = 1, . . . , n and μ = 1, . . . , n(n − 1)/2. We will now

investigate whether the induced metric du · du agrees with the given metric g up to order two at
the origin.

First note that for any i, j, k = 1, . . . , n and μ = 1, . . . , n(n − 1)/2, we have

u(0) = 0,

∂ju
i(0) = δij , ∂ju

n+μ(0) = 0,

∂ij u
k(0) = 0, ∂ij u

n+μ(0) = h
μ
ij ,

Γ k
ij (0) = 0,

Nμ(0) = (0, . . . ,0,
n+μ

1 ,0, . . . ,0). (2.6)

Furthermore according to (2.4), the metric induced by the embedding u agrees with the given
metric g up to order one at the origin. In order for such a metric to agree with g up to order two
at the origin, we must have

∂klgij (0) = ∂iku(0) · ∂lj u(0) + ∂ilu(0) · ∂jku(0) + ∂ju(0) · ∂iklu(0) + ∂iu(0) · ∂ljku(0). (2.7)

Recall the expression for the curvature tensor in normal coordinates

Rijkl = 1

2
(∂ilgjk + ∂jkgil − ∂ikgjl − ∂jlgik). (2.8)
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Hence (2.7) implies that

Rijkl(0) = ∂iku(0) · ∂jlu(0) − ∂ilu(0) · ∂jku(0).

Therefore we have

Rijkl(0) =
n(n−1)/2∑

μ=1

h
μ
ikh

μ
jl − h

μ
ilh

μ
jk. (2.9)

These are simply the Gauss equations when h
μ
ij are interpreted as the coefficients of the second

fundamental form at x = 0. In other words, the Gauss equations (2.9) are a necessary condition
for u to be an approximate solution of the isometric embedding system up to order two. Next,
we prove that it is also a sufficient condition.

Lemma 2.1. Let g be a smooth metric defined in a neighborhood of the origin in Rn and let Rijkl

be its curvature tensor. For any constants h
μ
ij satisfying (2.9), there exist constants αl

ijk such that

the map u : Rn → Rn(n+1)/2 in (2.5) satisfies

du · du − g = O
(|x|3) as |x| → 0.

Proof. In the following, we denote derivatives of components of u evaluated at the origin by
uk

i = ∂iu
k(0), uk

ij = ∂ij u
k(0), etc. All quantities in the proof are evaluated at the origin. We need

to find αl
ijk so that (2.7) holds. We now write (2.7) in the form

∂klgij = uik · ulj + uil · ujk + uj · uikl + ui · uljk, (2.10)

and treat (2.10) as a linear system for αl
ijk . A simple calculation yields that the total number of

equations A and unknowns B are given by

A =
(

n(n + 1)

2

)2

, B = n

n∑
i=1

i(i + 1)

2
= n2(n + 1)(n + 2)

6
.

Obviously A > B . Hence, (2.10) is an overdetermined system. Our strategy is to choose a
collection of B equations to solve for αl

ijk and then verify that the rest of the equations hold
automatically under the assumption (2.9).

To this end, we first set

τij = (i − 1)n − 1

2
i(i + 1) + j for 1 � i < j � n.

Obviously τi j+1 = τij + 1 and τi+1 i+2 = τin + 1. Moreover τ12 = 1 and τn−1 n = n(n − 1)/2.
Hence τij enumerates the set of integers {1, . . . , n(n − 1)/2} for 1 � i < j � n. In fact

1 = τ12 < · · · < τ1n < τ23 · · · < τ2n < · · · < τn−1 n = 1

2
n(n − 1).
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Now, we classify the equation for ∂klgij in (2.10) according to whether the 4-tuple (i, j, k, l)

satisfies the conditions

i < j, k < l, τij � τkl . (2.11)

We first solve those equations which do not satisfy (2.11). To see this, we calculate the number
of equations C of this form:

C = 1

2
· n(n − 1)

2
·
(

n(n − 1)

2
+ 1

)
.

The number of degrees of freedom remaining is given by

B − (A − C) = n(n − 1)(n − 2)(n − 3)

24
� 0.

A further calculation shows that this value coincides with the number of equivalence classes of
4-tuples with all entries distinct and with i < j , k < l, τij < τkl (here we say that two tuples
are equivalent if they are permutations of each other). Then in order to use up all the degrees of
freedom, we choose to have one equation of each of these equivalence classes (where all entries
are distinct and i < j , k < l, τij < τkl) satisfied.

The final task is to show that all remaining equations of (2.10) follow from (2.9), which has
the form

Rijkl(0) = uik · ujl − uil · ujk. (2.12)

The remaining equations may be put into three cases. The first case occurs when i = k, j = l,
i < j . In this case we need to prove

∂ij gij = uii · ujj + uij · uij + uj · uiij + ui · ujji , 1 � i < j � n. (2.13)

Consider the equations obtained by permuting these indices

1

2
∂iigjj = uij · uij + uj · uiij ,

1

2
∂jj gii = uij · uij + ui · ujji .

These two equations are known to be satisfied. By a simple addition, we get

1

2
∂iigjj + 1

2
∂jj gii = 2uij · uij + uj · uiij + ui · ujji

= uij · uij − uii · ujj + uii · ujj + uij · uij + uj · uiij + ui · ujji .

By expressing Rijij in terms of (2.8) and (2.12), we have

∂ij gij − 1

2
∂iigjj − 1

2
∂jj gii = uii · ujj − uij · uij .

A simple comparison yields (2.13).
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The second case occurs when k = j , i < j , j < l, or i = k, i < j , i < l, or j = l, i < j , k < j .
We first consider k = j , i < j , j < l. In this case, we need to prove

∂jlgij = uij · ujl + uil · ujj + uj · uijl + ui · ujjl . (2.14)

Consider the equations obtained by permuting these indices

∂ilgjj = 2uij · ujl + 2uj · uijl,

∂jj gil = 2uij · ujl + ui · uljj + ul · uijj ,

∂ij gjl = uij · ujl + ujj · uil + uj · uijl + ul · uijj .

All three of these equations are known to be satisfied. By adding the first two equations and
subtracting the third, we get

∂ilgjj + ∂jj gil − ∂ij gjl = 3uij · ujl − ujj · uil + uj · uijl + ui · ujjl

= 2uij · ujl − 2uij · ujl + uil · ujj + uj · uijl + ui · ujjl .

By expressing Rijjl in terms of (2.8) and (2.12), we have

∂ilgjj + ∂jj gil − ∂ij gjl − ∂jlgij = 2uij · ujl − 2uij · ujl.

A simple comparison yields (2.14), and a similar argument may be used for the cases i = k,
i < j , i < l and j = l, i < j , k < j .

The third case occurs when i < j , k < l, τij < τkl , and all are distinct. Consider the permuta-
tions

∂klgij = uik · ulj + uil · ujk + uj · uikl + ui · uljk,

∂jlgik = uij · ukl + uil · ujk + ui · ujkl + uk · uijl,

∂kj gil = uij · ukl + uik · ujl + ui · uljk + ul · uijk,

∂ij gkl = uik · ulj + uil · ujk + uk · ulij + ul · ukij ,

∂ikgjl = uij · ulk + ujk · uil + uj · uikl + ul · uijk,

∂ilgjk = uij · ukl + ujl · uik + uj · uikl + uk · uijl .

