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Abstract. Is the universe finite or infinite, and what shape does it have? These fundamental questions, of

which relatively little is known, are typically studied within the context of the standard model of cosmology

where the universe is assumed to be homogeneous and isotropic. While these two hypotheses are well-

motivated, they are not realistic on all scales of description. Here we address the above questions in highly

general cosmological models, with the only assumption being that the average flow of matter is irrotational.

Using techniques from differential geometry, specifically extensions of Myers’ theorem, we derive a condition

which implies a finite universe and yields an estimate for its diameter. Comparing with Planck CMB data,

it is shown that this condition is satisfied by the observable universe with approximately 85% confidence.

Furthermore, under a weaker condition involving the interplay between curvature and diameter, which is

again compatible with the Planck CMB data, together with the assumption that the universe is finite, we

provide a concise list of possible topologies. Namely, the spatial sections must be either the ring topologies

S1 × S2, S1×̃S2, S1 ×RP2, RP3#RP3, or are covered by the sphere S3 or torus T 3. In particular, the basic

construction of connected sums is ruled out (save for one), along with the plethora of topologies associated

with negative curvature. These results are obtained from consequences of the geometrization of 3-manifolds,

by applying a generalization of the almost splitting theorem together with a curvature formula of Ehlers and

Ellis.

Significance Statement . This article addresses the fundamental issues of the extent and shape of the universe, in the

setting of general cosmological models without symmetry hypotheses. This is motivated in part by recent analyses of the cosmic

microwave background (CMB), which have called into question the cosmological principles of homogeneity and isotropy. By

introducing advanced techniques from differential geometry and topology to this problem, we are able to provide an explicit list

of plausible shapes (topologies), and to determine within an acceptable margin of error a finite upper bound for the diameter of

the universe. Many types, including all compact hyperbolic manifolds, are ruled out if the universe reaches a critical density,

or even if it does not and instead has diameter less than some (in principle computable) bound.
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1. Introduction

The standard model of cosmology, or ΛCDM model, is based on the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) solutions of the Einstein equations which describe a universe that is both homogeneous
and isotropic, meaning that the set of possible observations does not depend on location or direction. These
symmetries characterize the FLRW models, and imply that the 3-dimensional spatial sections (an instant
of time) are of constant sectional curvature and that all physical quantities, such as the matter density
ρ and Hubble scalar H, are constant along the time slices. An interesting feature of these models is the
prediction that if

(1.1) 8πGρ/c2 − 3(H/c)2 + Λ > 0,

where c, G, and Λ are respectively the speed of light, and the gravitational and cosmological constant,
then the spatial sections are of curvature greater than a positive constant and hence compact (finite). This
is the closure result of FLRW cosmologies. It should be noted that in the case when the quantity of (1.1)
is zero or negative, the time slices are of zero or negative curvature and can be either open (infinite) or
closed and, if closed, will have nontrivial topology manifested by an infinite fundamental group.

The hypotheses of homogeneity and isotropy are well-motivated when averaged over very large scales,
as can be seen by observation [1, 8] as well as through the successes of the ΛCDM model. On the other
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hand, some large-scale attributes of the CMB have been found to be inconsistent with these assumptions.
Examples include the anomalous low temperature ‘cold spot’ [42], and the direction dependent statistical
properties of temperature fluctuations studied in [21]. According to the European Space Agency [22],
statistical anisotropies appearing in the Planck mission data are statistically significant and cannot be
ignored. Moreover, even homogeneity has been called into question [37]. Thus, it is of interest to study
models that do not require these pillars of the cosmological principle. A well-known theoretical framework
that removes the isotropic assumption is that of the Bianchi universe. In [36], a thorough analysis of these
models and their relation to the CMB data has been given, and limits on the anisotropic expansion have
been found. Still, these models are homogeneous and provide a very specific type of anisotropy. In this
paper we drop the postulate of symmetry altogether, and study general cosmological models with the sole
assumption that the average flow of matter is irrotational. This hypothesis guarantees that through any
spacetime point, there passes a 3-dimensional submanifold orthogonal to the average flow of matter, which
represents the spatial universe at a moment of time. In this broad setting, we will generalize the closure
result described above, giving a condition which implies that these spatial sections are compact. In analogy
with (1.1), the condition is then shown to be satisfied within the margin of error by the observed values of
relevant physical quantities. Furthermore, our approach naturally produces an estimate for the diameter
of the spatial slice.

