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Abstract. The rigidity statement of the positive mass theorem asserts that an asymptotically flat

initial data set for the Einstein equations with zero ADM mass, and satisfying the dominant en-

ergy condition, must arise from an embedding into Minkowski space. In this paper we address the

question of what happens when the mass is merely small. In particular, we formulate a conjecture

for the stability statement associated with the spacetime version of the positive mass theorem, and

give examples to show how it is basically sharp if true. This conjecture is then established under

the assumption of spherical symmetry in all dimensions. More precisely, it is shown that a sequence

of asymptotically flat initial data satisfying the dominant energy condition, without horizons except

possibly at an inner boundary, and with ADM masses tending to zero must arise from isometric

embeddings into a sequence of static spacetimes converging to Minkowski space in the pointed vol-

ume preserving intrinsic flat sense. The difference of second fundamental forms coming from the

embeddings and initial data must converge to zero in Lp, 1 ≤ p < 2. In addition some minor tan-

gential results are also given, including the spacetime version of the Penrose inequality with rigidity

statement in all dimensions for spherically symmetric initial data, as well as symmetry inheritance

properties for outermost apparent horizons.

1. Introduction

Let (Mn, g, k) be an initial data set for the Einstein equations. This means that (Mn, g) is a
complete Riemannian manifold, possibly with boundary, and k is a symmetric 2-tensor representing
the second fundamental form of an embedding into spacetime. These satisfy the constraint equations

(1.1) 16πµ = Rg + (Trgk)2 − |k|2g, 8πJ = divg (k − (Trgk)g) ,

where µ and J are the energy and momentum density of the matter fields, and Rg denotes scalar
curvature. The dominant energy condition is satisfied if

(1.2) µ ≥ |J |g.

We will say that the initial data are asymptotically flat if there is an asymptotic end in the manifold
Mn that is diffeomorphic to the complement of a ball Rn \ B0(ρ0), and there exists a constant C
such that in the coordinates x provided by this asymptotic diffeomorphism

(1.3)
∣∣∣∂β1(gij − δij)

∣∣∣ ≤ C

|x|n−2+|β1|
,

∣∣∣∂β2kij

∣∣∣ ≤ C

|x|n−1+|β2|
,

for multi-indices β1 ≤ 2, β2 ≤ 1 and

(1.4) |Rg| ≤
C

|x|n+1
, |Trgk| ≤

C

|x|n
.
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These fall-off conditions are modeled on those of the original Schoen-Yau proof of the positive mass
theorem [31]. We believe our results should follow assuming the weaker asymptotic decay as in the
work of Eichmair, Huang, Lee and Schoen [11, 12]; however, for the sake of simplicity of exposition
this will not be done.

With the above setting, the ADM energy and linear momentum of the asymptotic end are finite,
well-defined, and given by

(1.5) E =
1

2(n− 1)ωn−1
lim
r→∞

∫
Sr

(gij,i − gii,j)νj ,

(1.6) Pi =
1

2(n− 1)ωn−1
lim
r→∞

∫
Sr

(kij − (Trgk)gij)ν
j ,

where Sr are coordinate spheres with unit outer normal ν and ωn−1 is the volume of the standard
sphere Sn−1. The ADM mass is then the Lorentz length of the energy-momentum 4-vector

(1.7) m =
√
E2 − |P |2.

In this paper the main results will be concerned with spherically symmetric initial data. It turns out
that in spherical symmetry, under the definition of asymptotic flatness in (1.3) and (1.4), the linear
momentum vanishes |P | = 0 and hence m = E as is shown in Proposition 3.5.

The positive mass inequality asserts that an asymptotically flat complete initial data set satisfying
the dominant energy condition has

(1.8) E ≥ |P |.

This was established by Eichmair, Huang, Lee, and Schoen in [12] for dimensions 3 ≤ n ≤ 7 by
using stable marginally outer trapped surfaces (MOTS) in analogy with the minimal hypersurface
technique deployed in the time-symmetric case, and in all dimensions n ≥ 3 for spin manifolds by
Bartnik [4] and Witten [37] (see also work of Parker and Taubes [27]). Earlier, the weaker inequality
E ≥ 0 was initially proven by Schoen and Yau [31] when n = 3 with the help of Jang’s equation,
and this reduction argument was later extended by Eichmair [11] to include dimensions 3 ≤ n ≤ 7.

The rigidity of the positive mass theorem may be broken into two statements. The first asserts:

(1.9) E = |P | =⇒ E = |P | = 0.

This was proven by Huang and Lee [16] for 3 ≤ n ≤ 7. Their approach only uses the positive
mass inequality as input but not its proof, and thus can be extended to higher dimensions for spin
manifolds. The spin case was previously treated by Beig and Chrusciel [5] for n = 3 and Chrusciel
and Maerten [9] for higher dimensions. The second statement is that

(1.10) E = 0 =⇒ (Mn, g, k) embeds as initial data in Minkowski space.

As with the inequality, this was originally established by Schoen and Yau in [31] for three dimensions
and extended by Eichmair in [11] to dimensions less than eight. Finally in the spin case this was
treated for all dimensions in work of Beig, Chrusciel, and Maerten [5, 9]. Here we state the positive
mass rigidity theorem in a particular way that allows us to propose a natural almost rigidity (or
stability) conjecture.

Theorem 1.1 (Positive Mass Rigidity Theorem [11, 16, 31]). Let (Mn, g, k) be a complete asymptot-
ically flat initial data set, with 3 ≤ n ≤ 7, and satisfying the dominant energy condition. If the ADM



STABILITY OF THE SPACETIME POSITIVE MASS THEOREM 3

mass vanishes m = 0, then Mn is diffeomorphic to Rn and (Mn, g) can be isometrically embedded
as a graph in Minkowski space. That is

(1.11) F : (Mn, g)→ (R1,n,−dt2 + gE), F (x) = (f(x), x),

where gE is the Euclidean metric and

(1.12) g = F ∗(−dt2 + gE) = −df2 + gE,

and the second fundamental form, h, of the embedding agrees with that of the initial data

(1.13) h = k.

The purpose of this paper is to establish an almost rigidity or stability version of this theorem in
the spherically symmetric setting. We will say that the initial data are spherically symmetric if Mn

is diffeomorphic to Rn \B0(r0) or Rn and the metric and second fundamental form may be expressed
by

(1.14) g = g11(r)dr2 + ρ(r)2gSn−1 , kij = ninjkn(r) + (gij − ninj)kt(r),

for some radial functions g11, ρ, kn, and kt, where n =
√
g11∂r is the unit normal to coordinate

spheres. This decomposition for k exhibits its normal and tangential components with respect to
the coordinate spheres, and is motivated by the implicit assumption that the initial data come from
a spherically symmetric spacetime in which k is the ‘time derivative’ of g which already has this
structure.

The boundary, if nonempty, of the initial data will consist of apparent horizons. Recall that the
strength of the gravitational field around a hypersurface Σ ⊂ Mn may be measured by the null
expansions (null mean curvatures) given by

(1.15) θ± := HΣ ± TrΣk,

where HΣ is the mean curvature with respect to the unit normal pointing towards spatial infinity.
These quantities can be interpreted as the rate at which the area of a shell of light changes as it
moves away from the surface in the outward future/past direction (+/−). Future or past trapped
surfaces are defined by the inequalities θ+ < 0 or θ− < 0, respectively, and may be thought of as lying
in a region of strong gravity. If θ+ = 0 or θ− = 0, then Σ is called a future or past apparent horizon;
these naturally arise as boundaries of future or past trapped regions. Furthermore, such surfaces will
be referred to as an outermost apparent horizon if it is not enclosed by any other apparent horizon.
In Lemma 3.1 it is shown that the outermost apparent horizon inherits the symmetry of its ambient
space. In this text the abbreviated term horizon will often be used for these objects.

We will consider asymptotically flat (Mn, g, k) that have either no horizons or only a horizon
on an inner boundary, in which case the boundary is an outermost apparent horizon. Under these
conditions for spherically symmetric initial data, it is shown in Lemma 3.3 that the areas (or n− 1
dimensional volumes) of the level sets of ρ are increasing. Thus we may define the level set

(1.16) ΣA = ρ−1(ρA) such that Volg(ΣA) = A = ωn−1ρ
n−1
A .

We will study regions within and between these level sets

(1.17) ΩA = ρ−1[0, ρA], ΩA1,A2 = ρ−1[ρA1 , ρA2 ],

as well as their tubular neighborhoods

(1.18) TD(ΣA) = {p ∈Mn | ∃q ∈ ΣA with dg(p, q) < D},
where dg(p, q) denotes the distance between p and q.
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In order to state the main theorem we need the notion of uniform asymptotic flatness. A sequence
of initial data (Mn

j , gj , kj) will be referred to as uniformly asymptotically flat if each member of

the sequence is asymptotically flat according to (1.3) and (1.4), and the constants ρ0 and C in the
definition are independent of j.

Theorem 1.2. Fix A > 0 and D > ρA, and consider a sequence of uniformly asymptoticaly flat
spherically symmetric initial data sets (Mn

j , gj , kj) satisfying the dominant energy condition and with
no closed horizons except possibly the inner boundary. If their ADM masses converge to zero mj → 0,
then there exist Riemannian manifolds (M̄n

j , ḡj) diffeomorphic to (Mn
j , gj) with graphical isometric

embeddings

(1.19) Fj : (Mn
j , gj)→ (R× M̄n

j ,−dt2 + ḡj), Fj(x) = (fj(x), x),

(1.20) gj = F ∗j (−dt2 + ḡj) = −df2
j + ḡj ,

such that the static spacetimes

(1.21) (R× M̄n
j ,−dt2 + ḡj)) converge to Minkowski space (R1,n,−dt2 + gE)

in that the base manifolds converge in the pointed volume preserving intrinsic flat sense to Euclidean
space. More precisely, regions within ΣA in (M̄n

j , ḡj) converge to balls in Euclidean space

(1.22)
(

Ωj
A ∩ TD(Σj

A) , ḡj

)
VF−→

(
B0(ρA) ,1 gE

)
.

Furthermore if there is a uniform constant C such that ‖ kj ‖L2(Mn
j )≤ C, then for any 1 ≤ p < 2 the

second fundamental forms hj of the graphs satisfy

(1.23) ‖ hj − kj ‖Lp(ΩjA∩TD(ΣjA),ḡj)→ 0.

The intrinsic flat distance dF (Ωj ,Ω
′
j) between pairs of compact oriented Riemannian manifolds

with boundary was first introduced by the third author with Wenger in [35]. Intuitively it measures
the filling volume between the given manifolds. It is 0 if and only if there is an orientation preserving
isometry between the manifolds Ωj and Ω′j [35]. The volume preserving intrinsic flat distance was

introduced in [33] and includes an extra term involving the global difference of volumes

(1.24) dVF (Ωj ,Ω
′
j) = dF (Ωj ,Ω

′
j) + |Volj(Ωj)−Vol∞(Ω′j)|.

This has been studied by Portegies in [29] and by Jauregui-Lee in [19]. In particular they have shown
that

(1.25) dVF (Ωj ,Ω∞)→ 0 =⇒ Vol(Bpj (r))→ Vol(Bp∞(r)),

for sequences of points pj ∈ Ωj converging to p∞ ∈ Ω∞.
Theorem 1.2 has been proven for time-symmetric initial data sets by Lee and the third author in

[22]. In that setting kj = 0 and fj can be taken to be constant so that hj = 0 and (1.23) follows
trivially. The intrinsic flat convergence is proven in [22] by constructing an explicit filling manifold.
In fact, LeFloch and the third author have proven in [23] that the metric tensors converge in the
H1
loc sense. Note that examples in [22] demonstrate that even in the spherically symmetric time-

symmetric setting one can have sequences with ADM mass converging to 0 which do not converge to
regions in Euclidean space in the smooth or Gromov-Hausdorff sense. Applying techniques from [22]
in our Example 2.4, it is shown why one needs a tubular neighborhood in (1.22). Furthermore, in
Example 2.1 and Example 2.2 we demonstrate the need to assume that there are no interior horizons.
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Without time symmetry, when kj 6= 0, Theorem 1.2 makes no claim as to the convergence of the
original sequence of Riemannian manifolds (Mn

j , gj). Example 2.7 illustrates why the initial sequence

(Mn
j , gj) need not converge in any reasonable sense. There we construct sequences of initial data

sets of zero mass lying in Minkowski space which become increasingly null on large regions, so that
volumes disappear instead of converging.