The last three of these equations are known to be satisfied, where as the first three need to be
established (except for one, which is known to be satisfied since these three lie in the same equiv-
alence class of distinct 4-tuples with i < j , k < l). Using the last three equations in conjunction
with the Gauss equations, we have

∂klgij − ∂jlgik = −∂ij gkl + ∂ikgjl + 2Rkjil,

∂klgij − ∂jkgil = −∂ij gkl + ∂ilgjk + 2Rkijl,

∂jlgik − ∂jkgil = −∂ikgjl + ∂ilgjk + 2Rjikl,
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and hence

∂klgij − ∂jlgik = uik · ujl − ukl · uij + uj · ulik − uk · ulij ,

∂klgij − ∂jkgil = ukj · uil − ukl · uij + uj · ukil − ul · ukij ,

∂jlgik − ∂jkgil = ujk · uil − ujl · uik + uk · uijl − ul · uijk.

This may be viewed as three linear equations for the three unknown ∂klgij , ∂jlgik , ∂jkgil . Upon
solving this system, we find that the solution has the desired form up to addition of a vector
having the form (β,β,β). However since at least one of these equations is known to be satisfied
a priori, it follows that β = 0 so that all are satisfied. �

Our main concern in this paper is the linearized equations of the isometric embedding. We
are interested in such a linearization only at the formal isometric embedding or its nearby func-
tions. For this purpose, an approximate isometric embedding is constructed in Lemma 2.1. The
constants h

μ
ij are chosen to satisfy (2.9). In order to obtain a simple form of linearized equations,

more assumptions are needed.

3. Reduction to an n × n system

In this section, we reduce the linearization of (1.2) to a first order n × n system and write
the linearized equations for the isometric embedding system as a perturbation of a first order
differential system with constant coefficients. The linearization is evaluated at functions which
are perturbations of the approximate isometric embedding in Lemma 2.1. As we mentioned in
Section 1, many arguments may be traced back to [4].

Let g be a metric defined in a neighborhood of the origin in Rn. The metric g admits a
smooth isometric embedding into Rn(n+1)/2 if there exists a map w : Ω → Rn(n+1)/2 such
that

∂iw · ∂jw = gij for any 1 � i, j � n,

where Ω ⊂ Rn is a neighborhood of the origin. Linearizing at a map u : Rn → Rn(n+1)/2 yields
the following linear equation for v : Rn → Rn(n+1)/2

∂iu · ∂j v + ∂ju · ∂iv = fij for any 1 � i, j � n, (3.1)

where (fij ) is some smooth symmetric matrix.
In the following, we fix a map u : Rn → Rn(n+1)/2 and assume that it is an embedding. Denote

byMn the corresponding embedded submanifold. Then {∂iu(x)}ni=1 spans TxMn for each x.

Let {Nμ(x)}n(n−1)/2
μ=1 span (TxMn)⊥, the orthogonal complement of TxMn in Rn(n+1)/2. Denote

the induced metric onMn by

pij = ∂iu · ∂ju.

Then ∂ij u has a decomposition into its tangential and normal components with respect to u given
by
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∂ij u = Γ k
ij ∂ku + Hij , (3.2)

where Γ k
ij are the Christoffel symbols corresponding to pij and Hij is the second fundamental

form. Moreover we have

∂jNμ · ∂iu = −Nμ · ∂ij u = −Nμ · Hij . (3.3)

By setting H
μ
ij = Hij · Nμ, 1 � μ � n(n − 1)/2, we have

Hij =
n(n−1)/2∑

μ=1

H
μ
ij Nμ.

We note that (3.2) and (3.3) are simply (2.1) and (2.2).
In the following, we will express (3.1) in another form which is easier to study. For motivation,

we rewrite it as

∂i(∂ju · v) + ∂j (∂iu · v) − 2∂ij u · v = fij for any 1 � i, j � n. (3.4)

Note that ∂ju · v is a component of the projection of v into the tangent space TxMn. It is clear
from (3.4) that the derivatives are only applied to tangential components of v. This suggests that
we should decompose v relative to the tangent space and normal space ofMn.

Set

v = v′ + v′′ =
n∑

k=1

vk∂ku +
n(n−1)/2∑

μ=1

vn+μNμ, (3.5)

where v′ and v′′ are the tangential and normal components of v with respect to the embedding u.
We now derive an equivalent formulation of (3.1) in terms of vk and vn+μ. Let {vl}nl=1 be the
coordinates of the dual 1-form to the vector field vl∂lu, i.e.,

vl = plkv
k and vl = plkvk.

Then

∂iu · ∂j v = ∂j (∂iu · v) − ∂ij u · v
= ∂j

(
pilv

l
) − (

Γ k
ij ∂ku + Hij

) · (vl∂lu + vn+μNμ

)
= ∂j vi − Γ k

ij v
lpkl − vn+μNμ · Hij

= ∂j vi − Γ k
ij vk − H

μ
ij vn+μ.

It follows that (3.1) has the form

∂j vi + ∂ivj − 2Γ k
ij vk − 2H

μ
ij vn+μ = fij for any 1 � i � j � n. (3.6)
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Moreover this equation may be written invariantly as

∇ivj + ∇j vi − 2H
μ
ij vn+μ = fij ,

where ∇i denotes covariant differentiation for 1-forms; that is, if α = αj dxj then

∇iα = (
∂iαj − αkΓ

k
ij

)
dxj .

Clearly, solving (3.6) for {vi}ni=1 and {vn+μ}n(n−1)/2
μ=1 is equivalent to solving (3.1). This will

be accomplished by solving a linear system of n(n−1)/2 algebraic equations for {vn+μ} in terms
of {vi}, and then inserting this solution into the remaining n equations to obtain a first order n×n

differential system in the unknowns {vi}.
We now specify the algebraic equations used to obtain {vn+μ}. An important observation

here is that no derivatives of vn+μ are involved in (3.6). Consider the n(n − 1)/2 equations
corresponding to i < j in (3.6)

H 1
ij v

n+1 + · · · + H
n(n−1)/2
ij vn+n(n−1)/2 = φij for any 1 � i < j � n, (3.7)

where

φij = 1

2
∂j vi + 1

2
∂ivj − Γ k

ij vk − 1

2
fij for any 1 � i < j � n.

Let

H(x) =
⎛
⎜⎝

H 1
12 · · H

n(n−1)/2
12· ·

· ·
H 1

(n−1)n · · H
n(n−1)/2
(n−1)n

⎞
⎟⎠ (3.8)

be the coefficient matrix on the left-hand side of (3.7), and assume that H is invertible with the
inverse

H−1 = (
Hμτ

)
for any 1 � μ,τ � n(n − 1)/2.

Note that this assumption of invertibility is not restrictive, since there always exists a solution
of the Gauss equations with this property (see Lemma 3.10 on p. 98 of [3]). We now solve for
{vn+μ} from (3.7) in terms of {vi}, {∇vi}, and {fij }. With τij defined in the proof of Lemma 2.1,
we have

vn+μ = Hμτij

(
1

2
∂j vi + 1

2
∂ivj − Γ k

ij vk − 1

2
fij

)
. (3.9)

We should emphasize that the summation on the right-hand side is taken over 1 � i < j � n.
There are n equations in (3.6) which are absent in (3.7)

∂ivi − Γ k
ii vk − H

μ
ii v

n+μ = 1

2
fii for any i = 1, . . . , n. (3.10)
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By inserting (3.9) into (3.10), we obtain

∂ivi − 1

2
H

μ
ii H

μτkl (∂lvk + ∂kvl) − (
Γ m

ii − H
μ
ii H

μτklΓ m
kl

)
vm = 1

2

(
fii − H

μ
ii H

μτkl fkl

)
.

