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We propose a definition of quasi-local mass based on the Penrose Inequality. Two further
definitions are given by measuring distortions of the exponential map.
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1. Quasi-Local Mass from the Penrose Inequality

General Relativity differs from most classical field theories in that there is no well-

defined notion of energy density for the gravitation field, as can be seen from Ein-

stein’s principle of equivalence. Thus at best one can only hope to calculate the

mass/energy contained within a domain, as opposed to at a point. Such a concept

is referred to as quasi-local mass, that is, a functional which assigns a real number

to each compact spacelike hypersurface in a spacetime. Of course there are many

properties that any such functional should satisfy under appropriate conditions;

most notable among these are the properties of non-negativity and rigidity (for an

expanded list see Ref. 4). Although numerous definitions of quasi-local mass have

been proposed, most seem to possess undesirable properties, in fact most fail the

crucial test of non-negativity. However, there is one definition which appears to

satisfy most of the required properties, namely the mass proposed by Bartnik.2

Bartnik’s idea is to localize the ADM (or total) mass in the following way. Here

we restrict attention to the time symmetric case. Let (Ω, h) be a compact three-

manifold with boundary, and define an admissible extension to be an asymptotically

flat three-manifold (M, g) with (or without) boundary satisfying the following con-

ditions: (M, g) has non-negative scalar curvature, the boundary (if nonempty) is
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minimal and no other minimal surfaces exist within (M, g), lastly (Ω, h) embeds

isometrically into (M, g). Then Bartnik’s mass is given by

MB(Ω) = inf{MADM(M, g)|(M, g) an admissible extension of (Ω, h)} ,

where MADM is the ADM mass. A primary benefit of this construction is that

non-negativity is achieved for free, from the positive mass theorem. However, it

is not a priori clear that this definition is nontrivial, in the sense that the mass

is nonzero whenever Ω is nonflat. That this is the case,8 is a consequence of (and

reason for) the no horizons (minimal surfaces) assumption in the class of admissible

extensions. Although this mass satisfies many other desired properties, it suffers

from the apparent deficiency of being difficult to compute. In order to remedy this

problem, Bartnik2 has proposed the following solution. Namely, he conjectures that

the infimum MB(Ω) is realized by an admissible extension (M0, g0) which is smooth

and static vacuum outside of Ω, is C0,1 across ∂Ω, and has non-negative scalar

curvature (in the distributional sense). Thus Bartnik’s mass may be computed as

the ADM mass of the given static vacuum extension.

Recall that a Riemannian manifold (M, g) is static vacuum if there exists a

potential function u(x) > 0 which satisfies the static vacuum Einstein equations

(equivalently, the spacetime metric −u2dt2 + g is Ricci flat):

Ric(g) = u−1∇2u , ∆u = 0 . (1.1)

Here ∇2 is the Hessian and ∆ is the Laplacian with respect to the metric g. The

physical reasoning behind this conjecture is that once all mass/energy has been

squeezed out, there is nothing left to support matter fields (vacuum) or gravitational

dynamics (static). Moreover, significant mathematical motivation exists as well. For

instance, if the mass minimizing extension is not static then Corvino5 has shown

that there exist compactly supported metric variations which increase the scalar

curvature, so that one may then perform an appropriate conformal deformation to

lower the ADM mass.

Ideally there should be a unique static vacuum extension, and so one must ap-

pend boundary conditions to the static vacuum equations. The choice of boundary

conditions is dictated by the desire for the positive mass theorem to remain valid

for the complete manifold (M̃0 ∪ Ω, g0 ∪ h), where M̃0 = M0 − Ω. This will in fact

be the case10,12 if the metric g0 remains C0,1 across the divide between the static

and nonstatic parts, and if the mean curvatures agree:

g0|∂M̃0
= h|∂Ω , H∂M̃0

= H∂Ω . (1.2)

Furthermore it follows from the Riccati and Gauss equations that these Bartnik

boundary conditions imply that the scalar curvature is in fact non-negative in the

distributional sense, as demanded by the conjecture.

The conjecture may be divided into two distinct parts. The first step is to es-

tablish a basic existence result for the static vacuum equations (1.1) with boundary

conditions (1.2). Then with this mass minimizer in hand, the second step entails
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showing that the given static solution actually realizes the infimum. While there

has been some progress on part one of the conjecture,1,11 the second part remains

essentially uninvestigated.