The methods that we use to study the closure property are based on a classical result of differential
geometry, known as Myers’ theorem [35, Theorem 25]. This states that a complete Riemannian manifold
with Ricci curvature bounded below by a positive constant must have finite diameter, and also gives an
estimate for this length. In the setting of general cosmological models, a formula of Ehlers and Ellis [16, 17]

implies that a version of the Ricci tensor, referred to as the Bakry-Émery Ricci curvature, appears on the
spatial sections and is coupled to the matter content as well as other aspects of the geometry. An extended
version of Myers’ theorem [30] may then be employed to ascertain a diameter bound for time slices. Initial
results in this direction were obtained by the first named author in [23, 24], where closure results were found
under more stringent conditions that are not necessarily consistent with current observations. Moreover,
the suggestion to directly apply Myers’ theorem was discussed in [18].

Planck temperature and polarization measurements combined with lensing data show that the closure
criterion, consistent with the hypotheses of Myers’ theorem, is satisfied at approximately an 85% confidence
level (see Section 2.2). On the other hand, the CMB data reveal that even if the lower bound for the Bakry-

Émery Ricci curvature of spatial sections is not positive, it is certainly almost1 positive. This suggests the
application of another result from differential geometry, namely the almost splitting theorem [12], which
is a refinement of the classical splitting theorem [13]. The latter result asserts that in the presence of a
line (a geodesic which is infinite in both directions and minimizes length between any two of its points),
a complete manifold of nonnegative Ricci curvature splits off a Euclidean factor both geometrically and
topologically. The almost splitting refinement deals with almost nonnegative Ricci curvature, and while
the conclusion is weaker than the original result, strong topological restrictions still follow when applied to
compact manifolds. As mentioned above, in the setting of general cosmological models, the Ricci curvature
of spatial sections should be replaced by the Bakry-Émery Ricci curvature. It turns out that the almost
splitting result may be extended to the Bakry-Émery context [25], and as we will see this is sufficient for
cosmological applications. If the spatial sections are indeed compact, the topology is then highly restricted
in the sense that the fundamental group must be almost abelian, or rather, it admits an abelian subgroup
of finite index.

A major development in topology and geometry came approximately 15 years ago, when Thurston’s
geometrization conjecture was confirmed [11, 29, 32, 34]. This gives a classification of compact 3-manifolds
in terms of 8 model geometries. Consequences of geometrization, when combined with restrictions placed
on the fundamental group from the almost splitting theorem, yield a short list of possible topologies for

1While the quantifier ‘almost’, as used here, may be interpreted in the colloquial sense, other instances have a precise

mathematical meaning. Examples of the latter case include ‘almost abelian group’ and ‘almost splitting’ (see [12]).
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the spatial sections of the universe. More precisely, the time slices can either admit as a covering space
the 3-sphere S3 or 3-torus T 3, or are covered by S1 × S2. In this last case there are only four possibilities,
that is the sections can be the trivial or nonorientable 2-sphere bundle over a circle S1 × S2 or S1×̃S2,
the product of a circle and the 2-dimensional real projective space S1 × RP2, or are the connected sum of
two copies of 3-dimensional real projective space RP3#RP3. Interestingly, the last four on this list, which
qualitatively may be interpreted in terms of complexity as lying between the first two possibilities, are not
considered within the FLRW models because they do not admit metrics of constant curvature. The first
two cases are quotients of the sphere or torus, and do arise in the standard model of cosmology. Such
quotients of the sphere are known as spherical 3-manifolds, and they are divided into 5 classes related to
the Platonic solids, with their classification given in [38]. The corresponding quotients of the torus are
known as Bieberbach manifolds, and there are 10 in total [44], 6 being orientable and 4 non-orientable. The
results of this paper may then be interpreted as reducing the topology question for general cosmological
models, which forgo any symmetry hypotheses, to the same question as presented by the FLRW models
for positive and zero curvature, plus the four additional candidates arising from the product of a circle
with the 2-sphere. Notably, this would eliminate the case of negative curvature with its infinite variety of
topologies, as well as the possibility of connected sums, except for one. The connected sum construction is
a fundamental method for building new manifolds out of others of the same dimension, and allows for the
3-dimensional classification problem to be focused on the study of basic building blocks through the prime
decomposition. From a cosmological perspective, a universe that is a nontrivial connected sum may be
interpreted as possessing one or more wormholes between regions having prime 3-manifold topology. Thus,
even without the assumption of homogeneity and isotropy, the presence of wormholes is strongly disfavored.
While these conclusions, drawn from the almost splitting theorem, apply to closed universes that may not
quite achieve closure density, they apply to observations on scales larger than a certain quantity set by the
amount that closure density exceeds the actual mass-energy density. The mathematics asserts that there
is such a scale but does not provide a clear method to compute it.