We emphasize that the summation for k, l is only taken for 1 � k < l � n, since τkl is defined
only for 1 � k < l � n. We now write this as a first order n × n system for V = (v1, . . . , vn) of
the following form

A1(x)∂1V + · · · + An(x)∂nV + B(x)V = F(x), (3.11)

where Ak(x) = (Ak
ij (x)), B(x) = (Bij (x)) and F(x) are given by

Ak
ij (x) =

⎧⎨
⎩

−H
μ
ii H

μτjk /2 for j < k,

δik for j = k,

−H
μ
ii H

μτkj /2 for j > k,

Bij (x) = −Γ
j
ii +

∑
1�k<l�n

H
μ
ii H

μτklΓ
j
kl,

Fi(x) = 1

2

(
fii −

∑
1�k<l�n

H
μ
ii H

μτkl fkl

)
.

Here i and j denote the rows and columns. Note that the Christoffel symbols are from the metric
induced by u, and not from the given metric g. It is now apparent that in order to solve (3.1), it is
sufficient to solve (3.11) for {vi} and then to find {vn+μ} in terms of {vi}, {∇vi} and {fij } from
(3.9). Therefore the study of the linearization for (1.2) is now reduced to a study of the n × n

system (3.11), as long as the matrix H in (3.8) is invertible.
We emphasize that, in the calculations so far, u is taken to be an arbitrary embedding which

is not necessarily related to g. In the following, we will choose a special u (the approximate
solution) so that the coefficient matrices of (3.11), when evaluated at x = 0, are related to the
curvature tensor of g at x = 0.

To proceed, we let {hμ
ij } be constants satisfying (2.9). Here we emphasize that Rijkl(0) are the

components of the curvature tensor of g at x = 0. We then assume that

u is the approximate embedding of g constructed in Lemma 2.1.

By checking our calculations, it is clear that H in (3.8) satisfies

H(0) =
⎛
⎜⎝

h1
12 · · h

n(n−1)/2
12· ·

· ·
h1

(n−1)n · · h
n(n−1)/2
(n−1)n

⎞
⎟⎠ . (3.12)

Let hij be the vector in Rn(n−1)/2 defined by

hij = (
h1

ij , . . . , h
n(n−1)/2
ij

)
.
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We require that

{hij }1�i<j�n forms a basis of Rn(n−1)/2. (3.13)

Then H(0) is invertible and so is H(x) in (3.8) for x sufficiently small. By (3.13), we set

hkk = −2
n∑

1�i<j�n

c
ij
k hij for any 1 � k � n, (3.14)

for some constants c
ij
k . Therefore

Ak
ij (0) =

⎧⎪⎨
⎪⎩

c
jk
i for j < k,

δik for j = k,

c
kj
i for j > k,

and

Bij (0) = −Γ
j
ii (0) +

∑
1�k<l�n

ckl
i Γ

j
kl(0),

Fi(0) = 1

2

(
fii(0) −

∑
1�k<l�n

ckl
i fkl(0)

)
,

where Γ k
ij (0) are Christoffel symbols of g at x = 0. Hence Bij (0) = 0 by (2.4). Lastly, we point

out that coefficient matrices A1(0), . . . ,An(0) in (3.11) are related to the curvature tensor of g at
x = 0. In fact, {hμ

ij } defined by (3.13) and (3.14) satisfies (2.9).

To summarize, for i, j, k = 1, . . . , n. For i, j, k = 1, . . . , n, let c = {ckj
i }k �=j be a collection of

parameters with

c
kj
i = c

jk
i for any i, j, k with j �= k, (3.15)

and set

cii
i = 1 for any i,

c
jj
i = 0 for any i �= j. (3.16)

Define n × n matrices A1, . . . ,An by

(
Ak

)
ij

= (
c
kj
i

)
.

Then we have shown
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Lemma 3.1. The linear system (3.11) at x = 0 is given by

A1∂1v + · · · + An∂nv = F. (3.17)

Remark 3.2. The matrices defined above in fact form a basis of the set FH defined on p. 916
in [4], if the second fundamental form {hμ

ij } at x = 0 is given by (3.13) and (3.14).

For each ξ = (ξ1, . . . , ξn) ∈ Rn, define

P = P(ξ, c) =
n∑

i=1

ξkA
k.

This is the principal symbol, whose components have expressions

pii = ξi +
∑
k �=i

cki
i ξk,

pij =
∑
k �=j

c
kj
i ξk for any i �= j. (3.18)

The characteristic variety is defined by

Σ(c) = {
ξ ∈ Rn \ {0} ∣∣ detP(ξ, c) = 0

}
.

The next well-known fact asserts that the isometric embedding system is never elliptic beyond
dimension two.

Lemma 3.3. For n � 3 and any c, Σ(c) �= ∅.

This is the second result of Theorem B(v) in [4]. In the present setting, the proof becomes
straightforward. Namely, we observe that A1, . . . ,An are linearly independent by examining the
diagonal elements. Thus the existence of characteristics follows immediately from [1].

To end this section, we briefly discuss the principal symbol and characteristic variety for low
dimensions. For dimension n = 3 we refer the reader to [4]. In the case of dimension n = 4, we
will show that the characteristic variety is smooth under generic conditions on small parameters.
To this end, consider the condition

cik
j c

jl
i �= cil

j c
jk
i for all i �= j, (3.19)

where k and l are the remaining two elements of the set {1,2,3,4} \ {i, j}, and consider the four
inequalities

c14
2 c13

4 c12
3 �= c12

4 c14
3 c13

2 ,

c21
4 c24

3 c23
1 �= c24

1 c23
4 c21

3 ,

c31
4 c34

2 c32
1 �= c34

1 c32
4 c31

2 ,

c41
2 c43

1 c42
3 �= c42

1 c41
3 c43

2 . (3.20)
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These conditions arise naturally when examining the characteristic variety. In the next result, we
write tc = {tckj

i }k �=j for c = {ckj
i }k �=j .

Theorem 3.4. Let n = 4. If all elements of c satisfy (3.19) and (3.20), then there exists a constant
T > 0 (depending on c) such that for all t ∈ (0, T ) the characteristic variety Σ(tc) is smooth.

A general result was obtained in [4] without the smallness assumption on the parameters. Here
we give an alternative proof.

Proof. As is discussed in the next section, Bryant, Griffiths, and Yang have shown [4] that the
singular part of the characteristic variety consists of points ξ ∈ S3 ⊂ R4 at which all 3 × 3
determinant minors of the principal symbol vanish. (See Lemma 4.1.) The principal symbol
P(ξ, tc) = (pij ) is given by

pii = ξi + t
∑
k �=i

cki
i ξk,

pij = t
∑
k �=j

c
kj
i ξk, for any i �= j.

Suppose that for all sufficiently small t , singular points ξ(t) ∈ S3 exist. In other words, all 3 × 3
determinant minors of the principal symbol vanish on ξ(t). By passing to a subsequence if nec-
essary, we may assume

ξ(t) → a = (a1, a2, a3, a4) as t → 0.