Conjecture 1.3. Theorem 1.2 holds without requiring spherical symmetry when suitable definitions
are made for the regions ΩA. To achieve the conclusion exactly as stated we expect that E → 0 should
replace m → 0 in the hypotheses for the general case. It is possible that a similar statement holds
for m → 0, but the approach would have to be different from the one used here in light of examples
with boost. In the outline below, we clarify which steps strongly use spherical symmetry and which
hold more generally.

The corresponding almost rigidity or stability conjecture in the time-symmetric case was stated
and proven in the spherically symmetric setting by Lee and the third author in [22]. It has been
confirmed in the graph setting by Huang, Lee, and the third author in [17] and for geometrostatic
manifolds by the third author with Stavrov in [34]. Initial controls on the metric tensor towards
proving the time-symmetric conjecture have been found by Allen for regions covered by smooth
inverse mean curvature flow in [1], and by the first author for axisymmetric manifolds [7].

With the definition of asymptotic flatness used here the ADM mass m and ADM energy E agree
in spherical symmetry since the linear momentum P vanishes (Proposition 3.5). In general when
mass and energy differ, Conjecture 1.3 could be quite subtle in the case of large linear momentum,
as the construction of the base manifolds (M̄n, ḡ) presented here does not behave well in this setting.
The methods used here and based on the Jang equation are tailored to the situation when E is small,
which will not be the case if |P | stays uniformly away from zero.

We now give an outline of the proof of Theorem 1.2, which is modeled on the Schoen-Yau approach
to the positive mass theorem [31]. It should be noted that some of the arguments do not require
spherical symmetry. The first step is to solve the 2nd order quasi-linear elliptic Jang equation for each
(Mn

j , gj , kj) to obtain solutions fj with asymptotically cylindrical blow-up at the outermost apparent

horizon. See Section 4 for details. The original study of this equation in [31] observed that the solution
only blows-up at apparent horizons. Prescribed blow-up at the outermost horizon was obtained in
work of Eichmair, Han, the second author, and Metzger for low dimensions [11, 13, 25]. In the
spherically symmetric case, the equation can be reduced to a 1st order ODE and the desired solutions
can be produced in any dimension [Theorem 4.1]. From the solutions a sequence of Riemannian
manifolds,

(1.26) the Jang deformations:
(
M̄n
j , ḡj = gj + df2

j

)
,

can be constructed which serve as the base for the ambient static spacetimes of Theorem 1.2. Schoen-
Yau showed that the scalar curvature of the Jang metric is nonnegative modulo a divergence term
as stated in (4.8). The Jang manifolds are also uniformly asymptotically flat [Lemma 4.3], and have
the same ADM masses as the original initial data [Corollary 4.2]. A primary difference is that they
have a cylindrical end where previously there was a boundary. In Example 2.5 we explicitly solve the
Jang equation for a constant time slice of the Schwarzschild spacetime so that one can see precisely
how this step may be implemented constructively.

The nonnegativity property of the scalar curvature of (M̄n
j , ḡj) allows one to further conformally

transform the Jang deformations to Riemannian manifolds of zero scalar curvature,

(1.27) the conformal transformations:
(
M̃n
j , g̃j = u

4/(n−2)
j ḡj

)
.
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Along the cylindrical ends uj decays exponentially fast to zero and hence conformally closes this end
(see [31] and Proposition 5.1). In general the masses of the conformal deformations converge to zero.
Thus if no horizons are present or one restricts attention to domains outside the outermost minimal
surface, it is expected (by the time-symmetric almost rigidity conjecture) that regions in (M̃n

j , g̃j)
converge to balls in Euclidean space in the intrinsic flat sense. The hope is then to prove that the
conformal factors uj are sufficiently close to 1 in order to establish that regions in (M̄n

j , ḡj) converge
to balls in Euclidean space as well. See Remark 5.2.

In the spherically symmetric setting the conformal deformation is Euclidean space g̃j = gE, so
the mass is 0 and there are no horizons (cf. Lemma 5.3). Therefore ḡj is related to the Euclidean
metric via the conformal factor uj , and establishing (1.22) is reduced to controlling uj . A global L2

gradient bound in terms of the mass is obtained from the stability property associated with the Jang

surface in Lemma 5.5, and this is parlayed into C0, 1
2 control away from the center of the manifold in

Proposition 5.9 by using the uniform asymptotically flat assumption and Lemma 5.8. We then have
that uj → 1 uniformly on appropriate subdomains avoiding the center. This work is completed in
Section 5.

The volume preserving intrinsic flat convergence (1.22) is proven in Section 6 in two main steps.
The overall approach is to apply a result of Lakzian and the third author [21], as stated in Propo-
sition 6.1, to achieve intrinsic flat convergence. First, control on uj is used to show that regions
avoiding the center are smoothly close to annuli in Euclidean space (see Lemma 6.2). Secondly,
we prove that the volumes of the regions closer to the center are small using area monotonicity
and the coarea formula in Lemma 6.5. The remaining required terms are estimated in various lem-
mas throughout the section. Moreover, volume convergence follows from the above and is stated in
Lemma 6.8. Without spherical symmetry one might imagine doing something similar, cutting out
many wells rather than just the center as in joint work of the third author with Stavrov in [34], or
using a completely different approach as in joint work of the third author with Huang and Lee in
[17].

In Section 7 convergence of second fundamental forms (1.23) is established, where the proof relies
on nonnegativity of the spacetime Hawking mass. Control on |hj − kj |ḡj away from the center is
given in Proposition 7.1 using estimates for the conformal factors uj , as well as the stability property
associated with the Jang surface. While |hj−kj |ḡj might be large near the center, with the additional
hypothesis on kj and the small volume inside in Proposition 7.2, convergence in the desired tubular
neighborhood is achieved in Theorem 7.3. Finally, in Section 8 we prove Theorem 1.2 using all the
above.

Acknowledgements: The authors would like to thank Dan Lee for helpful conversations. Christina
Sormani gratefully acknowledges office space in the Simons Center for Geometry and Physics, Stony
Brook University at which most of the research for this paper was performed, and also support from
a CUNY Fellowship Leave. Edward Bryden would like to thank the CUNY Graduate Center for
allowing him to visit in Spring 2019 during which this paper was completed.

2. Examples

In this section we provide some examples which illustrate the importance of various hypotheses in
Theorem 1.2, and some intuition as to what is happening in the proof. In the time-symmetric setting,
where the objects of study are manifolds with nonnegative scalar curvature, examples are given with
closed interior horizons (Examples 2.1 and 2.2) that fail to have volume preserving intrinsic flat
convergence to Euclidean space.
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The additional assumption of no closed interior horizons and no boundary is also considered. In
this setting, a time-symmetric initial data set is a graph over itself and the solution to Jang’s equation
is constant. An example within this context is provided that contains a deep well, demonstrating why
tubular neighborhoods are introduced in order to obtain volume preserving intrinsic flat convergence
(Example 2.4).

The proof of Theorem 1.2 will then be applied to slices of the Schwarzschild spacetime, so one can
see what happens when there is a boundary horizon. Difficulties arise even in this time-symmetric
example because solutions to Jang’s equation blow-up near the horizon so that the base spaces
(M̄n, ḡ) possess an asymptotically cylindrical end. In Example 2.5 we see exactly how Schwarzschild
slices arise as graphs over base spaces which are close to Euclidean space in the volume preserving
intrinsic flat sense. This clarifies why the proof of Theorem 1.2 is delicate when the manifolds have
boundary.

Finally we consider examples which are not time-symmetric. In Example 2.7 it is demonstrated
how even the restriction to sequences of spacelike graphs (Mn

j , gj , kj) in Minkowski space does not

allow for proper control over the original sequence of Riemannian manifolds (Mn
j , gj). This justifies

why Theorem 1.2 only deals with convergence of the base manifolds, and does not address convergence
of the given sequence of initial data.

2.1. Horizons in Time-Symmetric Examples. The assumption of no closed interior horizons is
necessary to avoid the formation of bubbles and other phenomena which may occur behind a horizon.
Since the inner boundary is allowed to be a horizon, these hypotheses mean that the main theorem
applies within the domain of outer communication. This is consistent with the basic intuition that
the ADM mass cannot effectively ‘see’ within a black hole. The following well-known examples
explain why one cannot hope to obtain volume preserving intrinsic flat convergence without these
assumptions.

Example 2.1. Riemannian Schwarzschild space is a constant time slice of the Schwarzschild space-
time, with a metric that can be written as

(2.1) g =
(
1 + z′(r)2

)
dr2 + r2gSn−1

where z′(r) =
√

2m/(r − 2m). It has a horizon (minimal surface) at r = 2m, and can be extended
smoothly past the horizon by writing r as a function of z. In fact the graph is that of a parabola.
If we take a sequence of Riemannian Schwarzschild spaces of smaller and smaller mass m, this
parabola becomes more vertical and the vertex decreases to the origin. See Figure 1. This sequence of
Riemannian Schwarzschild spaces converges smoothly to Euclidean space on compact sets that avoid
the increasingly thin necks, and by any weak notion of convergence is seen to converge to a double
sheeted Euclidean space. The volumes of balls centered around points on the horizon converge to
twice the volume of a Euclidean ball. It is only by removing the part behind the horizon that one
may consider the limit to be a single Euclidean space, and obtain volume preserving convergence to
Euclidean space.

Example 2.2. Start with the Riemannian Schwarzschild initial data viewed as a parabola using the
function r(z) described in the previous example. Keep the region outside the horizon exactly isometric
to Riemannian Schwarzschild, but behind the black hole attach a round sphere in a C1 way. This
is achieved by ensuring that the induced metrics and mean curvatures of the interface surfaces agree
from both sides. This guarantees that the scalar curvature is distributionally nonnegative across the
interface surface. Furthermore since Riemannian Schwarzschild is scalar flat and the sphere has
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Figure 1. In Example 2.1 we see that a sequence of balls centered on the horizons of
a sequence of Schwarzschild manifolds with mj → 0 has volume converging to twice
the volume of a Euclidean ball.

positive scalar curvature, applying Ricci flow for a very short time, one obtains a smooth metric
which is C1 close to the original and has positive scalar curvature everywhere. The almost spherical
region of the resulting manifold is called a bubble. See Figure 2. Now perform this construction with
a sequence of Schwarzschild spaces having masses converging to zero, while keeping the bubble the
same size throughout the sequence. By any notion of weak convergence this sequence converges to a
Euclidean space with a sphere attached to it. In analogy with the previous example, balls of a fixed
radius centered at points on the horizon have volumes converging to the sum of the volume of a ball
of the same radius in Euclidean space plus a ball of the same radius in the sphere. Again we do
not obtain volume preserving intrinsic flat convergence to Euclidean space, unless the part inside the
horizon is cut out.

Figure 2. In Example 2.2 we see that a sequence of balls centered on the horizons
of a sequence of manifolds with mj → 0 has volume converging to the sum of the
volumes of a Euclidean ball and a ball in a sphere.

2.2. Deep Wells in Time-Symmetric Examples. Let us now consider Theorem 1.2 in the time-
symmetric case where there are no horizons and no boundary. In such a setting the solution to
Jang’s equation is constant, so the theorem states that volume preserving intrinsic flat convergence
occurs within the initial data themselves, as opposed to convergence of ambient spacetimes in which
the data embed. This was established by D. Lee and the third author in [22]. In this subsection we
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first recall in Lemma 2.3 an example construction technique from [22]. We then review an example,
Example 2.4, with deep wells demonstrating the need to use tubular neighborhoods to obtain volume
preserving intrinsic flat convergence.