It should be noted that the static metric extension conjecture (if true) shows

that the Bartnik mass depends only on the boundary geometry. Namely, let Σ = ∂Ω,

then MB(Ω) depends only on the induced metric and mean curvature on Σ. For

this reason, we may write MB(Ω) = MB(Σ).

Although the Bartnik mass has many desirable properties it has been criticized

for potentially overestimating the true “physical” mass contained in a domain.13

In this section we propose a modification of the Bartnik mass with the aim of

alleviating this difficulty. In order to state the definition, we must first recall the

Penrose inequality. Let (M, g) be an asymptotically flat Riemannian three-manifold,

with non-negative scalar curvature, and outermost minimal surface boundary ∂M .

A minimal surface is called outermost if no other minimal surface encloses it. If

|∂M | denotes the area of the boundary, then the Riemannian Penrose inequality

asserts that

MADM(M, g) ≥

√

|∂M |

16π
,

and equality holds if and only if (M, g) is isometric to the t = 0 slice of the

Schwarzschild spacetime. This theorem has been proven by Huisken and Ilmanen8

for one boundary component, and by Bray3 for multiple boundary components.

Just as Bartnik’s mass is based on the positive mass theorem, we may use the Pen-

rose inequality to construct a quasi-local mass in an analogous way. Namely, with

the same notion of an admissible extension, we propose the following definition:

MQL(Ω) = inf

{

MADM(M, g)−

√

|∂M |

16π
|(M, g) an admissible extension of (Ω, h)

}

.

Notice that an admissible extension has minimal surface boundary and that no

other minimal surfaces exist within the extension, hence the boundary is in fact

an outermost minimal surface and the Penrose inequality applies to show that

MQL(Ω) ≥ 0 for any (Ω, h) with non-negative scalar curvature. Moreover, it is

immediate from the definition that monotonicity holds, in that if Ω1 ⊂ Ω2, then

MQL(Ω1) ≤ MQL(Ω2). When compared with the Bartnik mass, it is apparent that

MQL ≤ MB, which suggests that this new definition may remedy the potential

tendency of the Bartnik mass to overestimate the true value of the physical mass. It

should also be observed that MQL(Ω) = 0 for any domain Ω contained within the

t = 0 slice of the Schwarzschild spacetime and lying outside of the horizon. Although

this differs in spirit from the Bartnik mass, it conforms with other masses such as

the well-known Komar mass13 that also shares this property. We conjecture that

MQL(Ω) = 0 if and only if Ω is a domain exterior to the horizon in the t = 0

slice of the Schwarzschild spacetime. This generalizes the rigidity statement for the

Bartnik mass, in that Minkowski space is replaced by the Schwarzschild solution.
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Furthermore, in analogy with Bartnik’s conjecture, we conjecture that the infimum

MQL(Ω) is realized by an admissible extension (M0, g0) which is smooth and static

outside of Ω, is C0,1 across ∂Ω, and has non-negative scalar curvature (in the

distributional sense). If true, MQL(Ω) may then be computed as the ADM mass

minus the mass of the boundary, of the given static extension. The extension should

be unique, and should depend only on the induced metric and mean curvature of

the boundary Σ = ∂Ω. Thus, as in the case with the Bartnik mass, we should be

able to write MQL(Ω) = MQL(Σ).

2. Quasi-Local Mass from Volume Distortion

In the remainder of this paper, two further definitions of quasi-local mass will

be proposed; both definitions will be restricted to the time symmetric case only.

Although unrelated to the Bartnik mass, they share a common theme in that each

measures a distortion of the exponential map. The first, denoted M, measures

volume distortion and is discussed in the present section. The second, denoted M,

is discussed in the next section and measures the distortion of a modulus of curves.

In addition to sharing a common theme, these two definitions are highly related in

a local manner, but differ globally. More precisely, it turns out that inside strictly

convex balls the modulus of curves is given by the volume (Lemma 3.2). Moreover,

volume is an upper bound for the modulus. This means that the two definitions

agree over small scales, but most likely differ in the large with M ≤ M.