If P i
j denotes the 3 × 3 minor obtained by deleting the ith column and j th row, then a simple

calculation shows that

detP 1
1 = ξ2ξ3ξ4 + O(t),

detP 2
2 = ξ1ξ3ξ4 + O(t),

detP 3
3 = ξ1ξ2ξ4 + O(t),

detP 4
4 = ξ1ξ2ξ3 + O(t),

where we have dropped (and will continue to drop) reference to t . Thus at least two components
ai must be zero, say a1 = a2 = 0. We may assume that a4 �= 0. There are then two cases to
consider, a3 �= 0 and a3 = 0.

Case 1. a3 �= 0.

For each i �= j the components of the principal symbol are given by pij = tbij , where

bij =
∑
k �=j

c
kj
i ξk.
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Then observe that

detP 1
2 = t

(
ξ3ξ4b21 + O(t)

)
, detP 2

1 = t
(
ξ3ξ4b12 + O(t)

)
.

It follows that b12 → 0 and b21 → 0 as t → 0. Thus

c13
2 a3 + c14

2 a4 = 0, c23
1 a3 + c24

1 a4 = 0,

where we have used the symmetry c
kj
i = c

jk
i . As a3a4 �= 0, we must have

c13
2 c24

1 = c23
1 c14

2 . (3.21)

Case 2. a3 = 0.

Observe that

detP 2
3 = tξ1ξ4b23 + t2(b11b23 − b31b12)ξ4 + O

(
t2 max

{|ξ1|, |t |
})

,

detP 3
2 = tξ1ξ4b32 + t2(b11b32 − b31b12)ξ4 + O

(
t2 max

{|ξ1|, |t |
})

.

If both of these determinants are zero, then we may multiply the first by b32 and the second
by b23, and then compare the expressions for ξ1ξ4b23b32 to obtain

(b21b13 − b11b23)b32 = (b12b31 − b11b32)b23 + O(t).

Recognizing that limt→0 bij = c
4j
i ξ4, we find that

c41
2 c43

1 c42
3 = c42

1 c41
3 c43

2 . (3.22)

Thus if neither (3.21) nor (3.22) holds, then there cannot be a limit point a = limt→0 ξ(t) of
singular points of the characteristic variety with a1 = a2 = 0. By considering all combinations
ai = aj = 0 with i �= j , we obtain the desired result. �
4. The characteristic variety in higher dimensions

In this section, we study the characteristic variety of the linearized isometric embedding
system in higher dimensions and prove Theorem 1.2. As in Section 3, let c = {ckj

i }k �=j be a
collection of parameters satisfying (3.15). For any ξ = (ξ1, . . . , ξn) ∈ Rn, we define an n × n

matrix P = P(ξ, c) = (pij ) by

pii = ξi +
∑
k �=i

cki
i ξk,

pij =
∑
k �=j

c
kj
i ξk for any i �= j. (4.1)
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The matrix P is the principal symbol associated with the equivalent linearized isometric embed-
ding system. Then the characteristic variety Σ = Σ(c) is given by

Σ(c) = {
ξ ∈ Rn \ {0} ∣∣ detP(ξ, c) = 0

}
.

We observe that Σ(c) can be defined alternatively as

Σ(c) = {
ξ ∈ Rn \ {0} ∣∣ the rank of P(ξ, c) � n − 1

}
.

Next define

Σsing(c) = {
ξ ∈ Rn \ {0} ∣∣ the rank of P(ξ, c) � n − 2

}
.

We recall the following result.

Lemma 4.1. Σsing(c) is the singular part of the characteristic variety Σ(c).

Lemma 4.1 is proved in [4]. (See [4, Theorem B].) It is also proved [4, Corollary 1.c.6]
that Σsing(c) is not empty for n = 6,10,14, . . . . Furthermore it was conjectured [4, p. 920] that
Σsing(c) is not empty for any n � 5. The goal of this section is to prove that Σsing(c) is not empty
for sufficiently small c if n � 5, and to estimate its size.

By Lemma 4.1 Σsing(c) consists of those points ξ where all (n − 1) × (n − 1) minors of
P(ξ, c) have zero determinant. Although there seem to be many algebraic equations involved
with this statement, as we will see, there are in fact only four under appropriate conditions. The
main tool used to reduce the number of equations is the following result from linear algebra.

Lemma 4.2. Let v1, . . . , vn be n vectors in a vector space. Assume that v1, . . . , vn−1 and
v1, . . . , vn−2, vn are each linearly dependent and that v1, . . . , vn−2 are linearly independent.
Then any subset of n − 1 vectors from {v1, . . . , vn} is linearly dependent.

We note that v1, . . . , vn−2 are common vectors of the two sets {v1, . . . , vn−1} and {v1, . . . ,

vn−2, vn}. It is crucial to assume that v1, . . . , vn−2 are linearly independent. We may consider
e1, . . . , en−1,0 in Rn−1, where e1, . . . , en−1 form a basis in Rn−1. Obviously, e1, . . . , en−1 are
linearly independent. However, replacing any ei by the zero vector yields a linearly dependent
set.

Proof. The proof is a simple argument from linear algebra. Consider v2, . . . , vn. If either
{v2, . . . , vn−1} or {v2, . . . , vn−2, vn} is linearly dependent, so is {v2, . . . , vn}. We assume that both
{v2, . . . , vn−1} and {v2, . . . , vn−2, vn} are linearly independent. Then by the linear dependence
of {v1, . . . , vn−1} and {v1, . . . , vn−2, vn}, there exist constants c2, . . . , cn−1 and d2, . . . , dn−2, dn

such that

v1 = c2v2 + · · · + cn−2vn−2 + cn−1vn−1,

v1 = d2v2 + · · · + dn−2vn−2 + dnvn.
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Note that cn−1 �= 0 and dn �= 0, otherwise {v1, . . . , vn−2} is linearly dependent, which contradicts
the assumption. By taking a difference, we have

(c2 − d2)v2 + · · · + (cn−2 − dn−2)vn−2 + cn−1vn−1 − dnvn = 0.

This is a nontrivial combination since cn−1dn �= 0. �
As an application, we discuss conditions under which all minors of a matrix have zero de-

terminant. We will present only a simple case. For a matrix P , let P i
j be the minor obtained by

deleting the i-th row and j -th column from P .

Lemma 4.3. Let P be an n×n matrix with n � 2, and suppose that the four minors P 1
1 , P 2

2 , P 1
2 ,

and P 2
1 have zero determinant. If all (n − 1) × (n − 2) and (n − 2) × (n − 1) submatrices are of

full rank, then all minors of P have zero determinant.

Proof. First consider minors without the first row of P . We already have detP 1
1 = detP 1

2 = 0.
The common part of P 1

1 and P 1
2 is an (n − 1) × (n − 2) matrix obtained by deleting the first

row and the first and second column from P , and hence is of full rank. By Lemma 4.2, all
minors without the first row in P have zero determinant. In applying Lemma 4.2, we treat the
(n − 1) × n submatrix obtained by deleting the first row from P as a collection of n column
vectors. Similarly, all minors without the second row in P have zero determinant.