Recall the definition of Hawking mass for a surface Σ in a Riemannian 3-manifold

(2.2) mH(Σ) =
1

2

√
A

ω2

(
1− 1

4π

∫
Σ

(
H

2

)2
)
,

where A and H are the area and mean curvature of Σ. As described in Section 3.3 this may be
generalized in spherical symmetry to higher dimensions n by

(2.3) m(s) =
ρn−2(s)

2
(1− ρ′(s)2),

where the metric is expressed in a radial arclength coordinate s and with area radius function ρ(s).
The first variation of Hawking mass becomes

(2.4) m′(s) =
ρn−1(s)ρ′(s)

2(n− 1)
R,

which is nonnegative for nondecreasing area radius functions and nonnegative scalar curvature.

Lemma 2.3. Let M denote the collection of asymptotically flat spherically symmetric manifolds

(2.5)
(
r−1[rmin,∞) ⊂ Rn, g = (1 + [z′(r)]2)dr2 + r2gSn−1

)
with nonnegative scalar curvature that have no closed interior minimal surfaces and either no bound-
ary, or minimal surface boundary r−1(rmin). Let H be the collection of admissible Hawking mass
functions, that is increasing functions m : [rmin,∞)→ R such that

(2.6) m(rmin) =
1

2
rn−2
min ,

and

(2.7) m(r) <
1

2
rn−2,

for r > rmin ≥ 0. There is a constructive bijection between M and H such that

(2.8) m(r) =
rn−2

2

(
z′(r)2

1 + z′(r)2

)
<

1

2
rn−2.

In [22] this result was used to construct an example with an arbitrarily deep well. Here we also
describe the volumes in this example, justifying the necessity of cutting off the region using tubular
neighborhoods of fixed size D to obtain volume preserving intrinsic flat convergence in Theorem 1.2.

Example 2.4. Given A > 0, L > 0, and δ > 0 there exists (Mn, g) ∈ M with ADM mass m < δ
such that the distance d(Σmin,ΣA) > L, where ΣA is a symmetry sphere with area A and Σmin

is either the boundary ∂Mn or the pole. See Figure 3. In fact the example is constructed by first
choosing a radius rε depending on δ, and then constructing the admissible Hawking mass function
so that the distance between the levels rε and rε/2 is an arbitrary value L. Thus the volume between
these level sets, computed with the coarea formula, provides a lower bound

(2.9) Volg(ΩA) ≥ AδL,
where Aδ is the area of the level set r−1(rε) which depends on δ but not L. Taking a sequence with

(2.10) δj → 0 and Lj = j/Aδj →∞,
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we obtain a sequence of spherically symmetric examples which are increasingly deep and have

(2.11) Volgj (Ω
j
A) ≥ Volgj (Ω

j
Aδj ,A

)→∞.

By (1.22) of Theorem 1.2 it holds that for any fixed D > 0,

(2.12) Volgj

(
Ωj
A ∩ TD(Σj

A)
)
→ VolgE (B0(ρA)) <∞.

This fixed distance D > 0 of the tubular neighborhood is needed to cut off the arbitrarily large volumes
in the arbitrarily deep wells.

Figure 3. This manifold (Mn
j , gj) of Example 2.4 has a deep well with large volume

in the shaded region Ωj
Aδj ,A

⊂Mn
j .

2.3. Riemannian Schwarzschild Space. Let us now consider Theorem 1.2 in the time-symmetric
case where there is a boundary horizon; for simplicity we restrict the discussion in this subsection to
dimension n = 3. Even though this setting is time-symmetric the solutions of Jang’s equation will
not be constant, rather they will blow-up at the horizon boundary. These solutions are then used to
embed the initial data (M3, g, 0) into (R×M̄3,−dt2 + ḡ) as a graph over the base space (M̄3, ḡ). This
base will have different properties than the original data, in particular it will have an asymptotically
cylindrical end. Next an appropriate conformal factor u is found so that the new metric g̃ = u4ḡ is
scalar flat. These are some of the main steps in the proof of Theorem 1.2, and will in this subsection
be computed explicitly for Riemannian Schwarzschild initial data.

Example 2.5. Recall that the induced metric on a time slice M3 = r−1[2m,∞) of the Schwarzschild
spacetime of mass m can be written in the form

(2.13) g =

(
1− 2m

r

)−1

dr2 + r2gS2 .

The Jang equation may be solved explicitly in this case for a blow-up solution. To see this observe
that from [6] and the discussion in Section 4.2, Jang’s equation may be reduced to a first order ODE
by setting

(2.14) v =

√
g11f ′√

1 + g11f ′2
,
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where g11 = 1− 2m/r. Namely, the Jang equation in this case becomes simply

(2.15) v′ +
2

r
v = 0,

and the blow-up solution is v =
(

2m
r

)2
. It follows that

(2.16) g11f ′2 =
v2

1− v2
=

1

(r/2m)4 − 1
=

1

(1− 2m/r)(1 + 2m/r)(r/2m)2[1 + (r/2m)2]
,

so that

(2.17) f ′ =
(1− 2m/r)−1

(r/2m)
√

(1 + 2m/r)[1 + (r/2m)2]
.

Therefore the Jang metric is

(2.18) ḡ = g + df2 = ḡ11dr
2 + r2gS2 = (g11 + f ′(r)2)dr2 + r2gS2

with

(2.19) ḡ11 = g11 + f ′(r)2 = (1− 2m/r)−2

[
(1− 2m/r) +

1

(r/2m)2(1 + 2m/r)[1 + (r/2m)2]

]
.

This clearly has an asymptotically cylindrical end as r → 2m. Figure 4 illustrates how the Riemann-
ian Schwarzschild geometry embeds as a graph over this Jang deformation. Note that it becomes
increasingly null upon approach to the horizon.

Figure 4. On the left, the Riemannian Schwarzschild geometry (light blue) and its
Jang perturbation (M̄3, ḡ) in purple are shown as embedded into E4, with the graphi-
cal height z coordinate directed upwards. On the right, the Riemannian Schwarzschild
space is illustrated as a graph over the base Jang perturbation. This depiction takes
place in 5-dimensional Minkowski space R1,4 ⊃ (R× M̄3,−dt2 + ḡ), where the spatial
z coordinate is directed inwards. Light cones are shown in yellow.

The conformal deformation to zero scalar curvature can also be given explicitly for this Schwarzschild
example. To do this let r = r(r̃) be such that

(2.20) ḡ11

(
dr

dr̃

)2

=
(r
r̃

)2
,
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then

(2.21) ḡ = ḡ11

(
dr

dr̃

)2

dr̃2 +
(r
r̃

)2
r̃2gS2 =

(r
r̃

)2 [
dr̃2 + r̃2gS2

]
=
(r
r̃

)2
gE.

We may solve for r̃ in terms of r by

(2.22) log r̃ =

∫ r

4m

√
ḡ11r

−1dr.

Now set u−4 = (r/r̃)2 so that gE = u4ḡ. Thus, u =
√
r̃/r serves as the desired conformal factor

yielding a scalar flat deformation. The fact that this conformal change resulted in a Euclidean metric
is not special to the Schwarzschild example, as will be seen in Section 5.

Figure 5 depicts a sequence of Riemannian Schwarzschild manifolds (M3
j , gj) with masses mj →

0, embedded as graphs over a sequence of base Jang deformations (M̄3
j , ḡj) with asymptotically

cylindrical ends that converge in the pointed volume preserving intrinsic flat sense to Euclidean
space.

Figure 5. A sequence of Riemannian Schwarzschild manifolds as graphs over their
Jang deformations with masses tending to zero. See also Figure 4.

2.4. Graphs in Minkowski Space. If (Mn
j , gj , kj) arise as spacelike graphs t = fj(x) in Minkowski

space, then the Jang metric ḡj obtained by solving Jang’s equation is exactly the Euclidean metric
and kj is the second fundamental form of the graph. In the notation of Theorem 1.2 we have

(2.23) ḡj = gE, gj = −df2
j + gE, hj = kj .

Theorem 1.2 is trivially true and there is nothing to prove. On the other hand, such examples can
exhibit pathological behavior from the point of view of establishing volume preserving intrinsic flat
convergence of (Mn

j , gj). In this subsection an example is presented to demonstrate why we say

nothing about the limiting behavior of (Mn
j , gj) in Theorem 1.2. In particular, even for sequences of

spacelike graphs in Minkowski space one cannot hope for more than subsequential convergence, and
the limiting space need not be well-behaved.

Remark 2.6. If (Mn
j , gj , kj) arise as spacelike graphs t = fj(x) in Minkowski space, then gj =

−df2
j + gE is positive definite, so the Lipschitz norm satisfies LipgE(fj) < 1. Thus by Arzela-Ascoli

a subsequence of the fj converge to a Lipschitz function f∞ with LipgE(fj) ≤ 1. However, the graph
of f∞ need not be spacelike!
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Figure 6. In Example 2.7 we see that even if our given manifold is a graph in
Minkowski space the manifold (in blue) can have regions (in dark blue) of very small
volume because it is almost null.

Example 2.7. Consider a sequence of graphs t = fj(x) in Minkowski space which are spherically
symmetric, with LipgE(fj) < 1, and converging to f∞ that satisfies

(2.24) f ′∞(r) = 1 for r ∈ [ρA1 , ρA2 ]

as in Figure 6, where r is the radial distance function for gE. It can be arranged that gj converge in
the C0 sense. The limit is a semidefinite metric g∞ with

(2.25) g∞(∂r, ∂r) = −f ′∞(r)2 + 1 = 0 for r ∈ [ρA1 , ρA2 ].

By the coarea formula

(2.26) Volgj (ΩA1,A2) ≤ A2dgj (ΣA1 ,ΣA2)→ 0,

since

(2.27) dgj (ΣA1 ,ΣA2) =

∫ ρA2

ρA1

√
gj(∂r, ∂r)dr → 0.

In contrast

(2.28) Volḡj (ΩA1,A2)→ VolgE(B0(ρA2) \B0(ρA1)) 6= 0.

Thus we find nice behavior of the base spaces (M̄n
j , ḡj) as described in Theorem 1.2, with pathological

limiting behavior for the original sequence (Mn
j , gj).

3. Manifolds with Spherical Symmetry

In this section we prove that outermost apparent horizons inherit the symmetries of the asymp-
totically flat initial data sets in which they lie (Lemma 3.1), that the areas of symmetry spheres are
monotonic in spherically symmetric initial data sets without horizons or with outermost apparent
horizon boundary (Lemma 3.3), and establish the spacetime Penrose Inequality in all dimensions
under the assumption of spherically symmetry (Theorem 3.4). We also prove These results are new
and also of use to us when proving Theorem 1.2. Prior work in these directions is reviewed within.



14 BRYDEN, KHURI, AND SORMANI

3.1. Horizons in Initial Data With Symmetry.

Lemma 3.1. Let (Mn, g, k) be an asymptotically flat initial data set which admits a continuous
symmetry with generator η. This means that η is a Killing field which leaves k invariant, and thus
the following Lie derivatives vanish Lηg = Lηk = 0. If the outermost apparent horizon is smooth,
then η must be tangential to it.

In particular, if (Mn, g, k) is spherically symmetric with smooth outermost apparent horizon then
this surface is also spherically symmetric.

Remark 3.2. The existence of outermost apparent horizons due to appropriate trapping is proven
in [3, 10]. Like minimal surfaces, they are shown to have a singular set which is no larger than
codimension 7. Thus for 2 ≤ n ≤ 7 the outermost apparent horizon is smooth.

Proof. The following argument is a generalization of that in [8] for outermost minimal surfaces in
axisymmetry. Suppose that the outermost apparent horizon Σ does not admit the stated symmetry.
Then the Killing field η is not tangential to Σ at all points. Thus, if ϕt denotes the flow of this
Killing field so that ∂tϕt = η ◦ ϕt, then there is a nonzero t0 near zero such that a domain within
ϕt0(Σ) lies outside of Σ. Furthermore, observe that since (Mn, g, k) is invariant under the action of
ϕt the surface ϕt0(Σ) is an apparent horizon of the same type.