Investigations using the ‘circles in the sky’ method have claimed that many of the Bieberbach manifolds
are unlikely candidates for the topology of the universe [14], and robust constraints have been placed on
the possible spherical topologies that can be detected [43]. Another primary tool that has been used to
investigate cosmic topology is the ‘method of images’ [9, 10], which has achieved restrictions in the compact
hyperbolic setting. See [31] for a survey of results. Furthermore, using the ΛCDM and Bianchi models,
the Planck mission [2] has found no significant evidence for nontrivial topology. It should be pointed out,
however, that the candidate ring topologies (those covered by S1×S2) were not considered in this analysis
since they do not arise within the models studied. Early WMAP data was analysed in [6] and [7], which
ruled out most (but not all) spherical spaces, namely all except for the 3-sphere and two specific quotients
of it. Therefore if the universe is indeed closed, as is suggested by Planck [19], then modulo the ring
topologies which have not been previously investigated, the current evidence seems to point towards the
3-sphere as the most likely cosmic topology. See, however, the very recent analysis of [5] showing evidence
for toroidal topology.

2. The Closure Criterion

We begin by setting the stage for the cosmological models studied here. This will lead to the Ricci
curvature formula of Ehlers and Ellis, for spatial slices, from which we will apply an extended version of
Myers’ theorem to obtain conditions for closure. These conditions will then be compared with data from
the Planck experiment.

Consider a 4-dimensional spacetime (M4,g) satisfying the Einstein equations

(2.1) Rab −
1

2
Rgab + Λgab = κTab,
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with stress-energy tensor T and κ = 8πG/c4. Assume that there is a smooth unit time-like vector field
u which represents the velocity field of the average flow of matter in the universe. This implies the mild
restriction that the spacetime is time-orientable, in which u points into the future. Observe that the
covariant derivative may be decomposed orthogonally into irreducible parts based on symmetry by

(2.2) ∇∇∇aub = −uau̇b +
1

3
θgab + σab + ωab,

where u̇ =∇∇∇uu, and gab = gab+uaub is the projection onto the orthogonal complement of u. Additionally,
if i, j represent directions perpendicular to u then θ = ∇∇∇iu

i is the volume expansion scalar or H = θ/3
is the Hubble scalar, σij = ∇∇∇⟨iuj⟩ is the shear tensor, and ωij = ∇∇∇[iuj] is the vorticity tensor with

σabu
b = ωabu

b = 0. Here the notation ⟨ ⟩ indicates tracefree symmetrization, whereas [ ] indicates anti-
symmetrization.

It will also be assumed that the average flow of matter is irrotational, that is ω = 0. This condition is
equivalent to u ∧ du = 0, and by the Frobenius theorem it guarantees that the distribution of orthogonal
subspaces to u is integrable. Thus u is hypersurface orthogonal, so that through any given spacetime point
there is a maximal connected 3-dimensional submanifold M3 whose tangent spaces are orthogonal to u,
and has positive definite induced metric g. Physically, M3 may be interpreted as a spatial section, or
some instant of time. Local coordinates (t, x1, x2, x3) may then be introduced in a spacetime neighborhood
about any point of M3, such that the metric is expressed as

(2.3) g = −φ2dt2 + gij(t, x)dx
idxj ,

where u = φ−1∂t. Here t is a synchronous time coordinate with t = 0 corresponding to M3, and the
xi are local coordinates on the time slice. Furthermore, letting ∇ denote the ‘spatial’ gradient/covariant
derivative, it can be shown that

(2.4) X :=∇∇∇uu = ∇ logφ = gab∂a logφ∂b,

in particular X is tangent to M3. Note that although the vector field X exists globally, it may not globally
be the gradient of a function, as the expression (2.4) is local. In what follows we will use geometrized units
where c = G = 1, so that coordinates carry distance units, time is converted to distance using the speed
of light, and u is dimensionless so that g(u, u) = −1.

The setup described above is useful, because it yields natural spatial sections that can then be exam-
ined for closure, without imposing symmetry hypotheses. In particular, there is no requirement that the
cosmology be close in any sense to an FLRW model. In order to proceed, we seek to understand positivity
properties of the Ricci curvature Rij of the slice M

3. From the Einstein equations, together with the Gauss
and Codazzi relations, the following formula is obtained by Ehlers [16] and Ellis [17] (see also [20])

(2.5) Rij = ∇⟨iXj⟩ +X⟨iXj⟩ +
1

3

(
2µ− 2

3
θ2 + |σ|2 + 2Λ

)
gij − σ̇⟨ij⟩ − θσij +Πij ,

where σ̇ = ∇∇∇uσ. The derivation of this formula is not easily discerned from the literature, and for this
reason we present one in the appendix. The remaining quantities appearing in this equation either have
been described above or arise from the decomposition of the stress-energy tensor with respect to the flow
of matter