We will use the following notation. Let (M, g) be a complete, time symmet-

ric (zero extrinsic curvature), spacelike hypersurface, of a spacetime satisfying the

dominant energy condition. That is, (M, g) is a Riemannian three-manifold with

non-negative scalar curvature. The tangent space at p ∈ M will be denoted by

TpM , and SpM will denote its unit tangent space. All curves will be parametrized

over the unit interval unless otherwise specified. For v ∈ SpM , we denote by τ(v)

the (possibly infinite) distance to the tangential cut locus of p in the direction v.

We also denote

EpM = {tv | v ∈ SpM , 0 ≤ t < τ(v)} .

For U ⊂ M we denote by Volg(U) its Riemannian volume, and for V ⊂ TpM we

denote by Vol(V ) its Euclidean volume induced by the inner product given by g

restricted to TpM . The metric ball in (M, g) of radius r centered at p will be written

Br(p). The ball of radius r centered at u ∈ TpM will be denoted B(r, u).

We make frequent use of the asymptotic expansion from Theorem 3.1 in Ref. 7,

for the volume of metric balls in a Riemannian n-manifold:

Volg(Br(p)) = a0r
n − a1 Scalg(p)r

n+2 + a2Λ(g, p)r
n+4 +O(rn+6) , (2.1)

where a0, a1, a2 > 0 are constants depending only on n, and Λ(g, p) can be ex-

pressed in terms of coordinate fields {X1, . . . , Xn}, chosen to be orthonormal at p,

as follows:
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Λ(g, p) = −3
∑

i,j,k,l

Riemg(Xi, Xj , Xk, Xl)
2 + 8

∑

i,j

Ricg(Xi, Xj)
2

+5Scalg(p)
2 − 18∆g Scalg(p) . (2.2)

For any path connected, precompact, open set Ω ⊂ M and any p ∈ M we let

Ap(Ω) = {U ⊂ EpM open |expp U ⊂ Ω , tu ∈ U for allu ∈ U and t ∈ [0, 1]} . (2.3)

Now we define the (outer) volume distortion of the exponential map at the point

p ∈ Ω, by

Kp(Ω) = sup
U∈Ap(Ω)

Vol(U)

Volg(expp U)
.

A quasi-local mass (in the time symmetric case) should depend only on the bound-

ary Σ = ∂Ω, its induced metric g|Σ, and mean curvature Hg; the triple (Σ, g|Σ, Hg)

will be referred to as Bartnik boundary data. With this in mind we then propose

the following definition of quasi-local mass

M(Σ) = inf
h

sup
p∈Ω

logKp(Ω) ,

where in analogy with the Bartnik mass the infimum is taken over all metrics

h with non-negative scalar, whose Bartnik boundary data (∂Ω, h|∂Ω, Hh) agrees

with the given boundary data (Σ, g|Σ, Hg). We conjecture that these boundary

conditions guarantee that this definition of mass is nontrivial. That is, it should

hold that M(Σ) > 0 unless Σ embeds isometrically into Euclidean space in such a

way that the mean curvature from the Euclidean embedding agrees with Hg, the

mean curvature from the embedding in (M, g). Here we shall prove the following.

Theorem 2.1. Let (M, g) be a complete Riemannian three-manifold with non-

negative scalar curvature. For any closed surface Σ ⊂ M bounding a path connected

precompact domain, we have M(Σ) ≥ 0. Equality holds and the infimum is realized

by a metric h on a domain Ω, if and only if (Ω, h) is locally isometric to Euclidean

space. If in addition there is a set U ∈ Ap(Ω) for some p ∈ Ω such that expp(U) = Ω,

then Ω is isometric to a subset of Euclidean space.

Proof. We proceed by contradiction. Suppose that M(Σ) < 0. This implies that

there exists a metric h on Ω having the given Bartnik boundary data and with

Scalh ≥ 0, such that logKp(Ω) < 0 for each p ∈ Ω. Pick a point p ∈ Ω and consider

balls of radius r > 0 about the origin in TpM . Note that for r sufficiently small

these balls are in Ap(Ω), and that their images under the exponential map are also

a sequence of metric balls. We then have

Vol(B(r, 0))

Volh(expp B(r, 0))
=

Vol(B(r, 0))

Volh(Br(p))
< 1 . (2.4)

If Scalh(p) > 0 then the expansion (2.1) contradicts (2.4). Thus, either M(Σ) ≥ 0

or Scalh(p) = 0 for all p ∈ Ω. We proceed with the zero scalar curvature assumption.
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Comparing the expansion (2.1) and the inequality (2.4) again, yields Λ(h, p) ≥ 0.