Consider now the compact set U which is the union of all smooth compact embedded apparent
horizons within Mn, and define the trapped region T to be the union of U with all the bounded
components of Mn \ U . As described in [2, Theorem 3.3] the outermost apparent horizon arises
as the boundary ∂T , moreover it is embedded and smooth away from a singular set of Hausdorff
codimension at most 7; in fact it will be smooth by the assumptions of this lemma. Because ∂T
must enclose both Σ and ϕt0(Σ), it cannot agree with Σ at all points. This, however, contradicts the
outermost assumption for Σ. �

3.2. Monotonicity of Area.

Lemma 3.3. Let (Mn, g, k) be a spherically symmetric asymptotically flat initial data set as in
(1.14). Outside of the outermost apparent horizon, the area of symmetry spheres in (Mn, g) is a
strictly increasing function of the radial coordinate. In particular, the warping function ρ defining g
is also an increasing function.

Proof. Let Sr denote the level sets of r. Since

(3.1) k = kng11dr
2 + ktρ

2gSn−1

the null expansions (null mean curvatures) are given by

(3.2) θ± = H ± TrSrk = (n− 1)

(√
g11

∂rρ

ρ
± kt

)
.

Since the null expansions are both positive near infinity, as the mean curvature H dominates TrSrk
according to decay rates, when moving inwards from infinity they must remain positive outside of
the outermost apparent horizon where θ+ = 0 or θ− = 0. Note that here we are using Lemma 3.1
which asserts that the outermost apparent horizon (if present) is one of the spheres Sr0 . Therefore

(3.3) θ± > 0 for r > r0.

To finish the proof simply add the two null expansions, and observe that since both are positive we
obtain

(3.4) 0 < θ+ + θ− = 4
√
g11

∂rρ

ρ
for r > r0.
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Hence, the warping function ρ is an increasing function. �

3.3. The Spacetime Penrose Inequality in All Dimensions. The spherically symmetric Pen-
rose inequality without the maximal assumption was established in dimension n = 3 in [14], although
the case of equality was not treated. A similar result is stated in [15] for all dimensions, but the
hypotheses are too strong for our purposes and they also do not address the case of equality. The
full result including the case of equality was given in [6] for n = 3, and here we easily extend it to
all dimensions.

Theorem 3.4. Let (Mn, g, k), n ≥ 3 be an asymptotically flat spherically symmetric initial data
set satisfying the dominant energy condition, and let A0 denote the area of the outermost apparent
horizon. Then

(3.5) m ≥ 1

2

(
A0

ωn−1

)n−2
n−1

and equality holds if and only if the initial data outside the outermost apparent horizon arise from
an embedding into the Schwarzschild spacetime. In particular, for a sequence of initial data with
mj → 0 we have Aj → 0.

Proof. We will follow and generalize the arguments of [6] to higher dimensions. The proof is based
on the generalized Jang equation introduced in [6]. The corresponding Jang deformation is similar
to that of the original with the addition of an extra function φ that plays the role of warping factor
for embeddings into a static spacetime, namely ḡ = g+φ2df2 where f satisfies equation (3) of [6] for
a canonical choice of φ. The scalar curvature of the spherically symmetric generalized Jang metric

(3.6) ḡ = ds̄2 + ρ2(s̄)gSn−1

is given by

(3.7) R = (n− 1)ρ−2[(n− 2)(1− ρ2
s̄)− 2ρρs̄s̄].

Here s̄ denotes radial distance from the boundary so that s̄ = 0 corresponds to the outermost
apparent horizon. The fact that the outermost apparent horizon is a level set of s̄ is a consequence
of Lemma 3.1.

By comparing arbitrary spherically symmetric metrics to that of Schwarzschild we may derive and
generalize the Hawking mass (Misner-Sharp mass in spherical symmetry [26]) to higher dimensions

(3.8) m̄(s̄) :=
1

2
ρn−2(1− ρ2

s̄) =
1

2

(
A(s̄)

ωn−1

)n−2
n−1

1− 1

(n− 1)2ω
2

n−1

n−1A(s̄)
n−3
n−1

∫
Ss̄

H̄2

 ,
where

(3.9) A(s̄) = ωn−1ρ
n−1(s̄), H̄ = (n− 1)

ρs̄
ρ
.

A direct computation yields

(3.10) 2m̄s̄ =
1

n− 1
ρs̄ρ

n−1R̄.

Therefore integrating produces

(3.11) m̄(∞)− m̄(0) =

∫ ∞
0

ρs̄ρ
n−1

2(n− 1)
R̄ds̄ =

1

2(n− 1)ωn−1

∫
M̄n

ρs̄R̄dVḡ.
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We may now choose φ = ρs̄ and follow the arguments in [6, page 750]. This allows one to integrate
away the divergence term appearing in R̄, leaving only nonnegative terms on the right-hand side of
(3.11). It follows that m̄(∞) ≥ m̄(0), and this gives the desired inequality

(3.12) m ≥ ρn−2(0)

2
=

1

2

(
A0

ωn−1

)n−2
n−1

since the ADM mass of the Jang metric agrees with that of the given initial data in addition to the
fact that the area of the apparent horizon agrees in both metrics as well. The case of equality follows
directly from the arguments of [6]. �

3.4. Decay of the Second Fundamental Form. We now prove that under the definition of
asymptotic flatness for spherical symmetry given in Section 1, the ADM linear momentum vanishes
|P | = 0, and hence the ADM mass coincides with the ADM energy m = E.

Proposition 3.5. Under the asymptotic decay conditions (1.3) and (1.4), a spherically symmetric
initial data set (Mn, g, k) satisfies the stronger decay

(3.13) |k|g = O

(
1

|x|n

)
.

In particular, the ADM linear momentum vanishes |P | = 0 and the ADM mass agrees with the ADM
energy m = E.

Proof. Recall that the spherically symmetric initial data (Mn, g, k) may be expressed by

(3.14) g = ds2 + r(s)2gSn−1 , kab = nanbkn + (gab − nanb)kt,

where n = ∂s. Consider the divergence constraint

(3.15) J = divg (k − (Trgk)g) .

Observe that

(3.16) ∇anb = 〈∇an, ∂b〉 = 2rr′ (gSn−1)ab ,

and therefore

(3.17) ∇akab = 2rr′ [(gSn−1)aa (kn − kt)nb + (gSn−1)ab (kn − kt)na] + nanb(∂akn − ∂akt).

It follows that

(3.18) (divg k) (∂b) = (k′n − k′t)nb +
2(n− 1)r′

r
(kn − kt)nb.

Furthermore

(3.19) divg ((Trgk)g) (∂b) = ∂bTrgk = ∂bkn + (n− 1)∂bkt,

and hence

(3.20) J(∂b) = (k′n − k′t)nb +
2(n− 1)r′

r
(kn − kt)nb − ∂bkn − (n− 1)∂bkt.

The only nonzero component is in the ∂s direction, and from this we find that

(3.21) k′t +
2(n− 1)r′

nr
kt =

1

n
J(∂s) +

2(n− 1)r′

nr
kn.

Since

(3.22) Trgk = kn + (n− 1)kt
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this may be rewritten as

(3.23) k′t +
2(n− 1)r′

r
kt =

1

n
J(∂s) +

2(n− 1)r′

nr
Trgk =: K.

A priori the assumed decay for k leads to kt = O(s1−n). However the ODE (3.23) shows that the
fall-off is stronger. Indeed, from the dominant energy condition and the assumed decay

(3.24) Trgk = O

(
1

sn

)
, |J(∂s)|g ≤ |J |g ≤ µ =

1

16π

(
Rg + (Trgk)2 − |k|2g

)
= O

(
1

sn+1

)
,

and thus

(3.25) kt =
1

r2(n−1)

[∫ s

s0

r2(n−1)Kds+ C

]
= O

(
1

sn

)
.

It then follows from the trace decay in (3.24) that kn also satisfies the fall-off in (3.25), and hence

(3.26) |k|g = O

(
1

sn

)
,

which implies that the ADM linear momentum vanishes |P | = 0. �

4. Solving Jang’s Equation to Obtain the Base Manifolds

4.1. Review of Jang’s Equation Without Symmetry. Given an initial data set (Mn, g, k),
the following quantities may be used to measure how far away it is from being realized as a graph
t = f(x) in Minkowski space

(4.1) ḡ = g + df2, k̄ = k −
∇2
gf

1 + |∇f |2g
.

In particular, such an embedding exists if and only if ḡ = gE and k̄ = 0. A necessary condition for
this to occur is the Jang equation [2]

(4.2) Trḡk̄ = 0 ⇔
(
gab − faf b

1 + |∇f |2g

) ∇abf√
1 + |∇f |2g

− kab

 = 0,

where fa = gab∂bf . Thus, one may think of Jang’s equation as an attempt to find a candidate graph
for an embedding into Minkowski space.

Even though such an embedding may not exist for the given initial data, we may use these ideas
to construct an isometric embedding into a relevant static spacetime. Namely consider the map

(4.3) F : (Mn, g)→ (R×Mn,−dt2 + ḡ)

defined by

(4.4) F (x) = (f(x), x).

Then

(4.5) F ∗(−dt2 + ḡ) = −df2 + ḡ = g,

and the second fundamental form is

(4.6) h =
∇2
ḡf√

1− |∇f |2ḡ
=

∇2
gf√

1 + |∇f |2g
.
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Another motivation for the Jang equation which is pertinent to the positive mass theorem, is to
consider it as a method for deforming initial data to obtain weakly nonnegative scalar curvature.
In this setting one may view the Jang graph as a submanifold of the (n + 1)-dimensional dual
Riemannian manifold (R×Mn, dt2 + g). The Jang metric ḡ is then the induced metric on the graph
and h is again the second fundamental form. If k is extended trivially off the t = 0 slice to the whole
(n+ 1)-dimensional ambient space, then the Jang equation simply states that the Jang surface M̄n

satisfies the apparent horizon equation

(4.7) HM̄n − TrM̄nk = 0,

where HM̄n is the mean curvature of the Jang surface. A computation [31] then shows that the
scalar curvature of the Jang metric is nonnegative modulo a divergence term whenever the dominant
energy condition is satisfied, that is

(4.8) Rḡ = 16π(µ− J(w)) + |h− k|2ḡ + 2|q|2ḡ − 2divḡq,

where

(4.9) wa =
fa√

1 + |∇f |2g
, qa =

f b√
1 + |∇f |2g

(hab − kab).

This positivity property for Rḡ allows one to conformally transform ḡ to zero scalar curvature. Hence
through the Jang deformation combined with a conformal transformation, the initial data is taken
into the time-symmetric setting.

4.2. Existence of Solutions to Jang’s Equation. The Jang deformation preserves uniform as-
ymptotic flatness as will be shown below, and preserves the mass so that m̄ = m. An interesting
feature of the Jang equation’s existence theory is its ability to detect apparent horizons. That is, it
can only blow-up at apparent horizons in which case it approximates a cylinder over these surfaces
[31]. In dimension n = 3 it has been shown that this cylindrical blow-up behavior can in fact be
prescribed at the outermost apparent horizon [11, 13, 25]. Suppose that the boundary is decomposed
into a disjoint union of future (+) and past (−) apparent horizon components ∂M3 = ∂+M

3∪∂−M3,
and that there are no other apparent horizons present. If in a neighborhood of ∂±M

3 there are con-
stants l ≥ 1 and c > 0 such that

(4.10) c−1τ l ≤ θ±(Sτ ) ≤ cτ l,

where τ(x) = dist(x, ∂M3) and Sτ are surfaces of constant distance to the boundary, then there
exists a smooth solution f of Jang’s equation with the property that f(x) → ±∞ as x → ∂±M

3.
Furthermore, the asymptotics for this blow-up are given by

c−1
1 τ−

l−1
2 + c−1

2 ≤ ±f ≤ c1τ
− l−1

2 + c2 if l > 1,

−c−1
1 log τ + c−1

2 ≤ ±f ≤ −c1 log τ + c2 if l = 1,
(4.11)

for some positive constants c1, c2. In the spherically symmetric case, this type of existence result
may be established in all dimensions.