(2.6) κTab = µuaub + qaub + qbua + pgab +Πab,

where qau
a = 0, Πabu

b = 0, and Π⟨ab⟩ = Πab. Here µ is the energy density, which when expressed in

physical units is given by 8πGρ/c2. Likewise q represents momentum density, p represents the isotropic
pressure, and Π represents the trace-free anisotropic pressure all multiplied by κ; these have dimensions of
inverse length squared in geometrized units. If qa = 0 and Πab = 0 then the matter is a perfect fluid. If in
addition p = 0 then it is a dust, and in some scenarios this pressureless perfect fluid is used to model cold
dark matter. However, here, we make no assumption about the type of matter present.
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Notice that upon taking a trace of (2.5) we obtain a simple expression for the scalar curvature of the
spatial section

(2.7) R = 2µ− 2

3
θ2 + |σ|2 + 2Λ.

Observe that the condition (1.1), from the closure result of FLRW cosmologies, implies that R > 0.
Nevertheless, this is not sufficient in the current context to conclude that M3 is compact, because this
spatial slice is not necessarily of constant curvature. On the other hand, positivity of Ricci curvature, or
Bakry-Émery Ricci curvature is sufficient to obtain the closure property.

2.1. The Bakry-Émery Ricci Condition. Consider an n-dimensional Riemannian manifold (Mn, g),

and let m > 0. Recall that the generalized m-Bakry-Émery Ricci tensor is given by

(2.8) RicmV (g) = Ric(g) +
1

2
LV g −

1

m
V ⊗ V,

in which V is a 1-form/vector and LV denotes Lie differentiation. Bakry-Émery Ricci curvature arises
naturally in many contexts, of which one notable instance is the warped product structure of Kaluza-Klein
compactification; in the present situation it appears in the Ehlers-Ellis formula (2.5), as we make note of
below. A version of Myers’ theorem for this type of Ricci tensor was established in [30]. It states that if
the manifold is complete and

(2.9) RicmV (g) ≥ (n+m− 1)λg,

for some constant λ > 0, then the manifold has bounded diameter with the upper bound

(2.10) diam (Mn) ≤ π√
λ
.

Since the manifold is complete with finite diameter we conclude that it is compact, and has finite fundamen-
tal group |π1 (Mn) | < ∞. Moreover, in the case that n = 3, the elliptization portion of the geometrization
of 3-manifolds implies that M3 must be a spherical manifold, and thus is a quotient of S3 by a subgroup
of isometries acting properly discontinuously.

These observations may now be applied to general cosmological models. Namely, we may rewrite the
Ricci formula for spatial slices (2.5) to fit within the context of the Bakry-Émery Ricci curvature, by setting
V = −X and m = 1 to find

(2.11) Ric1−X(g) =
2

3

(
µ+ Λ+

1

2
|σ|2 − 1

3
θ2 − 1

2
divX − 1

2
|X|2

)
g − σ̇ − θσ +Π.

In order to estimate this from below, and make contact with cosmological parameters, we define the Hubble
scalar H, total matter density Ω0, and dark energy density ΩΛ as follows

(2.12) H =
1

3
θ, Ω0 = infM3

µ

3H2
, ΩΛ = infM3

Λ

3H2
.

The remaining terms on the right-hand side of (2.11) should be negligible, and we denote their smallest
eigenvalue by

(2.13) ε = infx∈M3 min
w∈TxM3

|w|=1

[(
|σ|2

6H2
− divX + |X|2

6H2

)
g − σ̇

2H2
− 3σ

2H
+

Π

2H2

]
(w,w).

It follows that

(2.14) Ric1−X(g) ≥ 2 (Ω0 +ΩΛ − 1 + ε)H2g.

By applying the generalized Myers’ theorem we obtain a closure result and diameter estimate for the
universe. The Hubble constant will be set as H0 = infM3 H.
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Theorem 2.1. Consider a 4-dimensional spacetime satisfying the Einstein equations with matter, and
assume that there exists a smooth unit time-like irrotational vector field which represents the velocity field
of the average flow of matter in the universe. Let M3 be a complete spatial section orthogonal to the average
flow or matter with positive Hubble constant H0 > 0. If the sum of the matter and dark energy densities is
sufficiently large so that

(2.15) Ω = Ω0 +ΩΛ > 1− ε,

then the following properties hold.

(i) The universe is closed, that is, M3 is compact.

(ii) The spatial section M3 is a spherical 3-manifold, namely, it is a quotient of S3 by a subgroup of
isometries acting properly discontinuously.