Now we consider other minors, say without the third column. From the discussion above, P 1
3

and P 2
3 have zero determinant. The common part of these two minors is an (n − 2) × (n − 1)

matrix obtained by deleting the third column and the first and second rows from P , and is of full
rank. Hence, all minors without the third column in P have zero determinant. Similarly all minors
without the first, second, . . . , or the n-th column in P have zero determinant. In conclusion, all
minors have zero determinant. �

It is clear from the proof that the assumption that all (n − 1) × (n − 2) and (n − 2) × (n − 1)

submatrices are of full rank can be relaxed. We only need certain submatrices to be of full rank.
However, we point out that certain conditions are indeed necessary. For example, the 4 × 4
diagonal matrix diag(1,1,1,0) has all but one minor with zero determinant. In our study of the
characteristic variety later on, we will not use Lemma 4.3 directly. Instead, we will examine
whether certain submatrices are of full rank so that we can apply Lemma 4.2.

Lemma 4.3 asserts that there are only four algebraic equations to satisfy, under appropriate
conditions, in order that all minors of the principal symbol have zero determinant.

We will now study the characteristic variety in Rn. In order to introduce a smallness assump-
tion on the parameters of the system (3.17), we again let

tc = {
tc

kj
i

}
k �=j

,

for some small t . According to (4.1), the principal symbol P(ξ, tc) = (pij ) is then given by

pii = ξi + tbii ,

pij = tbij , for any i �= j,
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where

bij =
∑
k �=j

c
kj
i ξk.

We begin with the case n = 5, where certain calculations are less formidable. Pick i, j ∈
{1, . . . ,5} with i �= j , and consider the following generic conditions on the parameters:

c
kj
i cli

j �= cki
j c

lj
i for all k �= l, with k �= i, j and l �= i, j, (4.2)

and

ckI
p

(
c
lj
i cmi

j − cli
j c

mj
i

) + clI
p

(
cki
j c

mj
i − c

kj
i cmi

j

) + cmI
p

(
c
kj
i cli

j − cki
j c

lj
i

) �= 0, (4.3)

for all p �= i, j where k, l, m are chosen so that {i, j, k, l,m} = {1, . . . ,5} and where I = i or
I = j . In general, we will say that the parameters satisfy a generic condition if they satisfy a
finite number of (homogeneous) polynomial inequalities.

Theorem 4.4. Let n = 5. If all elements c
kj
i of c satisfy the conditions (4.2) and (4.3), then

for any sufficiently small t > 0, Σsing(tc) ∩ P4 contains ten points. Moreover, if the parameters
satisfy a further generic condition, then for any sufficiently small t > 0, Σsing(tc) ∩ P4 consists
of 10 + α + 2β + 3γ points where α, β , γ are nonnegative integers with α + γ = 10 and β � 5.

Proof. In light of the discussion at the beginning of this section, our goal will be to construct
a curve ξ(t) ∈ S4 ⊂ R5 such that all 4 × 4 minor determinants of P(ξ(t), tc) vanish, for all t

sufficiently small. If this is to occur, then as in the first paragraph of the proof of Theorem 3.4,
we must have (after possibly passing to a subsequence)

ξ(t) → a = (a1, . . . , a5),

where two elements of a vanish, say a1 = a2 = 0. There are then three cases to consider, namely:
a3a4a5 �= 0, a3 = 0 and a4a5 �= 0, a3 = a4 = 0 and a5 �= 0.

Case 1. a1 = a2 = 0 and a3a4a5 �= 0.

Since a1 = a2 = 0, we will write

ξ1(t) = ty1(t), ξ2(t) = ty2(t).

It follows that

ξ1 + tb11 = tx1 + t2c21
1 y2, ξ2 + tb22 = tx2 + t2c12

2 y1,

where

xi = yi +
∑
k>2

cki
i ξk.
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Denote by P i
j the minor of the principal symbol obtained by deleting the ith row and j th column.

We will analyze

detP 1
1 = detP 2

1 = detP 1
2 = detP 2

2 = 0.

First,

detP 1
1 = tξ3ξ4ξ5x2 + O

(
t2), detP 2

2 = tξ3ξ4ξ5x1 + O
(
t2).

This implies x1 → 0 and x2 → 0 as t → 0. Hence, we write

xi(t) = tzi(t) for i = 1,2,

for some zi . Moreover we have

detP 1
2 = tξ3ξ4ξ5b21 + O

(
t2), detP 2

1 = tξ3ξ4ξ5b12 + O
(
t2).

Then we have b12 → 0 and b21 → 0 as t → 0. This suggests that we write

∑
k>2

ck2
1 ξk = tz3(t),

∑
k>2

ck1
2 ξk = tz4(t), (4.4)

for some z3 and z4, so that

b12 = t
(
c12

1 y1 + z3
)
, b21 = t

(
c21

2 y2 + z4
)
.

Upon calculating the four determinants above in terms of the zi we obtain,

detP 1
1 = t2

[(
z2 − c12

2

∑
k>2

ck1
1 ξk

)
ξ3ξ4ξ5 − b23b32ξ4ξ5 − b24b42ξ3ξ5 − b25b52ξ3ξ4

]

+ O
(
t3), (4.5)

detP 2
2 = t2

[(
z1 − c21

1

∑
k>2

ck2
2 ξk

)
ξ3ξ4ξ5 − b13b31ξ4ξ5 − b14b41ξ3ξ5 − b15b51ξ3ξ4

]

+ O
(
t3), (4.6)

detP 1
2 = t2

[(
z4 − c12

2

∑
k>2

ck2
2 ξk

)
ξ3ξ4ξ5 − b23b31ξ4ξ5 − b24b41ξ3ξ5 − b25b51ξ3ξ4

]

+ O
(
t3), (4.7)

detP 2
1 = t2

[(
z3 − c21

1

∑
k>2

ck1
1 ξk

)
ξ3ξ4ξ5 − b13b32ξ4ξ5 − b14b42ξ3ξ5 − b15b52ξ3ξ4

]

+ O
(
t3). (4.8)
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Define functions Gi by

detP 2
2 = t2G1, detP 1

1 = t2G2, detP 2
1 = t2G3, detP 1

2 = t2G4.

We would like each Gi to be a function of zi and t . To see that this is the case, we recall (4.2)
with i = 1, j = 2. Since (4.2) holds with k = 3 and l = 4, we may solve Eqs. (4.4) for ξ3 and ξ4
in terms of ξ5, z3, and z4. More precisely, for these values of k and l, fix ξ5(t) = a5, a nonzero
constant. Then solve to obtain

ξ3(t) = a3 + t
(
c32

1 c41
2 − c31

2 c42
1

)−1[(
c41

2 z3(t) − c42
1 z4(t)

) + (
c42

1 c51
2 − c41

2 c52
1

)
a5

]
,

ξ4(t) = a4 + t
(
c32

1 c41
2 − c31

2 c42
1

)−1[(
c32

1 z4(t) − c31
2 z3(t)

) + (
c31

2 c52
1 − c32

1 c51
2

)
a5

]
,

where a3, a4, a5 satisfy

∑
k>2

ck2
1 ak = 0,

∑
k>2

ck1
2 ak = 0. (4.9)

Note that if a5 �= 0, then a3a4 �= 0, in light of (4.2). We now have a map

G = (G1,G2,G3,G4) : R4 × R → R4,

with G(z,0) = 0, where z may be determined from (4.5), (4.6), (4.7), and (4.8). Moreover a
simple calculation shows that DG(z,0) = a3a4a5I4, where I4 denotes the 4 × 4 identity ma-
trix. By the implicit function theorem there exists z(t) = (z1(t), z2(t), z3(t), z4(t)), such that
G(z(t), t) = 0 for all sufficiently small t . Thus we have found a curve ξ(t) such that

detP 1
1 (t) = detP 2

2 (t) = detP 1
2 (t) = detP 2

1 (t) = 0.