Recall the form of the spherically symmetric initial data

(4.12) g = g11(r)dr2 + ρ2(r)gSn−1 , kab = nanbkn + (gab − nanb)kt,
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Figure 7. On the left we see the Riemannian Schwarzschild manifold (in blue), and
its Jang perturbation (in purple). On the right we see the Jang perturbation viewed
as the base of a static spacetime. Due to the asymptotically cylindrical end, the
light cones of this spacetime are increasingly narrow as we move towards the central
cylinder. Above the base we see the embedding of the Riemannian Schwarzschild
space in blue. The graph of the Jang map has an asymptote at the central cylinder,
but it is becoming increasingly null so that the Schwarzschild manifold in blue does
not have a cylindrical inner end.

defined on the compliment of a ball Mn = Rn \ B0(r0). It is assumed that ∂Mn = Sr0 is the only
apparent horizon, which means that the null expansions satisfy

(4.13) θ±(r) = (n− 1)

(√
g11

ρr
ρ
± kt

)
> 0, r > r0,

and that either θ+(r0) = 0, θ−(r0) = 0, or θ+(r0) = θ−(r0) = 0 depending on whether Sr0 is a
future horizon, past horizon, or both respectively. As observed in [24] the Jang equation in spherical
symmetry may be reduced to a first order ODE by setting

(4.14) v =

√
g11fr√

1 + g11f2
r

.

The equation (4.2) then becomes

(4.15)
√
g11vr + (n− 1)

(√
g11

ρr
ρ
v − kt

)
+ (v2 − 1)kn = 0.

Observe that |v| ≤ 1 and blow-up occurs precisely when v = ±1. A maximum principle type
argument shows that the outermost horizon condition (4.13) ensures that |v| < 1 away from Sr0 .
Building upon this estimate, existence and uniqueness for the spherically symmetric Jang equation
may be established following the arguments of [6, Theorem 2]; this prior results was stated for
dimension three but the proof carries over to higher dimensions. The result may be stated as follows,
under the hypothesis that the initial data satisfy the following fall-off conditions in the asymptotic
end

|k|g =O1(r1−n), Trgk = O1(r−n),

g11 − 1 =O1(r2−n), ρ− r = O2(1).
(4.16)
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Theorem 4.1. Assume that the initial data set is spherically symmetric, smooth, either complete or
with outermost apparent horizon boundary, and satisfies the asymptotics (4.16). Then there exists a
unique solution v ∈ C∞((r0,∞)) ∩ C1([r0,∞)) of (4.15) (the spherically symmetric Jang equation)
such that −1 < v(r) < 1, r > r0, with v(r0) taking the value 0 or ±1 depending on whether r0 = 0
and the manifold is complete, or Sr0 is a past (future) horizon, respectively. Furthermore, in the
asymptotic end the decay is of the form

(4.17) v = O2(r1−n), as r →∞.

In all cases this gives rise to a spherically symmetric solution f ∈ C∞(Mn) of the Jang equation
(4.2) satisfying

(4.18) f = O3(r2−n), as r →∞.

Corollary 4.2. Under the hypotheses of Theorem 4.1 the Jang deformed initial data (M̄n, ḡ) is
smooth, spherically symmetric, and asymptotically flat with the same mass m̄ = m. If (Mn, g, k) has
a boundary then the Jang deformation, in addition, has an asymptotically cylindrical end satisfying
the asymptotics (4.11).

4.3. Uniform Asymptotics for the Solution of Jang’s Equation. The asymptotic fall-off for
solutions of Jang’s equation given in the previous theorem depend on spherical symmetry and are
not necessarily uniform. By allowing for a slightly weaker fall-off we may obtain uniform fall-off in
the general case independent of any symmetry.

Lemma 4.3. Let (Mn
j , gj , kj) be a sequence of uniformly asymptotically flat initial data, and let

fj ∈ C∞(Mn) be corresponding solutions of Jang’s equation with fj(x) → 0 as |x| → ∞ where
x ∈ Rn \ BρA are coordinates given by the asymptotic diffeomorphisms. Then for any small ς > 0
there exist unform constants C and r̄, depending only on ς, such that

(4.19) |∂βf(x)| ≤ C
|x|n−2−ς+|β| for |x| ≥ r̄,

where r̄ > ρA. In particular, the sequence of Jang deformations (M̄n
j , ḡj) is uniformly asymptotically

flat.

Proof. We shall adapt to our purposes an argument of Schoen-Yau which can be found in [31, pages

248-9] (see also [11, Proposition 4]). Let r(x) = |x| and for 0 < p < n − 2, λ > 0, r > λ
1
p+1 define

the radial function

(4.20) f̄(r) = λ

∫ ∞
r

(
s2p+2 − λ2

)− 1
2 ds.

Observe that there is a constant c1 = c1(p) such that

(4.21) 0 < f̄(r) ≤ c1λr
−p,

and

(4.22)
df̄

dr
→ −∞ as r → λ

1
p+1 .

A computation shows that the Jang operator evaluated at this radial function yields

(4.23)

(
gab − f̄af̄ b

1 + |∇f̄ |2g

) ∇abf̄√
1 + |∇f̄ |2g

− kab

 ≤ −λ(n− 2− p)r−p−2 + c2

(
r−n + λr−p−n

)
,
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where c2 is a uniform constant arising from the uniformly asymptotically flat condition. We may
then choose a uniform λ large enough to ensure that the right-hand side of (4.23) is nonpositive for

r > λ
1
p+1 , and thus f̄ is a super-solution. Similarly, −f̄ is a sub-solution on this domain. Since f and

f̄ both vanish at spatial infinity, and the derivative (4.22) is infinity, a maximum principle argument
guarantees that −f̄ ≤ f ≤ f̄ . Therefore

(4.24) |f(x)| ≤ c1λ|x|−p for |x| ≥ λ
1

1+p .

From this, higher order fall-off follows by rescaling combined with the Schauder estimates as in

Proposition 3 of [31]. Lastly, we may set r̄ = λ
1
p+1 to obtain the statement of this lemma. �

5. The Conformal Transformations

In this section we construct the conformal transformations and control the conformal factor as
described in the introduction.

5.1. Review of Conformal Change without Symmetry. In the previous section we have ob-
tained, from the given initial data (Mn, g, k), a Jang deformation (M̄n, ḡ) which is complete, asymp-
totically flat, and with an additional asymptotically cylindrical end if the original data possessed
a boundary. The positivity property (4.8) for the scalar curvature of the Jang metric leads to a
stability-type inequality via integration by parts combined with Cauchy-Schwarz

(5.1)

∫
M̄n

(
c−1
n |∇φ|2ḡ +Rḡφ

2
)
dVḡ ≥

∫
M̄n

(
16π(µ− J(w)) + |h− k|2ḡ + |q|2ḡ

)
φ2dVḡ

for all φ ∈ C∞c (M̄n), where cn = n−2
4(n−1) . The left-hand side arises from the basic quadratic form

associated with the conformal Laplacian Lḡ = ∆ḡ − cnRḡ, and asserts that on compact subsets
this operator has nonnegative spectrum (for the Dirichlet problem). In fact the spectrum is strictly
positive, since if the principal eigenvalue is zero each term on the right-hand side of (5.1) would
vanish, implying that Rḡ = 0 and the principal eigenfunction is harmonic, which is impossible.
Thus, a standard exhaustion argument together with asymptotic analysis [11, 31] shows that there
is a positive solution u > 0 of the zero scalar curvature equation

(5.2) Lḡu = 0 on M̄n, u(x) = 1 +
α

|x|n−2
+O2

(
1

|x|n−1

)
as |x| → ∞,

for some constant α. This allows a conformal transformation g̃ = u
4

n−2 ḡ to zero scalar curvature in
which the relation between the masses is given by m̃ = m̄+ 2α [31, page 259].

Moreover in the case that (M̄n, ḡ) possesses an additional cylindrical end, the solution u tends
to zero in the limit along that end. In fact the decay along the cylindrical end is exponentially
fast u ∼ e−γs, where s is an arclength parameter along the cylindrical end and γ is the principal
eigenvalue of ∆∂Mn − cnR∂Mn . In spherical symmetry additional assumptions are not required to
obtain γ > 0 since the scalar curvature of the outermost apparent horizon R∂Mn is positive, although
in the general case a sufficient condition is for the dominant energy condition to be strict near the
horizon as was used in [31]. The next proposition records these observations.

Proposition 5.1. Given a smooth Jang deformation (M̄n, ḡ) there exists a positive solution u ∈
C∞(M̄n) of (5.2), so that the conformal metric g̃ = u

4
n−2 ḡ has zero scalar curvature Rg̃ = 0 and

(M̃n, g̃) is asymptotically flat with mass

(5.3) m̃ = m̄+ 2α.
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If an asymptotically cylindrical end is present in the Jang deformation, then the conformal factor is
asymptotic to e−γs along this end with an arclength parameter s. Furthermore, if the initial data are
spherically symmetric then the function u and hence metric g̃ are also spherically symmetric.

Remark 5.2. Without any symmetry in dimension n = 3, it follows from a slightly generalized
positive mass inequality [31] that m̃ ≥ 0, and in addition that α ≤ 0 (see (5.8) below). Thus if
m = m̄→ 0 then m̃→ 0. The almost rigidity conjecture in the time-symmetric setting then suggests,
modulo horizon issues, that (M̃3, g̃) is close in the intrinsic flat sense to Euclidean space.

5.2. Spherically Symmetry Gives g̃ = gE. We point out that in the spherically symmetric case
the existence of a conformal transformation to zero scalar curvature may be obtained from the
alternate observation that all spherically symmetric metrics are conformally flat. This is related to a
rigidity phenomena associated to zero scalar curvature in spherical symmetry. The following result,
which is similar to Birkhoff’s Theorem [36] in general relativity, is well-known although the authors
do not know of a proper reference in the literature and thus include it here.

Lemma 5.3. Let (Mn, g), n ≥ 3 be spherically symmetric, complete, and scalar flat. Then either it
is isometric to flat Euclidean space (Rn, δ) or the constant time slice of a Schwarzschild spacetime,
that is Mn ∼= Rn \ {0} and

(5.4) g =
(

1 + m
2|x|n−2

) 4
n−2

δ.

Proof. This conclusion may be derived from the observation that the Hawking mass of radial spheres
is constant under the assumption of zero scalar curvature. The inverse mean curvature flow proof of
the Penrose inequality [18] then guarantees the desired result where the parameter m is the value of
the constant Hawking mass.

An alternative proof is to directly compute the scalar curvature of the spherically symmetric
metric in polar form as in (3.7), and analyze the ODE as is done in [28, page 70]. It is found that
ρ′ = 1 + cρ2−n for some constant c < 0, the area radius function ρ(r) > 0 for all r ∈ (−∞,∞), and

it has a unique minimum (corresponding to a minimal surface) at ρ = |c|
1

n−2 . It follows that ρ may
be treated as a radial coordinate and so

(5.5) g = dr2 + ρ2(r)gSn−1 =
(

1 + c
ρn−2

)−1
dρ2 + ρ2gSn−1 for ρ ≥ |c|

1
n−2 .

Since ρ(r) has a reflection symmetry across the minimal surface, this may be doubled to obtain the
stated conclusion. �

This rigidity result suggests that the conformal transformation obtained in Proposition 5.1, in the
case of spherical symmetry, gives rise to Euclidean space as we will now see.

Corollary 5.4. Let (Mn, g, k) be a spherically symmetric, asymptotically flat initial data set satis-
fying the dominant energy condition which is either complete or has an outermost apparent horizon
boundary. Then the conformally transformed Jang deformation of Proposition 5.1 is isometric to
Euclidean space (M̃n, g̃) ∼= (Rn, gE).

