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ABSTRACT. We establish the conjectured area-angular momentum-charge inequality for stable ap-
parent horizons in the presence of a positive cosmological constant, and show that it is saturated
precisely for extreme Kerr-Newman-de Sitter horizons. As with previous inequalities of this type, the
proof is reduced to minimizing an ‘area functional’ related to a harmonic map energy; in this case
maps are from the 2-sphere to the complex hyperbolic plane. The proof here is simplified compared to
previous results for less embellished inequalities, due to the observation that the functional is convex
along geodesic deformations in the target.

1. INTRODUCTION

Motivated in part by black hole thermodynamics, in particular the desire for a nonnegative black
hole temperature [15], several inequalities relating the area, angular-momentum, and charge of hori-
zons have been established [3, 4, 5, 6, 11, 12, 13, 14, 17, 18, 20, 21, 23, 24]. Inequalities elucidating
how a cosmological constant A constrains these quantities, have also been proved [22, 28]. The
most recent in this direction is the result of Clement, Reiris, and Simon [14] who have treated the
area-angular momentum inequality with A > 0 for axisymmetric stable apparent horizons

(1.1) |J|§813r\/<1—2f> (1—&),

and showed that it is saturated precisely for extreme Kerr-de Sitter black holes. The purpose of the
present work is to obtain the most general form of this inequality by including charge, as well as to
establish the corresponding rigidity result for extreme Kerr-Newman-de Sitter (KNdS) horizons.

We take an initial data point of view. Recall that an initial data set (M,g,k, E, B) for the
Einstein-Maxwell equations consists of a 3-manifold M, Riemannian metric g, symmetric 2-tensor
k representing extrinsic curvature, and vector fields £ and B which constitute the electromagnetic
field. Let p and J be the energy and momentum densities of the matter fields, then the constraint
equations are given by

(1.2) 16mp = R+ (Trg k)* — |k|* — 24, 87J = divy(k — (Try k)g),

where R denotes scalar curvature. When contributions from the electromagnetic field are removed
we have

1 1
8 4

where (F x B); = eiﬂEj B! is the cross product with e the volume form of g. The typical energy
condition employed for geometric inequalities associated with such initial data is referred to as the
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charged dominant energy condition

(1.4) peM > |JEM|-

Consider a closed 2-dimensional surface S embedded in the initial data, with induced metric
and unit normal n pointing inside M. We say that the surface is axially symmetric if the group of
isometries of the Riemannian submanifold (.5, ) has a subgroup isomorphic to U(1), and (1.5) holds.
Let 1 denote the Killing field associated with this symmetry. It will be assumed that the integral
curves of 1 are normalized to have an affine length of 2m. Moreover we require that

(1.5) Lyy = Lok(n,n) = £,E(n) = £,B(n) = 0,

where £, is Lie differentiation. Axisymmetry allows for a canonical expression [7, 9, 19] for the
angular momentum associated with the surface S, namely

(1.6) T=o /S (k(n.n) + ¥E(n) — xB(n)) dA,

where y and v are potentials for the electric and magnetic field, respectively, to be defined in the
next section. The first term in the integral is the standard expression arising from the Komar angular
momentum, and the remaining parts are included so as to achieve conservation of angular momentum
in the Einstein-Maxwell context. In particular, if the full initial data set is axisymmetric and there
is no charged matter as well as no nonelectromagnetic momentum density in the Killing direction,
then the angular momentum (1.6) does not vary [19] among surfaces which are homologous to one
another. Furthermore the electric and magnetic charge of the surface are given by

1 1
(1.7) Q=1 /S E(n)dA,, @ /S B(n)dA,,

T 4r

and the square of the total charge is Q* = Q2 + Q3.
Recall that the strength of the gravitational field near the surface S may be measured by the null
expansions

(1.8) 01 :=Hg+Trsk,

where Hg is the mean curvature with respect to the unit outward normal n. The null expansions
measure the rate of change of area for a shell of light emitted by the surface in the outward future
direction (64 ), and outward past direction (_). Thus the gravitational field is interpreted as being
strong near S if 6, < 0 or _ < 0, in which case S is referred to as a future (past) trapped surface.
Future (past) apparent horizons arise as boundaries of future (past) trapped regions and satisfy the
equation #1 = 0 (f— = 0). Apparent horizons may be thought of as quasi-local notions of event
horizons, and in fact, assuming cosmic censorship, they must generically be contained inside black
holes [29].