We now claim that all remaining minor determinants vanish as well, on the curve ξ(t). Con-
sider the last three column vectors of the principal symbol P(ξ(t), c(t)) minus the first or second
row. These are linearly independent for small t since a3a4a5 �= 0. If we append the first or sec-
ond column (again minus the first or second row) then these four vectors are linearly dependent
since detP 1

1 (t) = detP 2
2 (t) = detP 1

2 (t) = detP 2
1 (t) = 0. So by Lemma 4.2, all minors P i

j with
i = 1,2 have zero determinant.

Now we move on to columns. Consider the first or second column, that is consider the
last three row vectors minus the first or second column. These are linearly independent, since
a3a4a5 �= 0. If we append the first or second row (again minus the first or second column), then
these four vectors are linearly dependent since detP 1

1 = detP 2
1 = 0. Hence by Lemma 4.2, all

minors P i
j with j = 1,2 have zero determinant.

Now consider columns 3, 4, and 5. Say column 3. The last three rows (minus the third column)
are linearly independent if b31 �= 0 or b32 �= 0. Moreover, by appending either the first or second
row (minus the third column), we obtain four linearly dependent vectors by what has been shown
above. Thus Lemma 4.2 shows that all minors P i

j with j = 3 have zero determinant. The same
conclusion follows for j = 4 if b41 �= 0 or b42 �= 0, and for j = 5 if b51 �= 0 or b52 �= 0. Therefore
all minor determinants vanish, if certain bkl do not vanish at t = 0. This fact follows directly
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from (4.3) with i = 1 and j = 2. To see this, solve the linear algebraic equations (4.9) for a3, a4,
and a5, and then insert the result into bkl to obtain the desired conclusion.

In summary, we have constructed a curve ξ(t) → a = (0,0, a3, a4, a5), where the (nonzero)
components a3, a4, a5 satisfy the linear algebraic equations (4.9) (note that there is only one such
point a ∈ P4), such that all minor determinants of the principal symbol vanish. It follows that for
each sufficiently small t , ξ(t) lies in the singular part of the characteristic variety. By considering
all possible cases of two zero components, that is ai = aj = 0, we obtain ten distinct points in
Σsing(tc) ∩ P4. This proves the first statement of the theorem.

Case 2. a1 = a2 = a3 = 0 and a4a5 �= 0.

Following the strategy of Case 1, we will write ξi(t) = tyi(t) for i = 1,2,3. It follows that

ξ1 + tb11 = tx1 + t2(c21
1 y2 + c31

1 y3
)
,

ξ2 + tb22 = tx2 + t2(c12
2 y1 + c32

2 y3
)
,

ξ3 + tb33 = tx3 + t2(c13
3 y1 + c23

3 y2
)
,

where

xi = yi + c4i
i ξ4 + c5i

i ξ5.

We will analyze

detP 1
2 = detP 2

1 = detP 1
3 = detP 2

3 = 0.

First,

detP 1
2 = t2(b21x3 − b23b31)ξ4ξ5 + O

(
t3),

detP 2
1 = t2(b12x3 − b13b32)ξ4ξ5 + O

(
t3),

which motivates the following. For functions zi(t), i = 1,2,3,4, to be determined, we will write

x1 = z1, x2 = z2, x3 = b23(0)b31(0)

b21(0)
+ tz3,

b12b31b23 − b21b13b32 = tz4, (4.10)

where bij (0) signifies bij evaluated at t = 0. Note that under generic conditions on the parameters
ckij we have that b21(0) �= 0 (that this is possible is a consequence of the way in which a4 and a5
are chosen below). We claim that knowledge of z(t) = (z1, . . . , z4) is equivalent to knowledge of
ξ(t). To see this, fix a5 �= 0 and let a4 solve the cubic polynomial

(
c42

1 a4 + c52
1 a5

)(
c41

3 a4 + c51
3 a5

)(
c43

2 a4 + c53
2 a5

)
= (

c41
2 a4 + c51

2 a5
)(

c43
1 a4 + c53

1 a5
)(

c42
3 a4 + c52

3 a5
)
, (4.11)

which is the last equation of (4.10) evaluated at t = 0. Note that this polynomial has either one
or three nonzero solutions for a4 again under generic conditions on the parameters. We then set
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ξ5(t) = a5 and ξ4 = a4 + ty4(t). Generic conditions also imply that y4 may be determined in
terms of zi and t from (4.10). Thus our task of constructing ξ(t) is reduced to finding z(t).

We now calculate four determinants in terms of the zi :

detP 1
2 = t3z3b21ξ4ξ5 + O

(
t3|z1|, t3|z2|, t4),

detP 2
1 = t3(b−1

21 z4 + b12z3
)
ξ4ξ5 + O

(
t3|z1|, t3|z2|, t4),

and

detP 2
3 = t2(b32z1 − b12b31)ξ4ξ5 + O

(
t3),

detP 1
3 = t2(b21b32 − b31z2)ξ4ξ5 + O

(
t3).

We may then define a map

G = (G1,G2,G3,G4) : R4 × R → R4,

where the components of G are functions of z and t , and are given by

detP 2
3 = t2G1, detP 1

3 = t2G2, detP 1
2 = t3G3, detP 2

1 = t3G4.

Let z be such that G(z,0) = 0, it then follows that

DG(z,0) = a4a5

⎛
⎜⎜⎝

b32(0) 0 0 0

0 −b31(0) 0 0

∗ ∗ b21(0) 0

∗ ∗ ∗ b21(0)−1

⎞
⎟⎟⎠ ,

where ∗ represents an expression which is unimportant. Generic conditions on the parameters
then guarantee that this matrix is invertible. The implicit function theorem then yields z(t) with
G(z(t), t) = 0 for sufficiently small t . Thus we have constructed a curve ξ(t) on which the four
determinants calculated above vanish.

We now show that all other minor determinants of the principal symbol vanish on ξ(t), under
generic conditions on the parameters. Consider columns 1, 4, and 5, minus the first or second row.
These vectors are linearly independent for small t , if b21(0) �= 0 and b31(0) �= 0. Since detP 1

2 =
detP 1

3 = 0 we may apply Lemma 4.2 to show that all minors constructed from an element in
the first two rows have zero determinant. Now consider the last three rows. If b32(0) �= 0 then
these vectors are linearly independent for small t . Thus by using what has been shown above,
and applying Lemma 4.2, we find that all minors constructed from an element in the first column
have zero determinant. The same result holds similarly for the second and third columns. For
columns 4 and 5, we obtain this result if (respectively)

b31(0)b42(0) �= b41(0)b32(0), b31(0)b52(0) �= b51(0)b32(0).

In conclusion, we have constructed a curve ξ(t) → a = (0,0,0, a4, a5), where the (nonzero)
components a4, a5 satisfy Eq. (4.11) (note that under generic conditions on the parameters there
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is either one or three such points a ∈ P4), such that all determinant minors of the principal
symbol vanish. It follows that for each sufficiently small t , ξ(t) lies in the singular part of the
characteristic variety. By considering all possible cases of three zero components, that is ai =
aj = ak = 0, we obtain α + 3γ distinct points in Σsing(tc) ∩ P4, where α and γ are nonnegative
integers summing to ten.

Case 3. a1 = a2 = a3 = a4 = 0 and a5 �= 0.