Proof. We only treat the case with boundary, as the case without boundary is similar. Let τ be the
radial distance function from the boundary for (Mn, g). With the help of (4.11) the Jang metric
takes the form

(5.6) ḡ = (1 + f2
τ )dτ2 + ρ2gSn−1 =

(
1 + cτ−l−1 +O(τ−l)

)
dτ2 + ρ2gSn−1 .
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Set s = 2
√
c
l τ
−l/2 and use the expansion ρ = ρ(0) +O(τ) to obtain

(5.7) ḡ =
(

1 +O(s−2− 2
l )
)
ds2 +

(
ρ(0)2 +O(s−

2
l )
)
gSn−1 ,

which illustrates the cylindrical asymptotics. Since u ∼ e−γs, a straightforward computation shows
that the Hawking mass (3.8) of the radial spheres m(s) → 0 as s → ∞. Moreover, since Rg̃ = 0,
as in the proof of Lemma 5.3 the Hawking mass of these spheres must be constant, and hence zero.
The desired conclusion now follows. �

5.3. Controlling the Conformal Factor u. For the remainder of this section we will examine
how the mass may be used to control the conformal factor u and the Jang deformation. Since g̃ is
flat its mass vanishes m̃ = 0, and therefore the formula of Proposition 5.1 relating the masses of
each deformation yields −2α = m; where we have also used that the Jang transformation preserves
mass. Furthermore, multiplying equation (5.2) through by u and integrating by parts, and using the
divergence structure present in Rḡ yields

(5.8) −c−1
n (n− 2)ωn−1 α︸︷︷︸

−m
2

≥
∫
M̄n

[
4

n− 2
|∇u|2ḡ +

(
16π(µ− J(w)) + |h− k|2ḡ + |q|2ḡ

)
u2

]
dVḡ.

It follows that L2 gradient bounds for the conformal factor are given in terms of the mass.

Lemma 5.5. Assume that the given spherically symmetric initial data (Mn, g, k) satisfies the dom-
inant energy condition. If u is the solution of (5.2) given by Proposition 5.1, then

(5.9) ‖ ∇u ‖2L2(M̄n,ḡ)≤
(n− 2)2ωn−1

8cn
m.

Remark 5.6. We remark that a version of Lemma 5.5 is likely to hold without the assumption of
spherical symmetry, when a smooth Jang deformation exists. Namely, if the positive mass theorem
is valid for (M̃n, g̃) then −2α ≤ m, and (5.9) again follows from (5.8). The issue is that the

n-dimensional Riemannian positive mass theorem [30, 32] is not immediately applicable, as (M̃n, g̃)
may not be a smooth manifold, geometrically or topologically. The later pathology arises from the fact
that in higher dimensions, although the outermost apparent horizon is of positive Yamabe invariant,
it may not be of spherical topology. Nonetheless, Eichmair [11] has found an effective way to deal
with these concerns.

Next observe that the L2 gradient bound for u on the Jang surface may be translated into a

similar bound for log u on Euclidean space. This follows from Corollary 5.4 since gE = u−
4

n−2 ḡ, and
in particular

(5.10) |∇u|2ḡ = u
4

n−2 |∇u|2gE , dVḡ = u−
2n
n−2dVgE .

Corollary 5.7. Under the hypotheses of Lemma 5.5

(5.11) ‖ ∇ log u ‖2L2(Rn,gE)≤
(n− 2)2ωn−1

8cn
m.

The global Sobolev bounds for the conformal factor obtained from the stability inequality can
be parlayed into C0 and even Hölder estimates away from the central fixed point of the spherical
symmetry. To accomplish we will first need to obtain uniform control for u in the asymptotically
flat end.
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Lemma 5.8. Let (Mn
j , gj , kj) be a sequence of spherically symmetric, uniformly asymptotically flat

initial data satisfying the dominant energy condition and with either outermost apparent horizon
boundary or no boundary. Let (M̄n

j , ḡj) be the corresponding Jang deformations conformally related

to (M̃n
j , g̃j) via conformal factors uj solving (5.2). Then there exist uniform constants c and r̄ such

that

(5.12) uj(r) ≤ exp cr−2(n−2) for r ≥ r̄,

where r = |x| is the radial coordinate from (1.3) and r̄ is as in Proposition 4.3.

Proof. For convenience, within the proof the subscript j will be suppressed. Coordinate spheres in
the asymptotic region will be denoted by Sr; note that they are distinct from the surfaces ΣA used
in other parts of the manuscript. Multiply equation (5.2) through by u and integrate by parts up to
a coordinate sphere Sr, r ≥ r̄, and use the divergence structure present in Rḡ as in (5.8) to find

(5.13)

∫
Sr

(
1

2cn
∂ν̄u

2 + 2q(ν̄)u2
)
dAḡ ≥ 0,

where ν̄ is the unit outer normal with respect to ḡ. Since all quantities are spherically symmetric
and r is arbitrary, we obtain the differential inequality

(5.14) ∂r log u ≥ −2cnq(∂r) for r ≥ r̄.

According to the uniform fall-off (4.16) and (4.19), q(∂r) may be estimated to yield

(5.15) ∂r log u ≥ −c̄r−2n+1+2ς

where c̄ > 0 is a uniform constant. Integrating on the interval [r, r1] produces

(5.16) log u(r1)− log u(r) ≥ c̄

2n− 2− 2ς

(
r−2n+2+2ς

1 − r−2n+2+2σ
)
.

Now let r1 →∞ and use that u(r1)→ 1 to obtain

(5.17) log u(r) ≤ cr−2(n−2),

with c = c̄(2n− 2− 2ς)−1. �

Let r̃ denote the radial distance function for gE = g̃, so that

(5.18) gE = dr̃2 + r̃2gSn−1 .

Consider annular domains ΩÃ1,Ã2
⊂ En whose boundary consists of two coordinate spheres having

areas Ã1 < Ã2. The next result shows that the conformal factors defining g̃ are uniformly close to 1
in Hölder space away from the center of the spherical symmetry. Note that in light of Example 2.4
we see that it is not possible to have such C0 control near the center.

Proposition 5.9. Let (Mn
j , gj , kj) be a sequence of spherically symmetric, uniformly asymptotically

flat initial data satisfying the dominant energy condition and with either outermost apparent horizon
boundary or no boundary. Let (M̄n

j , ḡj) be the corresponding Jang deformations conformally related to

(M̃n
j , g̃j) via conformal factors uj solving (5.2). Let Ã0 > 0 be fixed, assume mj < Ã−2

0 is uniformly

small, and set Ãj = 1√
mj

. Then there exists a uniform constant C such that

(5.19) ‖ log uj ‖
C0, 12

(
ΩÃ0,Ãj

,gE
)≤ Cm

1
4
j√
Ã0

.
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Proof. For convenience the subscript j will be suppressed in the proof. Estimate (5.11) shows that
for any r̃1 < r̃2 we have

(5.20) r̃n−1
1

∫ r̃2

r̃1

(∂r̃ log u)2 dr̃ ≤ c̃nm,

where c̃n = (n− 2)2c−1
n /8. With the help of Hölder’s inequality it follows that

| log u(r̃2)− log u(r̃1)| =

∣∣∣∣∫ r̃2

r̃1

∂r̃ log udr̃

∣∣∣∣
≤ |r̃2 − r̃1|

1
2

(∫ r̃2

r̃1

(∂r̃ log u)2 dr̃

) 1
2

≤
(
c̃nm

r̃n−1
1

|r̃2 − r̃1|
) 1

2

.

(5.21)

If

(5.22) r̃0 =

(
Ã0

ωn−1

) 1
n−1

denotes the area radius for the inner boundary of ΩÃ0,Ãj
then

(5.23)
| log u(r̃2)− log u(r̃1)|

|r̃2 − r̃1|
1
2

≤
√
c̃nm

r̃n−1
0

=

√
c̃nωn−1m

Ã0

for r̃1 ≥ r̃0, which yields one half of the desired Hölder estimate.
The next goal is to obtain C0 bounds. Note that (5.21) implies

(5.24) | log u(r̃1)| ≤ | log u(r̃2)|+
√
c̃nmr̃2

r̃n−1
0

.

In order to control u(r̃2) uniformly we will utilize Lemma 5.8. The estimate there, however, is given
in terms of the radial coordinate r associated with the uniform asymptotic coordinates of ḡ. The two
coordinates r and r̃ may be compared in the asymptotic end by relating the volumes of coordinate
spheres. Let Sr denote a coordinate sphere of radius r, then uniform asymptotic flatness shows that
its volume with respect to ḡ satisfies

(5.25) |Sr|ḡ ≤ ωn−1r
n−1 + c1r

n−2 for r ≥ r̄,

for some uniform constant c1 (uniform constants will be denoted by ci, i = 1, 2, . . .). With the help

of (5.12), the volume of this same sphere computed with respect to gE = u
4

n−2 ḡ may be estimated
by

|Sr|gE = u
2(n−1)
n−2 |Sr|ḡ

≤ e
2c(n−1)
n−2

r−2(n−2) (
ωn−1r

n−1 + c1r
n−2
)

≤ ωn−1r
n−1 + c2r

n−2.

(5.26)

On the other hand

(5.27) |Sr|gE = ωn−1r̃
n−1,
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and hence

(5.28) r̃ ≤ r + c3 ⇒ 1

r
≤ 1

r̃
+
c4

r̃2
.

We may now combine (5.12), (5.24), and (5.28) to find for large r̃2 that

| log u(r̃1)| ≤ c

r(r̃2)2(n−2)
+

√
c̃nmr̃2

r̃n−1
0

≤ c5

r̃
2(n−2)
2

+

√
c̃nmr̃2

r̃n−1
0

.

(5.29)

By choosing r̃2 = m−
1
2 the desired result follows. �

6. Intrinsic Flat Convergence of the Base Manifolds

In this section we prove the following proposition which implies (1.22) of Theorem 1.2. Recall that

(6.1) Ωj
A = {x ∈Mn

j | ρj(x) ≤ ρA}

is the region within the level set Σj
A of area A with respect to gj and ḡj . A priori we do not know

the area of the level set Σj
A with respect to the metric g̃j = u

4
n−2

j ḡj = gE. This section strongly uses
spherical symmetry and the fact that the metrics ḡ and g are monotone as was proven in Lemma 3.3.

Proposition 6.1. Given any A > 0, D > 0, and ε > 0 there exists δ = δ(A,D, ε) > 0 such that if
mass mj < δ then

(6.2) dVF
(
(Ωj , ḡj) ,

(
Ω′j , gE

))
< ε,

where

(6.3) Ωj = Ωj
A ∩ TD(Σj

A) ⊂ M̄n
j with metric tensor ḡj

and

(6.4) Ω′j = Ωj
A ⊂ En with metric tensor g̃j = u

4
n−2

j ḡj = gE.

Furthermore for fixed A > 0 and D > 0, if mj → 0 then

(6.5) (Ω′j , gE)→ (B0(ρA), gE) smoothly as j →∞.
To prove the volume preserving intrinsic flat convergence statement (6.2), we will show they

have diffeomorphic subregions Wj and W ′j where the metric tensors are C0 close and the volumes
not covered by these subregions are small. This will be stated more precisely below. Based on the
examples of Section 2, we cannot expect the region near the asymptotically cylindrical end of (Ωj , ḡj)
to be C0 close to (Ω′j , gE). We will therefore choose an

(6.6) Aε = Aε(A,D) > 0,

and then cut out the annular domain Ωj
Aε,A

from inside Ωj and Ω′j to create regions where we will
have the appropriate control. Set

(6.7) Wj = Ωj
Aε,A

⊂ Ωj
A ∩ TD(Σj

A) ⊂ M̄n
j ,

and

(6.8) W ′j = Ωj
Aε,A

⊂ En.
The precise choice of Aε will be made later in Subsection 6.5.



STABILITY OF THE SPACETIME POSITIVE MASS THEOREM 27

6.1. Estimates on Wj. To begin the proof of Proposition 6.1 we apply the results of the previous
section to establish uniform closeness between ḡj and gE on diffeomorphic domains. This is a pri-
mary step towards proving the intrinsic flat distance estimate (6.2). Secondly we show the smooth
convergence to a ball in En (6.5).

Lemma 6.2. Given any ε > 0 and fixed A > Aε > 0 there exists a δ = δ(ε,Aε) > 0 such that

(6.9) ḡj ≤ (1 + ε)2gE and gE ≤ (1 + ε)2ḡj on Ωj
Aε,A

,

whenever the mass mj < δ.