Since Ω has dimension 3 the curvature tensor can be expressed entirely in terms of

the Ricci tensor:

Riemh(Xi, Xj , Xi, Xj) =
1

2
[Rich(Xi, Xi) + Rich(Xj , Xj)− Rich(Xk, Xk)] , (2.5)

Riemh(Xi, Xj , Xi, Xk) = Rich(Xj , Xk) , (2.6)

where {X1, X2, X3} are coordinate fields orthonormal at p, and i, j, k ∈ {1, 2, 3} are

distinct. Since Scalh ≡ 0 on Ω, (2.2) gives the following expression for Λ:

Λ(h, p) = 8





∑

i

Rich(Xi, Xi)
2 + 2

∑

i<j

Rich(Xi, Xj)
2





− 3





∑

[ijk]

(Rich(Xi, Xi) + Rich(Xj , Xj)− Rich(Xk, Xk))
2

+8
∑

j<k

Rich(Xj , Xk)
2



 .

Here [ijk] denotes summation over the three cyclic permutations of (1, 2, 3). Since

Λ(h, p) ≥ 0 for all p ∈ Ω, it follows that

−
∑

i

Rich(Xi, Xi)
2 + 6

∑

i<j

Rich(Xi, Xi)Rich(Xj , Xj)

− 8
∑

i<j

Rich(Xi, Xj)
2 ≥ 0 . (2.7)

Furthermore, Scalh(p) = 0 for all p ∈ Ω gives that

0 =

(

∑

i

Rich(Xi, Xi)

)2

=
∑

i

Rich(Xi, Xi)
2 + 2

∑

i<j

Rich(Xi, Xi)Rich(Xj , Xj) .

Combining this and (2.7) produces

−4
∑

i

Rich(Xi, Xi)
2 − 8

∑

i<j

Rich(Xi, Xj)
2 ≥ 0 .

Since p was arbitrary, the Ricci curvature is identically zero on Ω. Applying (2.5)

and (2.6) gives that the full Riemann tensor is also identically zero. Thus, (Ω, h) is

locally isometric to Euclidean space and logKp(Ω) = 0 for all p ∈ Ω. The conclusion

of the theorem now follows, except perhaps for the last sentence. To complete the

proof note that since expp|U is injective for any U ∈ Ap(Ω), if exppU = Ω then it

is surjective as well.
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3. Quasi-Local Mass from Distortion of a Modulus of Curves

First we introduce some notation. As above (M, g) will denote a complete Rie-

mannian three-manifold of non-negative scalar curvature. For any set of curves

A ⊂ C0([0, 1],M), consider the set of Borel functions

F(A) =

{

f : M → [0,∞]

∣

∣

∣

∣

∫

γ

f ≥ distg(γ(0), γ(1)) for all γ ∈ A

}

,

and define the modulus of curves in A,

mod(A) = inf{‖f‖g | f ∈ F(A)} ,

where ‖f‖g is the L
3 norm induced by the Riemannian measure (i.e. it is the volume

of the possibly singular conformal metric f2g).

Similarly, a set of curves B in TpM takes the set of Borel functions

Fp(B) =

{

f : TpM → [0,∞]

∣

∣

∣

∣

∫

γ

f ≥ ‖γ(0)− γ(1)‖g for all γ ∈ B

}

and define the modulus of curves in B,

modp(B) = inf{‖f‖(p) | f ∈ Fp(B)} ,

where ‖f‖(p) is the L
3 norm of f on TpM induced by the inner product g restricted

to TpM . Note that this modulus is the same as that on curves in R
3 under the

Euclidean metric and the subscript p is there only to denote in which tangent space

the curves reside.