We proceed in the same way as in the previous two cases. Set ξi(t) = tyi(t), i = 1,2,3,4, and
calculate

ξ1 + tb11 = tz1 + t2(c21
1 y2 + c31

1 y3 + c41
1 y4

)
,

ξ2 + tb22 = tz2 + t2(c12
2 y1 + c32

2 y3 + c42
2 y4

)
,

ξ3 + tb33 = tz3 + t2(c13
3 y1 + c23

3 y2 + c43
3 y4

)
,

ξ4 + tb44 = tz4 + t2(c14
4 y1 + c24

4 y2 + c34
4 y4

)
,

where

zi = yi + c5i
i ξ5.

Now calculate four determinants in terms of the zi :

detP 4
2 = t3(z1b32b43 + z3b12b41 − z1z3b42 − b12b31b43 + b13b31b42 − b13b32b41)ξ5

+ O
(
t4),

detP 3
2 = t3(z1z4b32 − z1b34b42 − z4b12b31 + b12b34b41 + b14b31b42 − b14b32b41)ξ5

+ O
(
t4),

detP 2
1 = t3(z3z4b12 − z4b13b32 − z3b14b42 − b12b34b43 + b13b34b42 + b14b32b43)ξ5

+ O
(
t4),

detP 4
3 = t3(z1z2b43 − z1b23b42 − z2b13b41 − b12b21b43 + b12b23b41 + b13b21b42)ξ5

+ O
(
t4).

Define a map

G = (G1,G2,G3,G4) : R4 × R → R4,

where the components of G are functions of z and t , and are given by

detP 4
3 = t3G1, detP 4

2 = t3G2, detP 3
2 = t3G3, detP 2

1 = t3G4.

In order to find z such that G(z,0) = 0, we proceed as follows. Solve for z3 in terms of z1 from
G2(z,0) = 0, and solve for z4 in terms of z1 from G3(z,0) = 0. Now insert these expressions for
z3 and z4 into G4(z,0) = 0 to obtain a quadratic polynomial for z1. Under generic conditions on
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the parameters, this polynomial has two nonzero real solutions or no real solutions. In the case
of two real solutions we may then find z2 from G1(z,0) = 0. Furthermore

DG(z,0) =

⎛
⎜⎜⎝

z2b43 − b23b42 z1b43 − b13b41 0 0

b32b43 − z3b42 0 b12b41 − z1b42 0

z4b32 − b34b42 0 0 z1b32 − b12b31

0 0 z4b12 − b14b42 z3b12 − b13b32

⎞
⎟⎟⎠ ,

which is invertible under further generic conditions. Thus the implicit function theorem gives a
function z(t) with G(z(t), t) = 0 for small t . We have then constructed a curve ξ(t) on which the
four relevant determinant minors vanish.

We now show that all other determinant minors vanish on ξ(t), again assuming appropri-
ate generic conditions. We will use Lemma 4.2 as usual, omitting explicit details. Use that
detP 3

2 = detP 4
2 = 0 to show that all minors constructed from elements of the second row have

zero determinant. With this and detP 2
1 = 0 we may then show that all minors constructed from

elements of the second column have zero determinant. Furthermore, all determinant minors
constructed from elements of the third row are zero, by the above and detP 4

3 = 0. Now that
determinant minors from two rows all vanish, we may proceed exactly as in Cases 1 and 2 to
complete the argument.

To conclude the proof, let us note that in Case 1 we have obtained ten points a ∈ Σsing(tc)∩P4,
and in Case 2 we have obtained α + 3γ points where α and γ are nonnegative integers summing
to 10. In Case 3, we imposed generic conditions on the parameters so that the quadratic poly-
nomial equation satisfied by z1 has two real solutions or no real solutions. Since there are five
different combinations of four zero components for a, we obtain 5β points in Case 3, where β is
a nonnegative integer with β � 5. Thus the total is 10 + α + 2β + 3γ . �

The proof of Theorem 4.4 allows a simple characterization of the limit set Λ(c) ⊂ P4 (as
t → 0) of the singular part of the characteristic variety in dimension 5. Namely, under generic
conditions on the parameters, it consists of the following points:

(i) the ten points a = [a1, . . . , a5] with ai = aj = 0, i �= j , such that

∑
k �=i,j

c
kj
i ak = 0,

∑
k �=i,j

cki
j ak = 0; (4.12)

(ii) the α + 3γ points a = [a1, . . . , a5] with ai = aj = al = 0, i < j < l, such that

( ∑
k �=i,j,l

c
kj
i ak

)( ∑
k �=i,j,l

ckl
j ak

)( ∑
k �=i,j,l

cki
l ak

)

=
( ∑

k �=i,j,l

cki
j ak

)( ∑
k �=i,j,l

c
kj
l ak

)( ∑
k �=i,j,l

ckl
i ak

)
; (4.13)

(iii) five points

[1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1].
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Recall that the conditions imposed on the parameters guarantee that Eqs. (4.12) have exactly
one solution, and that Eq. (4.13) has either one or three solutions. We have shown that the singular
variety Σsing(tc) ∩ P4 lies in a neighborhood of Λ(c) for t sufficiently small.

We now study the singular variety for all higher dimensions n � 5. Although the following
result is not as precise as in the 5-dimensional result above, we are able to show that the singular
variety contains a significantly large algebraic variety. We believe that a similar analysis, on a
case by case basis, as was carried out in the proof of Theorem 4.4 is possible, and will lead to a
characterization of the singular variety for small t . However due to the extensive calculations in-
volved, we restrict attention to a single case below. Pick i, j ∈ {1, . . . , n} with i �= j , and consider
the following generic conditions on the parameters:

c
kj
i cli

j �= cki
j c

lj
i for all k �= l, with k �= i, j and l �= i, j, (4.14)

and for each p �= i, j there exists k, l,m /∈ {i, j} with k < l < m such that

ckI
p

(
c
lj
i cmi

j − cli
j c

mj
i

) + clI
p

(
cki
j c

mj
i − c

kj
i cmi

j

) + cmI
p

(
c
kj
i cli

j − cki
j c

lj
i

) �= 0, (4.15)

where I = i or I = j .

Theorem 4.5. Let n � 5. If all elements c
kj
i of c satisfy the conditions (4.14) and (4.15), then for

any sufficiently small t > 0, Σsing(tc) ∩ Pn−1 contains an algebraic variety of dimension n − 5.

Proof. We will follow a similar strategy as in Case 1 of the proof of Theorem 4.4. Thus, our goal
will be to construct a curve ξ(t) ∈ Sn−1 ⊂ Rn such that all (n − 1) × (n − 1) determinant minors
of P(ξ(t), tc) vanish, for all sufficiently small t . If this is to occur, then as in the first paragraph
of the proof of Theorem 4.4, we must have (after possibly passing to a subsequence)

ξ(t) → a = (a1, . . . , an),

where two elements of a vanish, say ai = aj = 0. Choose the remaining components of a to
satisfy the following three properties:

∏
k �=i,j

ak �= 0,

∑
k �=i,j

c
kj
i ak = 0,

∑
k �=i,j

cki
j ak = 0,

and for all p �= i, j ,

∑
k �=i,j

cki
p ak �= 0 or

∑
k �=i,j

c
kj
p ak �= 0. (4.16)

The generic conditions (4.14) and (4.15) guarantee that such an a exists. Moreover, it is clear
that the set of all a ∈ Sn−1 satisfying these properties contains an algebraic variety of dimension
n − 5.
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In what follows we will let i = 1 and j = 2 for convenience. As in the first part of the proof
of Theorem 4.4, we will analyze

detP 1
1 = detP 2

1 = detP 1
2 = detP 2

2 = 0.