(iii) The diameter of the universe satisfies

(2.16) diam
(
M3

)
≤ π

H0

√
3

2(Ω− 1 + ε)
.

2.2. Comparison with CMB Data. The diameter bound in Theorem 2.1 applies to the entire universe,
not just the observed universe. To estimate it, we assume that observed data can be extrapolated to the
entire universe. The literature reports bounds on the cosmological parameters that contribute to Ω by
using an FLRW or sometimes a Bianchi cosmological model to convert observational data to estimates of
the various densities. Those models assume these parameters to be constants, so quoted observational data
generally represent spatial averages. As an average is never less than an infimum (cf. (2.13)), diameter
calculations which rely on these reported averages may be too small. However, observed anisotropies
on cosmological scales are small, so cosmological parameters within the observable universe are nearly
constant, and anyway it is reasonable to expect that a version of Theorem 2.1 requiring only averaging in
(2.15) can be proved.

Several years of WMAP and Planck data have led to a vorticity parameter estimate [36] of no more than
5 × 10−11 in units of the Hubble constant, consistent with our assumption of irrotational matter. This is

several orders of magnitude smaller than the anisotropic shear parameter bounds [36] of |σ|
H0

< 1.0× 10−6

at the 95% confidence level. The remaining terms of ε, all of which are dimensionless when expressed in
geometrized units where c = G = 1, are anisotropies that we argue may be considered as inconsequential
when analyzing (2.16) due to their relatively small size when compared to the estimates of Ω− 1.

The 2018 Planck temperature and polarization measurements2, when combined with lensing and baryon
acoustic oscillation (BAO) data, suggest that our Universe is spatially flat to a 1σ accuracy of 0.2% [3,
page 40], see also [15]. However, a different interpretation and analysis has been put forth which shows a
moderate preference for a positively curved universe [27, 33, 40, 41, 45]. This was also noted in the Planck
release [3, page 39]. The latter viewpoint is based on the CMB data alone without the lensing or BAO
contributions, with a focus on the importance of proper statistical analysis when combining different data
sets. Here, in the context of illustrating the theorem, we will assume that Planck CMB plus lensing data
offer an accurate description of the Universe; these measurements, at least with respect to the curvature
parameter, mediate between the two viewpoints. According to the Planck collaboration [3, (47a) page 40],
data from the CMB temperature and polarization anisotropies together with lensing yield

(2.17) Ω = 1.0106± 0.0065

at 68% confidence. Furthermore, the current value measured for the Hubble constant [3, Table 5] with
conversion is

(2.18) H0 = 63.6+2.1
−2.3 km · s−1 ·Mpc−1 = 6.9+0.23

−0.25 × 10−27m−1

2Although the base-ΛCDM model used by the Planck experiment assumes a spatially flat universe, extensions allowing the

curvature parameter to vary are considered and it is this data that we reference.
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at 68% confidence, where c = 1 has been used in the form s = 2.99792 × 108m. For the purposes of
estimation we may, with near certainty, take H0 > 5 × 10−27m−1. Thus, from (2.17) we obtain an upper
bound for the diameter of the universe

(2.19) diam ≤ 1.2× 1028m

at 85% confidence, where the confidence level arises from the fact that in order to achieve a one-sided bound
we need only utilize one tail of the distribution. Note that this is larger than estimates obtained using
traditional models. For example, in [26] the distance from Earth to the edge of the observable universe is
approximated to be 4.26× 1026m.

Application of Theorem 2.1, while independent of homogeneity, isotropy, and indeed the cosmological
model itself, is nevertheless dependent on the realization of closure density Ω > 1. In this regard, the
statistics described above yield this conclusion with approximately 85% confidence. It should be noted,
however, that the fundamental question of whether closure density is actually achieved remains undecided
and is an area of intense investigation. As the theorem indicates, the possible topologies in this regime
are tightly constrained, even without, and far from the setting of homogeneous and isotropic cosmologies.
On the other hand, if closure density is not achieved then the almost splitting result could apply, which
implies restrictive yet milder topological constraints that are discussed in the next section.

3. Cosmic Topology of a Closed Universe

In Section 2 we saw that positive Bakry-Émery Ricci curvature of spatial slices may be used to obtain a
closure result and diameter estimate. The lower bound for the Bakry-Émery Ricci curvature was compared
with CMB data, and shown to be positive within the margin of error. This led to a highly restrictive list
of possible universe topologies consisting of spherical space forms. It is nevertheless possible that this
lower bound could be slightly negative. In this situation Myers’ theorem and its generalizations are not
applicable. However, the almost splitting theorem [12] is in fact specifically designed for this scenario.
As discussed in the introduction, the almost splitting result gives conditions under which the manifold
almost splits-off a Euclidean factor. Here we will be interested in the topological conclusions that follow
from this almost splitting. While the original theorem was established for pure Ricci curvature, a recent
extension [25, Theorem 1.3] has been established for Bakry-Émery Ricci curvature that is applicable to
the cosmological context. The next result translates this theorem to the current setting.