Proof. Choose Ã0 < Aε and Ã > A. Then, according to Proposition 5.9, there is a uniform constant
C such that

(6.10) ‖ uj − 1 ‖
C0

(
ΩÃ0,Ã

)≤ Cm
1
4
j√
Ã0

,

where ΩÃ0,Ã
⊂ En is the annular domain whose boundary consists of two coordinate spheres having

areas Ã0 < Ã. Thus, for all mj sufficiently small we find that Ωj
Aε,A

⊂ ΩÃ0,Ã
and

(6.11) (1 + ε)−2 ≤ u
4

n−2

j ≤ (1 + ε)2,

from which the desired result follows. �

Lemma 6.3. Fix A > 0 and D > 0, and let the symmetry spheres Σj
A ⊂ M̄n

j be defined by

(6.12) Areagj (Σ
j
A) = Areaḡj (Σ

j
A) = A.

If mj → 0 then

(6.13) AreagE(Σj
A)→ A,

and so the spheres

(6.14) (Σj
A, gE)→ (∂B0(ρA), gE) smoothly

and the balls

(6.15) (Ω′j , gE)→ (B0(ρA), gE) smoothly.

Proof. Observe that (6.13) follows from the C0 convergence of the metric tensors in Lemma 6.2.
Moreover (6.14) and (6.15) follow immediately from (6.13). �

6.2. Applying the Lakzian-Sormani Theorem. In work of Lakzian and the third author [21],
the following theorem was proven providing a concrete means to estimate the intrinsic flat distance.
Intuitively this theorem observes that two manifolds Ωj and Ω′j , as in (6.3) and (6.4), are close in the

intrinsic flat sense if they have diffeomorphic subregions Wj and W ′j , as in (6.7) and (6.8) where the

metric tensors are C0 close and the volumes not covered by these subregions are small. See Figure 8.
When using this result for the current problem note that a dictionary between the notation is Ω = Ωj ,
Ω′ = Ω′j , W = Wj , W

′ = W ′j , g = ḡj , and g′ = gE.

Theorem 6.4. [21] Suppose that (Ω, g) and (Ω′, g′) are oriented precompact Riemannian manifolds
with diffeomorphic subregions W ⊂ Ω and W ′ ⊂ Ω′. Identifying W = W ′ assume that

(6.16) g ≤ (1 + ε)2g′ and g′ ≤ (1 + ε)2g on W.
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Figure 8. To prove that two regions Ωj and Ω′j are close in the intrinsic flat sense
using the Lakzian-Sormani theorem, one first identifies subregions Wj ⊂ Ωj and
W ′j ⊂ Ω′j that are C0 close and then shows that the volumes of the excesses Ωj \Wj

and Ω′j \W ′j are small. It must also be ensured that the distance distortions are small.
See Theorem 6.4.

Taking the extrinsic diameters

(6.17) max{diamg(Ω), diamg′(Ω
′)} ≤ D0

define a hemispherical width

(6.18) ω >
arccos(1 + ε)−1

π
D0 which goes to 0 as ε→ 0.

Taking the difference in distances with respect to the outside manifolds, set

(6.19) λ = sup
x,y∈W

|dΩ,g(x, y)− dΩ′,g′(x, y)| ≤ 2D0

and define the height

(6.20) Λ = max
{√

2λD0, D0

√
ε2 + 2ε

}
.

Then

dF (Ω,Ω′) ≤ (2Λ + ω)
(

Volg(W ) + Volg′(W
′) + Areag(∂W ) + Areag′(∂W

′)
)

+ Volg(Ω \W ) + Volg′(Ω
′ \W ′).

(6.21)

6.3. Estimating the Volumes. In this subsection all volumes and areas appearing in the first line
of (6.21) will be shown to be uniformly bounded, and those in the second line will be shown to be
arbitrarily small. In addition, it will be established that the volumes Volḡj (Ωj) converges to that of
a ball in Euclidean space.

Lemma 6.5. Volumes outside the diffeomorphic subregions may be estimated by

(6.22) Volḡj (Ωj \Wj) ≤ DAε,

and

(6.23) VolgE(Ω′j \W ′j) ≤ (1 + ε)n−1DAε.

In particular, both are less than 2n−1DAε.

Proof. First observe that

(6.24) Ωj \Wj = Ωj
A ∩ TD(Σj

A) \ Ωj
Aε,A

= Ωj
Aε
∩ TD(Σj

A).
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By Lemma 3.3, the largest area of the radial levels in this set is Aε. Applying the coarea formula to
these levels and the fact that the depth of the set is D, we have

(6.25) Volḡj (Ωj \Wj) ≤ DAε.
Applying the coarea formula again and using (6.16) yields

(6.26) VolgE(Ω′j \W ′j) ≤ DVolgE(Σj
Aε

) ≤ D(1 + ε)n−1 Volḡ(Σ
j
Aε

) = D(1 + ε)n−1Aε.

�

Lemma 6.6. Volumes of the diffeomorphic subregions may be estimated by

(6.27) Volḡj (Wj) ≤ DA,
and

(6.28) VolgE(W ′j) ≤ (1 + ε)n−1DA.

In particular, both are less than 2n−1DA.

Proof. This follows from Lemma 3.3 and the coarea formula

(6.29) Volḡj (Wj) ≤ Volḡj (Ωj) ≤ DVolḡ(Σ
j
A) = DA.

Furthermore

(6.30) VolgE(W ′j) ≤ DVolgE(Σj
A) = D(1 + ε)n−1A.

�

Lemma 6.7. Boundary areas of the diffeomorphic subregions may be estimated by

(6.31) Areaḡj (∂Wj) ≤ Aε +A ≤ 2A,

and

(6.32) AreagE(∂W ′j) ≤ (1 + ε)n−1(Aε +A) ≤ 2(1 + ε)n−1A.

In particular, both are less than 2nA.

Proof. We know that ∂Wj has at most two components, both of which are radial levels of area less
than A by monotonicity. The same holds for ∂W ′j , except that as above the upper bound on the

outer area is (1 + ε)n−1A. �

The next lemma will be used to obtain volume preserving intrinsic flat convergence. It follows
from the last few lemmas.

Lemma 6.8. The difference of total volumes may be estimated by

(6.33) |Volḡj (Ωj)−VolgE(Ω′j)| < ((1 + ε)n − 1)DA+ 2D(1 + ε)n−1Aε.

Proof. From Lemma 6.5 we have

(6.34) |VolgE(Ω′j)−VolgE(W ′j)| ≤ D(1 + ε)n−1Aε,

and

(6.35) |Volḡj (Ωj)−Volḡj (Wj)| ≤ DAε < D(1 + ε)n−1Aε.

Moreover by (6.16)

(6.36) |VolgE(W ′j)−Volḡj (Wj)| ≤ ((1 + ε)n − 1) Volḡj (Wj) ≤ ((1 + ε)n − 1)DA.

�
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6.4. Estimating Distances and Diameters.

Lemma 6.9. Let D ≥ ρA, then

(6.37) max{diamḡj (Ωj),diamgE(Ω′j)} ≤ D0

where D0 ≤ 4πD.

Proof. This follows because the depth of the tubular neighborhood is D, and the largest symmetry
sphere satisfies

(6.38) diamḡj (Σ
j
A) = πρA ≤ πD.

So by the triangle inequality the diameter of Ωj is no larger than 2D + πD ≤ 4πD. In addition

(6.39) diamgE(Σj
A) ≤ (1 + ε) diamḡj (Σ

j
A) = (1 + ε)πD.

So by the triangle inequality the diameter of Ω′j is no larger than 2D + (1 + ε)πD ≤ 4πD. �

Lemma 6.10. The difference of distances satisfies

(6.40) λj = sup
x,y∈Wj

|dḡj (x, y)− dgE(x, y)| ≤ (1 + ε)πρAε + 4πεD,

where Wj is identified with W ′j.

Proof. Let σ = σx,y be a line segment from σ(0) = x to σ(1) = y in Ω′j so that

(6.41) lgE(σ) = |x− y| = dgE(x, y).

Then there is a first time that σ(t1) ∈ Σj
Aε

and a last time that σ(t2) ∈ Σj
Aε

. See Figure 9. By

Figure 9

triangle inequality we have

dḡj (x, y) ≤ dḡj (σ(0), σ(t1)) + dḡj (σ(t1), σ(t2)) + dḡ(σ(t2), σ(1))

≤ lḡj (σ([0, t1])) + πρAε + lḡj (σ([t2, 1]))

≤ (1 + ε) lgE (σ([0, t1])) + πρAε + (1 + ε) lgE (σ([t2, 1]))

≤ πρAε + (1 + ε)lgE (σ([0, 1]))

= πρAε + (1 + ε)dgE(x, y)

≤ πρAε + εD0 + dgE(x, y).

(6.42)

Here we have used Lemma 6.9 and the fact that Σj
Aε

is connected.
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Let γ = γx,y be a ḡj-length minimizing geodesic from γ(0) = x to γ(1) = y in Ωj so that

(6.43) lḡj (γ) = dḡj (x, y).

Then there is a first time that γ(t1) ∈ Σj
Aε

and a last time that γ(t2) ∈ Σj
Aε

. By the triangle
inequality we have

dgE(x, y) ≤ dgE(γ(0), γ(t1)) + dgE(γ(t1), γ(t2)) + dgE(γ(t2), γ(1))

≤ lgE (γ([0, t1])) + diamgE(Σj
Aε

) + lgE (γ([t2, 1]))

≤ (1 + ε)lḡj (γ([0, t1])) + (1 + ε) diamḡj (Σ
j
Aε

) + (1 + ε)lḡj (γ([t2, 1]))

≤ (1 + ε)πρAε + (1 + ε)lḡj (γ([0, 1]))

= (1 + ε)πρAε + (1 + ε)dḡj (x, y)

≤ (1 + ε)πρAε + εD0 + dḡj (x, y).

(6.44)

Combining these with D0 ≤ 4πD from Lemma 6.9 we obtain the desired result. �

6.5. Proof of Proposition 6.1. First note that by Lemmas 6.5-6.9 applied to Theorem 6.4 we have

(6.45) dF (Ωj ,Ω
′
j) ≤ (2Λj + ω)

(
2D2n−1A+ 2A2n

)
+ 2D2n−1Aε,

where

(6.46) Λj = max
{√

2λjD0, D0

√
ε2 + 2ε

}
,

Furthermore by Lemma 6.8

(6.47) |Volḡj (Ωj)−VolgE(Ωj)| < ((1 + ε)n − 1)DA+D2nAε.

Given A > 0, D > 0, and ε > 0 we must choose δ = δ(A,D, ε) > 0 sufficiently small so that

(6.48) dVF (Ωj ,Ω
′
j) = dF (Ωj ,Ω

′
j) + |Volḡj (Ωj)−VolgE(Ωj)| < ε

whenever δ < mj . Therefore choose ε and Aε appropriately in order to satisfy

(6.49) D2nAε < ε/4,

(6.50) ((1 + ε)n − 1)DA < ε/4,

and

(6.51) (2Λj + ω)CA,D < ε/4,

where

(6.52) CA,D = (2D2n−1A+ 2A2n).

Observe that these together imply (6.48). It remains only to show that (6.51) may be obtained from
choosing ε and Aε small.

According to the definition of Λj and ω, (6.51) will be valid if

(6.53) 2D0

√
ε2 + 2εCA,D < ε/8,

(6.54) 2
√

2λjD0CA,D < ε/8,

and

(6.55) ωCA,D = 2
arccos(1 + ε)−1

π
D0CA,D < ε/8.
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Moreover, from Lemma 6.10 it follows that (6.54) holds if

(6.56) 2
√

8πεDD0CA,D < ε/16,

and

(6.57) 2
√

4πρAεD0CA,D < ε/16.

Thus we choose the area of the inner level set Aε = Aε(A,D) > 0 small enough so that (6.49), and
(6.57) hold. Recall that ρAε is the radius of the n − 1-sphere whose area is Aε. In addition, we
choose ε = ε(A,D, ε) small enough so that (6.50), (6.53), (6.55), and (6.56) hold. It follows that
there exists δ = δ(ε,Aε) > 0 such that mj < δ implies dVF (Ωj ,Ω

′
j) < ε. Finally (6.5) was established

in Lemma 6.3.