Set

ξ1(t) = ty1(t), ξ2(t) = ty2(t).

Then

ξ1 + tb11 = tx1 + t2c21
1 y2, ξ2 + tb22 = tx2 + t2c12

2 y1,

where

xi = yi +
∑
k>2

cki
i ξk.

First,

detP 1
1 = tξ3 · · · ξnx2 + O

(
t2), detP 2

2 = tξ3 · · · ξnx1 + O
(
t2).

This motivates us to write

xi(t) = tzi(t) for i = 1,2,

for some zi . Moreover we have

detP 1
2 = tξ3 · · · ξnb21 + O

(
t2), detP 2

1 = tξ3 · · · ξnb12 + O
(
t2).

This implies b12 → 0 and b21 → 0 as t → 0. This suggests that we write

∑
k>2

ck2
1 ξk = tz3(t),

∑
k>2

ck1
2 ξk = tz4(t), (4.17)

for some z3 and z4, so that

b12 = t
(
c12

1 y1 + z3
)
, b21 = t

(
c21

2 y2 + z4
)
.

Upon calculating the four determinants above in terms of the zi we obtain,

detP 1
1 = t2

[(
z2 − c12

2

∑
k>2

ck1
1 ξk

)
ξ3 · · · ξn − b23b32ξ4 · · · ξn − · · · − b2nbn2ξ3 · · · ξn−1

]

+ O
(
t3), (4.18)
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detP 2
2 = t2

[(
z1 − c21

1

∑
k>2

ck2
2 ξk

)
ξ3 · · · ξn − b13b31ξ4 · · · ξn − · · · − b1nbn1ξ3 · · · ξn−1

]

+ O
(
t3), (4.19)

detP 1
2 = t2

[(
z4 − c12

2

∑
k>2

ck2
2 ξk

)
ξ3 · · · ξn − b23b31ξ4 · · · ξn − · · · − b2nbn1ξ3 · · · ξn−1

]

+ O
(
t3), (4.20)

detP 2
1 = t2

[(
z3 − c21

1

∑
k>2

ck1
1 ξk

)
ξ3 · · · ξn − b13b32ξ4 · · · ξn − · · · − b1nbn2ξ3 · · · ξn−1

]

+ O
(
t3). (4.21)

Define functions Gi by

detP 2
2 = t2G1, detP 1

1 = t2G2, detP 2
1 = t2G3, detP 1

2 = t2G4.

We would like each Gi to be a function of zi and t . To see that this is the case, we recall (4.14)
with i = 1, j = 2. Since (4.14) holds with k = 3 and l = 4, we may solve Eqs. (4.17) for ξ3 and
ξ4 in terms of ξ5, . . . , ξn, z3, and z4. More precisely, for these values of k and l, fix ξl(t) = al ,
l = 5, . . . , n. Then solve to obtain

ξ3(t) = a3 + t
(
c32

1 c41
2 − c31

2 c42
1

)−1[(
c41

2 z3(t) − c42
1 z4(t)

)
+ (

c42
1 c51

2 − c41
2 c52

1

)
a5 + · · · + (

c42
1 cn1

2 − c41
2 cn2

1

)
an

]
,

ξ4(t) = a4 + t
(
c32

1 c41
2 − c31

2 c42
1

)−1[(
c32

1 z4(t) − c31
2 z3(t)

)
+ (

c31
2 c52

1 − c32
1 c51

2

)
a5 + · · · + (

c31
2 cn2

1 − c32
1 cn1

2

)
an

]
.

We now have a map

G = (G1,G2,G3,G4) : R4 × R → R4,

with G(z,0) = 0, where z may be determined from (4.18), (4.19), (4.20) and (4.21). Moreover a
simple calculation shows that DG(z,0) = a3 · · ·anI4, where I4 is the 4 × 4 identity matrix. By
the implicit function theorem there exists z(t) such that G(z(t), t) = 0 for all sufficiently small t .
Thus we have found a curve ξ(t) such that detP 1

1 (t) = detP 2
2 (t) = detP 1

2 (t) = detP 2
1 (t) = 0.

The fact that all remaining determinant minors vanish as well on the curve ξ(t), follows from
the same arguments at the end of Case 1 in the proof of Theorem 4.4. Here one must use that
bk1 �= 0 or bk2 �= 0 for all k �= 1,2, which follows from (4.16). �

Now we discuss the limit set of Σsing(tc) ∩ Sn−1 as t → 0. In the proof of Theorem 4.5 for
n � 5, we constructed an (n − 5)-dimensional surface in Σsing(tc) ∩ Sn−1 which can be viewed
as a perturbation of

{ξ | ξ1 = ξ2 = 0}.
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This corresponds to Case 1 in the proof of Theorem 4.4. Similarly, we can construct an
(n − 5)-dimensional surface in Σsing(tc) ∩ Sn−1 corresponding to Cases 2 and 3 in the proof
of Theorem 4.4. By making appropriate permutations, we can write down the limit set Λ(c) of
Σsing(tc) ∩ Pn−1 as t → 0. In fact, under appropriate generic conditions on the parameters, it
consists of all points a = [a1, . . . , an] ∈ Pn−1 satisfying one of the following three sets of equa-
tions:

(i) ai = aj = ak = al = 0 for i < j < k < l;
(ii) ai = aj = al = 0 for i < j < l such that

( ∑
k �=i,j,l

c
kj
i ak

)( ∑
k �=i,j,l

ckl
j ak

)( ∑
k �=i,j,l

cki
l ak

)

=
( ∑

k �=i,j,l

cki
j ak

)( ∑
k �=i,j,l

c
kj
l ak

)( ∑
k �=i,j,l

ckl
i ak

)
;

(iii) ai = aj = 0 for i < j such that

∑
k �=i,j

c
kj
i ak =

∑
k �=i,j

cki
j ak = 0.

In terms of the rescaled principal symbol P̃ = (p̃ij ) given by

p̃ij = lim
t→0

t−1+δij pij ,

we can express Λ(c) alternatively by

Λ(c) =
( ⋃

i<j

{p̃ii = p̃jj = p̃ij = p̃j i = 0}
)

∪
( ⋃

i<j<l

{p̃ii = p̃jj = p̃ll = p̃ij p̃j l p̃li − p̃j i p̃lj p̃il = 0}
)

∪
( ⋃

i<j<k<l

{p̃ii = p̃jj = p̃kk = p̃ll = 0}
)

.

An important observation here is that Λ(c) ∩ Sn−1 is smooth except along intersections of any
two subsets in this expression for Λ(c). In other words, these intersections constitute the singular
part of Λ(c).

Remark 4.6. To conclude this paper, we make a remark concerning Theorem 4.4 and Theo-
rem 4.5. When characteristic varieties are smooth, the corresponding linear differential systems
are of the principal type. Symmetrizers can be constructed and solutions can be proven to exist.
However, when the characteristic varieties are not smooth, a general existence theory of solutions
is not available. It is believed that symmetrizers can still be constructed if the singular sets of the
characteristic varieties enjoy a simple geometry, as illustrated by these theorems.
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