Theorem 3.1. Consider a 4-dimensional spacetime satisfying the Einstein equations, and assume that
there exists a smooth unit time-like irrotational vector field which represents the velocity field of the average
flow of matter in the universe. Let M3 be a compact spatial section orthogonal to the average flow of matter
with Hubble scalar H0. There exists a sufficiently small δ > 0 dependent on diameter, volume, and size of
X, such that if

(3.1) (Ω− 1 + ε)H2
0 ≥ −δ,

then the fundamental group π1
(
M3

)
is almost abelian. In particular, the spatial slice admits a finite cover

whose fundamental group is abelian.

The restrictions on the fundamental group imposed by this theorem, together with consequences of the
geometrization theorem for 3-manifolds, yields a list of possible topologies for the universe that are detailed
below. An important consequence is that relatively small negative (Bakry-Émery Ricci) curvature, which
is not inconsistent with the range of possibilities implied by current measurements, does not permit spatial
sections to have the topology of a hyperbolic manifold; here relative smallness is interpreted with respect to
diameter. This conclusion deviates drastically with the standard model of cosmology, in which any amount
of negative curvature implies that spatial sections must have the topology of a hyperbolic manifold.

A primary hypothesis of Theorem 3.1 is the smallness requirement of the constant δ. The degree to
which δ must be small for the conclusions to be valid, relies on the diameter and volume of M3, as well
as on X. On the other hand, a lower bound for δ guaranteeing applicability to the observable universe,
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may be obtained from the CMB data in a manner similar to the diameter estimation of Section 2.2. In
particular, we may assume with exceptional confidence that H0 > 5 × 10−27m−1, and then use Planck
CMB spectra combined with lensing and BAO data [3, Fig. 26] (see also [15, Fig. 1]) to find

(3.2) (Ω− 1 + ε)H2
0 ≥ −1.25× 10−55m−2

at more than 95% confidence, so that if δ is greater than the absolute value of the right-hand side then
the required hypothesis is satisfied with the same confidence level. This exceedingly small value suggests
the possible applicability of Theorem 3.1 to the physical universe. Note, however, that since δ is not
dimensionless any discussion of its ‘smallness’ must come in comparison to something else. The theorem
relates smallness to a diameter upper bound, volume lower bound, and modulus bound for X. Since the
volume of M3 and magnitude of X are well-behaved, it is the diameter that should be used to interpret
the smallness of δ. Although an exact formula for the dependence of δ on the diameter is not known, a
reasonable conjecture is that the dimensionless quantity δ · diam2 should be bounded above by a universal
constant in order for the conclusions of the theorem to hold. Notice that the inverse squared diameter of
the universe, as discussed in the previous section, is on par with the value in (3.2). In particular, if the
diameter was known definitively to be slightly smaller than the proposed upper bounds, then the almost
abelian fundamental group property would be confirmed.

3.1. Consequences of Geometrization. The geometrization theorem [11, 29, 32, 34] gives a classifi-
cation of compact 3-manifolds. Here we will work under the conclusion of Theorem 3.1, that the spatial
slice M3 has almost abelian fundamental group, and derive the possible topologies from the classification.
The first observation [28, Theorem 6] is that this assumption implies that M3 cannot be expressed as a
connected sum M1#M2, where M1 and M2 are compact manifolds having nontrivial fundamental groups,
except possibly in the case that π1(M1) = π1(M2) = Z2. Thus either M3 is prime, or M3 = RP3#RP3 is
the connected sum of two copies of real projective space.

Let N3 be a finite cover of M3 with abelian fundamental group. Since M3 is compact, N3 is compact
as well. Moreover, it may be assumed without loss of generality that N3 is orientable, since we may take
the orientable double cover if necessary. Geometrization may be used to provide a list [4, Table 1.2] of
the possible abelian fundamental groups associated with orientable compact 3-manifolds. Namely, π1(N

3)
may be one of the following groups: Z, Z3, and Zp the finite cyclic group of order p. Note that examples
of 3-manifolds realizing these groups, respectively, are the ring S1 × S2, the torus T 3, and the lens space
L(p, q) where q is coprime to p. In fact, we claim that N3 must be one of these three types of manifolds. To
see this, first observe that due to the restriction on the fundamental group N3 must be prime. According to
[4, Theorem 2.1.2], if N1 and N2 are two closed orientable prime 3-manifolds with isomorphic fundamental
groups, and they are not lens spaces, then they must be homeomorphic. It follows that if π1