For any set U ⊂ (M, g) with nonempty interior, ΓU will be the set of all contin-

uous curves γ parametrized on the unit interval with γ(t) in the interior of U for all

0 < t < 1 and γ(0), γ(1) ∈ ∂U . Estimates of the modulus of sets of curves ΓU were

given in Lemma 2.4, Lemma 2.5, and Theorem 2.6 of Ref. 9. For the convenience

of the reader we summarize relevant results here in the following two lemmas.

Lemma 3.1. If U = Br(p) is a metric ball in (M, g) and r is less than the con-

vexity radius at p, then mod(ΓU ) = Volg(U).

Lemma 3.2. Let V be an open set with compact closure.

(i) If V ⊂ Br(p) with r less than the convexity radius at p, then mod(ΓV ) =

Volg(V ).

(ii) If V ⊂ TpM, then modp(ΓV ) = Vol(V ).

Now we define a quasi-local mass from distortion of the exponential map on

the modulus on curves given above. Let Σ be a closed surface embedded inside

M and bounding a region, with Bartnik data (Σ, g|Σ, Hg). For any compact, path

connected Riemannian three-manifold (Ω, h) with boundary Σ, and any p ∈ Ω we

let Ap(Ω) be defined as in (2.3). For each of these collections let the (outer) modulus

distortion Kp of the exponential map at the point p ∈ Ω be given by

Kp(Ω) = sup
U∈Ap(Ω)

modp(ΓU )

mod(Γexp
p
U )

.

1250042-7



February 17, 2012 12:4 WSPC/146-MPLA S0217732312500423 8–9

N. N. Katz & M. A. Khuri

We then define the quasi-local mass for these distortions in the following way

M(Σ) = inf
h

sup
p∈Ω

logKp(Ω) ,

where the infimum is taken over all metrics h with non-negative scalar curvature,

whose Bartnik boundary data (∂Ω, h|∂Ω, Hh) agrees with the given boundary data

(Σ, g|Σ, Hg). We conjecture that these boundary conditions guarantee that this def-

inition of mass is nontrivial. That is, it should hold that M(Σ) > 0 unless Σ embeds

isometrically into Euclidean space in such a way that the mean curvature from the

Euclidean embedding agrees with Hg, the mean curvature from the embedding in

(M, g). Here we shall prove the following.

Theorem 3.3. Let (M, g) be a complete Riemannian three-manifold with non-

negative scalar curvature. For any closed surface Σ ⊂ M bounding a path connected

precompact domain, we have M(Σ) ≥ 0. Equality holds and the infimum is realized

by a metric h on a domain Ω, if and only if (Ω, h) is locally isometric to Euclidean

space. Furthermore, M(Σ) ≤ M(Σ).

Proof. The proof is similar to that of Theorem 2.1, so we only give an outline. We

proceed by contradiction. Suppose that M(Σ) < 0. This implies that there exists a

metric h on Ω having the given Bartnik boundary data and with Scalh ≥ 0, such that

logKp(Ω) < 0 for each p ∈ Ω. Pick a point p ∈ Ω and consider U = B(r, 0) ⊂ TpM .

By Lemma 3.1,

1 > Kp(Ω) ≥
modp(ΓU )

mod(Γexp
p
U )

=
Vol(B(r, 0))

Volg(Br(p))
. (3.1)

If Scalh(p) > 0, this contradicts expansion (2.1). Thus, either M(Σ) ≥ 0 or

Scalh(p) = 0 for all p ∈ Ω. We proceed with the zero scalar curvature assumption.

Comparing the expansion (2.1) and the inequality (3.1) again, yields Λ(h, p) ≥ 0,

where Λ(h, p) is given in (2.2). As in the proof of Theorem 2.1, this implies that

the full Riemann tensor vanishes, and hence (Ω, h) is locally isometric to Euclidean

space. In this case, the exponential map at each p ∈ Ω restricted to any U ∈ Ap(Ω)

is an isometry, and so applying Lemma 3.2 shows that M(Ω) = 0. The conclusions

of the theorem now follow, except perhaps for the last sentence. To complete the

proof it is sufficient to show that if a set U has nonempty interior, then

mod(ΓU ) ≤ Volh(U) .

Since the integral of 1 along any curve γ is greater than or equal to the Riemannian

distance between the endpoints of γ, we have that 1 ∈ F(ΓU ) and the claim follows

immediately.
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