7. Convergence of the Second Fundamental Form Differences

In Theorem 1.2 a statement (1.23) is given concerning the convergence of the difference of the
second fundamental forms of the initial data and Jang graphs. In this section we give a proof of that
statement.

7.1. Outside Control. The pointwise control on the conformal factor gives rise to L2 control of the
difference of second fundamental forms. Recall that ΩA is the domain inside the symmetry sphere of
volume A in (M̄n, ḡ) and (Mn, g). By combining Proposition 5.9 and (5.8) we obtain the following.

Proposition 7.1. Let (Mn
j , gj , kj) be a sequence of spherically symmetric, uniformly asymptotically

flat initial data satisfying the dominant energy condition and with either outermost apparent horizon
boundary or no boundary. For every A0 > 0 there exists a uniform constant C such that

(7.1) ‖ hj − kj ‖2L2(M̄n
j \Ω

j
A0
,ḡj)
≤ Cmj .

Proof. According to Proposition 5.9 and the asymptotics of uj , we find by choosing 0 < Ã0 < A0

that

(7.2) |uj − 1| ≤ c1m
1
4
j on M̄n

j \ Ωj
A0
,

for some uniform constant c1. Thus for large j, the inequality (5.8) implies

(7.3) c−1
n (n− 2)ωn−1mj ≥

∫
M̄n
j

|hj − kj |2ḡju
2
jdVḡj ≥ 1

2

∫
M̄n
j \Ω

j
A0

|hj − kj |2ḡjdVḡj .

�

7.2. Inside Control. The conformal factors uj decay exponentially fast along the cylindrical ends
of (M̄n

j , ḡj), and thus the techniques used above to obtain estimates outside a fixed level surface do

not extend down the cylindrical end. Nevertheless, with an extra hypothesis of uniform L2 control
for the initial data second fundamental forms kj , we are able to obtain uniform L2 bounds for the
difference of second fundamental forms on tubular neighborhoods of the anchor surface.

Proposition 7.2. Let (Mn
j , gj , kj) be a sequence of spherically symmetric, uniformly asymptotically

flat initial data satisfying the dominant energy condition and with either outermost apparent horizon
boundary or no boundary. Further, assume the uniform bound ‖ kj ‖L2(Mn

j )≤ B. Given A > 0 and

D > 0 there exists C depending only on A, B, and D such that

(7.4) ‖ hj − kj ‖L2(ΩjA∩TD(ΣjA),ḡj)
≤ C.
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Proof. For convenience in this proof we will drop the subscript j. Recall from (5.1) that

(7.5)

∫
M̄n

|h− k|2ḡφ2dVḡ ≤
∫
M̄n

(
c−1
n |∇φ|2ḡ +Rḡφ

2
)
dVḡ

for all φ ∈ C∞c (M̄n). Choose a particular test function such that 0 ≤ φ ≤ 1, φ ≡ 1 on TD+1(ΣA),
and |∇φ|ḡ ≤ 2 then

(7.6)

∫
TD(ΣA)

|h− k|2ḡdVḡ ≤ 2c−1
n Volḡ(TD+1(ΣA)) +

∫
TD+1(ΣA)

Rḡφ
2dVḡ.

Write

(7.7) ḡ = ds̄2 + ρ(s̄)2gSn−1

such that the interval 0 < s̄ < D + 2 covers TD+1(ΣA), and notice that

(7.8) Rḡ = −2(n− 1)
ρ̈

ρ
+ (n− 1)(n− 2)

1− ρ̇2

ρ2
.

Integrating by parts produces

∫
TD+1(ΣA)

Rḡφ
2dVḡ =

= ωn−1

∫ D+2

0

[
−2(n− 1)

ρ̈

ρ
+ (n− 1)(n− 2)

1− ρ̇2

ρ2

]
φ2ρn−1ds̄

= ωn−1

∫ D+2

0

[
4(n− 1)φφ̇ρn−2ρ̇+ (n− 1)(n− 2)φ2ρn−3ρ̇2 + (n− 1)(n− 2)φ2ρn−3

]
ds̄.

(7.9)

Since the mean curvature of coordinate spheres is H̄ = (n− 1)ρ−1ρ̇, this may be rewritten as∫
TD+1(ΣA)

Rḡφ
2dVḡ =

∫
TD+1(ΣA)

(
4〈φ∇φ, ∂s̄〉H̄ +

n− 2

n− 1
φ2H̄2

)
dVḡ

+

∫ D+2

0
ωn−1(n− 1)(n− 2)φ2ρn−3ds̄.

(7.10)

We now estimate each term of (7.10) separately. By uniform asymptotic flatness of ḡ in Lemma
4.3 and asymptotic control (7.2) of u, we have that

(7.11) ρ(D + 2) =

(
A(D + 2)

ωn−1

) 1
n−1

is uniformly bounded and thus

(7.12)

∫ D+2

0
φ2ρn−3ds̄ ≤ (D + 2)

(
A(D + 2)

ωn−1

)n−3
n−1

≤ c1.

Next according to Lemma 6.8 it holds that Volḡ(TD+1(Σ)) is uniformly bounded, and hence by
Hölder’s inequality
(7.13)∫

TD+1(ΣA)
〈φ∇φ, ∂s̄〉H̄dVḡ ≤ 2Volḡ(TD+1(Σ))

1
2

(∫
TD+1(ΣA)

H̄2dVḡ

) 1
2

≤ c2 ‖ H̄ ‖L2(TD+1(ΣA),ḡ) .

The remaining term of (7.10) may also be estimated by the L2 norm of H̄.
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To complete the proof we will use the extra hypothesis concerning k to bound H̄ in L2. First
observe that

(7.14) ḡ = g + df2 = (1 + f2
s )ds2 + ρ(s)2gSn−1 ⇒ ds̄

ds
=
√

1 + f2
s ,

so that

(7.15) H̄ = (n− 1)ρ−1dρ

ds̄
= (n− 1)ρ−1dρ

ds

ds

ds̄
=

1√
1 + f2

s

H

where H is the mean curvature with respect to g. Furthermore, let ψ : TD+1(ΣA) → Mn be the
diffeomorphism onto its image associated with the coordinate change s̄→ s. Then∫

TD+1(ΣA)
H̄2dVḡ =

∫
TD+1(ΣA)

[
H̄2 − (TrSs̄k)2

1 + f2
s

]
dVḡ +

∫
TD+1(ΣA)

(TrSs̄k)2

1 + f2
s

dVḡ

=

∫ D+2

0
(1 + f2

s )−1

∫
Ss̄

[
H2 − (TrSs̄k)2

]
dAḡds̄+

∫
ψ[TD+1(ΣA)]

(TrSs̄k)2√
1 + f2

s

dVg

≤
∫ D+2

0
(n− 2)2ω

n−3
n−2

n−1A(s̄)
n−3
n−2ds̄+

∫
Mn

(n− 1)2|k|2gdVg,

(7.16)

where we have used that the spacetime Hawking mass

(7.17) m(s) :=
1

2

(
A(s)

ωn−1

)n−2
n−1

1− 1

(n− 1)2ω
2

n−1

n−1A(s)
n−3
n−1

∫
Ss

(
H2 − (TrSsk)2

)
dAg


is nonnegative [20], and the areas of coordinate spheres agree with respect to both metrics g and ḡ,
that is A(s) = A(s̄). Again using that ρ(D + 2) is uniformly bounded produces

(7.18)

∫
TD+1(ΣA)

H̄2dVḡ ≤ (D + 2)(n− 2)2ω
n−3
n−2

n−1c3 + (n− 1)2 ‖ k ‖2L2(Mn),

from which the desired result follows. �

7.3. Global Control. Here we show that the difference of second fundamental forms tends to zero
in Lp, 1 ≤ p < 2 on the tubular neighborhoods ΩA ∩ TD(ΣA) ⊂ M̄n, when the masses go to zero.
This result, and in fact even a uniform bound, cannot be extended to the entire domain ΩA. The
reason is due to the cylindrical asymptotics contained within this domain, and the observation that
in the limit along the cylinder h− k converges to II − i∗k, where II is the second fundamental form
of ∂Mn in Mn and i : ∂Mn ↪→Mn is inclusion. Since II − i∗k does not necessarily vanish, it follows
that h− k is not necessarily in Lp(ΩA).

Theorem 7.3. Let (Mn
j , gj , kj) be a sequence of spherically symmetric, uniformly asymptotically

flat initial data satisfying the dominant energy condition and with either outermost apparent horizon
boundary or no boundary. Further, assume the uniform bound ‖ kj ‖L2(Mn

j )≤ B and that mj → 0.

Then for any 1 ≤ p < 2, A > 0, and D > 0

(7.19) ‖ hj − kj ‖Lp(ΩjA∩TD(ΣjA),ḡj)
→ 0.



STABILITY OF THE SPACETIME POSITIVE MASS THEOREM 35

Proof. Let Aε > 0 be fixed. Then by Hölder’s inequality∫
ΩjA∩TD(ΣjA)

|hj − kj |pḡjdVḡj =

=

∫
[ΩjA∩TD(ΣjA)]∩ΩjAε

|hj − kj |pḡjdVḡj +

∫
[ΩjA∩TD(ΣjA)]\ΩjAε

|hj − kj |pḡjdVḡj

≤ Volḡj

([
Ωj
A ∩ TD(Σj

A)
]
∩ Ωj

Aε

) 2−p
2

(∫
ΩjA∩TD(ΣjA)

|hj − kj |2ḡjdVḡj

) p
2

+ Volḡj

([
Ωj
A ∩ TD(Σj

A)
]
\ Ωj

Aε

) 2−p
2

(∫
[ΩjA∩TD(ΣjA)]\ΩjAε

|hj − kj |2ḡjdVḡj

) p
2

.

(7.20)

Using the notation and results of Lemma 6.5, observe that

(7.21) Volḡj

([
Ωj
A ∩ TD(Σj

A)
]
∩ Ωj

Aε

)
= Volḡj (Ωj \Wj) ≤ DAε.

Furthermore by Lemma 6.8

(7.22) Volḡj

([
Ωj
A ∩ TD(Σj

A)
]
\ Ωj

Aε

)
≤ Volḡj (Ωj) ≤ C1,

by Proposition 7.1

(7.23) ‖ hj − kj ‖L2(M̄n
j \Ω

j
Aε
,ḡj)
≤
√
C3(Aε)mj ,

and by Proposition 7.2

(7.24) ‖ hj − kj ‖L2(ΩjA∩TD(ΣjA),ḡj)
≤ C2.

It follows that

(7.25) ‖ hj − kj ‖p
Lp(ΩjA∩TD(ΣjA),ḡj)

≤ (DAε)
2−p

2 Cp2 + C
2−p

2
1 (C3(Aε)mj)

p
2 .

This can be made arbitrarily small by choosing Aε small and j appropriately large. �

8. Proof of Theorem 1.2

The proof of the main theorem follows quickly from Proposition 6.1 and Theorem 7.3. Recall that

(8.1) Ωj = Ωj
A ∩ TD(Σj

A) ⊂ M̄n
j with metric tensor ḡj ,

and

(8.2) Ω′j = Ωj
A ⊂ En with metric tensor g̃j = u

4
n−2

j ḡj = gE.

By the triangle inequality

(8.3) dVF ((Ωj , ḡj), (B0(ρA), gE)) ≤ dVF
(
(Ωj , ḡj), (Ω

′
j , gE)

)
+ dVF

(
(Ω′j , gE), (B0(ρA), gE)

)
.

As mj → 0 we have that (6.2) produces

(8.4) dVF
(
(Ωj , ḡj), (Ω

′
j , gE)

)
→ 0,

and (6.5) yields

(8.5) dVF
(
(Ω′j , gE), (B0(ρA), gE)

)
→ 0,

since smooth convergence implies convergence in the volume preserving intrinsic flat sense. Finally,
Theorem 7.3 gives (1.23).
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