(
N3

)
= Z

then N3 is homeomorphic to S1 × S2, whereas if π1
(
N3

)
= Z3 then N3 is homeomorphic to T 3. The only

other possibility is that π1
(
N3

)
= Zp. Since this is a finite group, we may use the elliptization portion of

the geometrization theorem to conclude that N3 is homeomorphic to a lens space L(p, q).
The above arguments show that M3 must be covered by S3, S1 × S2, or T 3. In the second case, more

can be said. In particular, if M3 is covered by S1×S2 then it is also covered by the universal cover R×S2.
By [39, Theorem 1], this implies that M3 must be either: S1 × S2, the nonorientable 2-sphere bundle over
the circle S1×̃S2, S1 × RP2, or RP3#RP3.

3.2. Conclusions. We have analyzed the topology and other aspects of highly general cosmological mod-
els, which are completely divorced from the typical symmetry assumptions of homogeneity and isotropy.
Conditions that guarantee a closed universe have been given, along with an estimate for its diameter,
using an extended version of Myers’ theorem. Validity of the condition has been shown to fall within the
margin of error of the CMB data as provided by the Planck mission. Further analysis of the topology
under weaker hypotheses involving the interplay between curvature and diameter, derived from a general-
ized almost splitting theorem combined with geometrization of 3-manifolds, has provided a list of possible
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topologies for a closed universe. Specifically, the spatial sections allowed under Theorem 3.1 must be either
covered by S3 or T 3, or are one of S1 × S2, S1×̃S2, S1 ×RP2, or RP3#RP3. In particular, this eliminates
connected sums (except for one) as well as the vast array of hyperbolic topologies.

Finally, we consider the estimate for δ. The almost splitting theorem states that the critical value for δ,
below which topological conclusions can be drawn, is a function of parameters such as the diameter of the
universe. However, the theorem does not construct this function, or provide an obvious way to directly
analyze its properties. It is therefore an intriguing open problem to determine estimates for this critical
value. Nevertheless, the fact that this value is nonzero implies that even with negative Ricci curvature
of spatial sections, strong topological restrictions for the universe are still very much possible depending
on the size of δ. This is in sharp contrast to the standard model of cosmology, where only nonnegative
scalar curvature of spatial slices induces such topological rigidity. Moreover, in further contrast to the
standard model, these conclusions hold in highly general settings without the assumptions of homogeneity
and isotropy, or in fact without any symmetry hypotheses at all.

Acknowledgements. The authors would like to thank George F. R. Ellis, Marilena Loverde, Dmitri
Pogosyan, and Neelima Sehgal for helpful suggestions.

Appendix A. The Ehlers and Ellis Spatial Ricci Formula

In this section we present justification for the Ricci formula (2.5) associated with spatial sections. This
formula is due to Ehlers [16] and Ellis [17] (see also [20]), although a detailed derivation does not seem to
be recorded in the literature. We will work with the setting and notation set forth in Section 2.

First observe that the second fundamental form of a time slice is given by Aij = ⟨∇iu, ∂j⟩, and by the
Gauss equations

(A.1) Rijkl = Rijkl +AikAjl −AilAjk,

where Rijkl and Rijkl denote the curvature tensors of g and g, respectively, while i, j, k, and l indicate
directions tangent to the slice. Taking traces produces

(A.2) Rjl +Rujul = Rjl + θAjl −AliA
i
j , R+ 2Ruu = R+ θ2 − |A|2,

with θ = gijAij . By setting X =∇∇∇uu, the curvature tensor components are given by

(A.3) Rujul = ∇jXl − ⟨∇∇∇u∇∇∇ju, ∂l⟩+XjXl.

To see this note that

(A.4) Rujul = ⟨R(∂j , u)u, ∂l⟩ = ⟨∇∇∇j∇∇∇uu−∇∇∇u∇∇∇ju−∇∇∇[∂j ,u]u, ∂l⟩,

and combine it with

(A.5) [∂j , u] =
[
∂j , ϕ

−1∂t
]
= −∂jϕ

ϕ
u = −Xju,

as well as

(A.6) −⟨∇[∂j ,u]u, ∂l⟩ = Xj⟨∇∇∇uu, ∂l⟩ = XjXl.

It follows that

Rjl =Rjl +Rujul − θAjl +A2
jl

=Rjl +∇jXl +XjXl − ⟨∇∇∇u∇∇∇ju, ∂l⟩ − θAjl +A2
jl.

(A.7)

Next, by evaluating the Einstein equations along tangential direction to the slice we obtain

(A.8) Rjl =
1

2
Rgjl + κTjl − Λgjl.

Below it will be shown that

(A.9) ⟨∇∇∇u∇∇∇ju, ∂l⟩ = Ȧjl +A2
jl,
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and therefore

(A.10) Rjl =
1

2
Rgjl + κTjl − Λgjl +∇jXl +XjXl − θAjl − Ȧjl.

To confirm (A.9) observe that

⟨∇∇∇u∇∇∇ju, ∂l⟩ =u⟨∇∇∇ju, ∂l⟩ − ⟨∇∇∇ju,∇∇∇u∂l⟩
=u⟨∇∇∇ju, ∂l⟩ −A2

jl − ⟨∇∇∇ju, [u, ∂l]⟩
=u⟨∇∇∇ju, ∂l⟩ −A2

jl,

(A.11)

since

(A.12) ⟨∇∇∇ju, [u, ∂l]⟩ = −Xl⟨∇ju, u⟩ = 0.

Furthermore direct computation shows that

u⟨∇∇∇ju, ∂l⟩ =uAjl

=(∇∇∇uA) (∂j , ∂l) +A(∇∇∇u∂j , ∂l) +A(∂j ,∇∇∇u∂l)

=Ȧjl +A(∇∇∇u∂j , ∂l) +A(∂j ,∇∇∇u∂l),

(A.13)

and

A(∇∇∇u∂j , ∂l) =φ−1A(∇∇∇t∂j , ∂l)

=φ−1A(∇∇∇j∂t, ∂l)

=A(∇∇∇ju, ∂l)− (∂jφ
−1)A(∂t, ∂l)

=Ak
jAkl − (∂jφ

−1)A(∂t, ∂l),

(A.14)

and

(A.15) A(∂t, ∂l) = ⟨∇∇∇tu, ∂l⟩ = −⟨u,∇∇∇t∂l⟩ = −⟨u,∇∇∇l∂t⟩ = ⟨∇∇∇lu, ∂t⟩ = φ⟨∇∇∇lu, u⟩ = 0,

so that

(A.16) u⟨∇∇∇ju, ∂l⟩ = Ȧjl + 2A2
jl.

The desired conclusion (A.9) now follows from (A.11) and (A.16).
Consider the trace-free second fundamental form σij = Aij − 1

3θgij . Differentiating produces

(A.17) σ̇ij = Ȧij −
1

3
θ̇gij ,

since

(A.18) ġij = (∇∇∇ug)(∂i, ∂j) = (∇∇∇ug)(∂i, ∂j) +∇∇∇u(u⊗ u)(∂i, ∂j) = 0.

Furthermore, recall the decomposition of the stress-energy tensor (2.6) to find

(A.19) TrgκT = −µ+ 3p.

The Raychaudhuri equation then becomes

(A.20) θ̇ = −|σ|2 − 1

3
θ2 − 1

2
(µ+ 3p) + Λ + divX + |X|2.

Combining this with (A.17) gives

Ȧjl =σ̇jl +
1

3
θ̇gjl

=σ̇jl +
1

3

(
−|σ|2 − 1

3
θ2 − 1

2
(µ+ 3p) + Λ + divX + |X|2

)
gjl.

(A.21)

Now take a trace of the Einstein equations to compute the spacetime scalar curvature

(A.22) R = 4Λ− TrgκT = 4Λ + µ− 3p.
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Use this, and insert (A.21) into (A.10) to produce

Rjl =∇jXl +XjXl + κTjl − θAjl − σ̇jl

+
1

3

(
|σ|2 + 1

3
θ2 + 2µ− 3p− divX − |X|2 + 2Λ

)
gjl.

(A.23)

Since

(A.24) κTjl = κT⟨jl⟩ +
1

3
(TrgκT ) gjl = Πjl + pgjl,

we have

(A.25) Rjl = ∇⟨iXl⟩ +X⟨jXl⟩ +Πij − θAjl − σ̇jl +
1

3

(
2µ+

1

3
θ2 + |σ|2 + 2Λ

)
gjl.

Next note that

(A.26) θAjl = θσjl +
θ2

3
gjl,

and

(A.27) σ̇jl = σ̇⟨jl⟩ +
1

3

(
gikσ̇ik

)
gjl = σ̇⟨jl⟩,

as σ̇ is trace-free. To see this last point, observe that the full spacetime trace of the shear tensor vanishes,
so that

(A.28) 0 = ∂t(g
abσab) = gab∇∇∇tσab = gij∇∇∇tσij = ϕgij σ̇ij ,

where we have used that ∇tσ(∂t, ∂t) = 0. Combining (A.26) and (A.27) with (A.25), yields the desired
Ricci formula (2.5).
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