In analogy with minimal surfaces, apparent horizons come with a notion of stability. In order to
define this in the current setting, consider normal variations of the (future) apparent horizon S with
variational vector field 0; = ¢n where ¢ € C*°(S). Then a computation [2] shows that

(1.9) 0+ |i=0 = L := —Ayp +2(X, V) + (W +div, X — | X )¢,
where

1
(1.10) W=K-8r(u+J(n)—A— §|H|2, X = k(n,-),

with K the Gauss curvature of v and II;; = h;; + k;; the null second fundamental form associated
with 64 ; here h is the second fundamental form of S C M. Although L is not necessarily self adjoint,
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it has a real principal eigenvalue \; and corresponding positive unique (up to scaling) principal
eigenfunction ¢;. The future apparent horizon S is referred to as stable if Ay > 0. A similar
statement holds for past apparent horizons. We remark that, according to [2, Section 5], this notion
of stability is consistent with that which is used in [14] to establish (1.1). Our main result is as
follows.

Theorem 1.1. Let (M,g,k,E,B) be an initial data set for the Einstein-Mazwell equations with
positive cosmological constant A > 0, and let S C M be an azisymmetric stable apparent horizon on
which the charged dominant energy condition (1.4) holds. Then

2 A? AA AA 20 Q2
1.11 24 % < 1—- =) (1-—") -
(1.11) I 4 ~ 6472 [( 47r>< 127r> 3 ]’

and equality is achieved if and only if (S,~,k(n,-), E,B) arises from an extreme Kerr-Newman-de
Sitter horizon.

The inequality (1.11) may be derived by requiring nonnegativity of the temperature for KNdS
black holes (see[10]), and was conjectured to hold under the above hypotheses in [14]. It can be
interpreted as yielding, for a black hole of fixed area, an upper bound on the amount of angular
momentum and charge that it may contain; this gives a variational characterization of the extreme
KNdS configuration as the unique horizon which optimizes this bound. Theorem 1.1 implies previ-
ously established inequalities [22, 28] giving variational characterizations of extreme Schwarzschild-dS
and extreme Reissner-Nordstrom-dS respectively,

4

(1.12) A<+, AA? —4m A +1672Q* < 0,

in addition to (1.1) associated with extreme Kerr-dS. These results have been used to show how the
cosmological constant constrains the amount of angular momentum and charge within a black hole,
for instance they naturally imply the universal bounds

16A2 4A
Inequality (1.11) further improves such bounds. For instance, by maximizing the right-hand side of
(1.11) over A and performing some algebra we arrive at

j2 (3+4AQ2)1/2 - 1
(3 + 4AQ?)3/2 48A2 — 24A°
which reduces to the bounds in (1.13) by setting either 7 = 0 or Q = 0.

There is a standard approach to proving area inequalities for stable horizons. Namely, from
stability one may derive a lower bound for the area in terms of an ‘area functional’ related to a
harmonic map energy, and the desired inequality arises by minimizing this functional and showing
that the infimum is achieved precisely for the relevant extreme stationary vacuum configuration.
The proof of Theorem 1.1 follows this basic prescription, with the added difficulty that the area
functional also depends on the area as a consequence of having a nonzero cosmological constant.
This is problematic in that the area functional is no longer simply a regularized version of a harmonic
map energy. In [14] this issues was resolved through a clever scaling argument, and the same type
of strategy works here as well. Our main contribution with regards to the proof of these type of
inequalities is to observe that the minimization procedure may be simplified, and also enhanced
by providing a gap lower bound. This is achieved by observing that the area functional is convex
along geodesic deformations of the functional within the target symmetric space, which in the current

(1.13) J? < !

(1.14)
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context will be the complex hyperbolic plane H%. Thus, one immediately achieves a unique minimizer
through elementary means. This type of argument is motivated by the work of Schoen and Zhou
[27] on the mass-angular momentum-charge inequalities.

This paper is organized as follows. In the next section we describe the construction of potentials
associated with angular momentum and charge. These are then used in Section 3 together with the
stability property to derive the appropriate area functional. In Section 4 we study the rescaled area
functional and show that it possesses a unique minimizer for fixed angular momentum and charge,
namely the extreme KNdS horizon. Lastly, various formulas and aspects of the Kerr-Newman-de
Sitter black holes are described in the appendix, along with a proof of the existence of canonical
coordinates used for axisymmetric geometries on a sphere.

2. CONSTRUCTION OF POTENTIALS

In this section we will derive the expression for potentials associated with electric and magnetic
charge, as well as angular momentum. Our approach will be to motivate this construction on the
horizon S, as the restriction of potentials naturally defined in the bulk M which arise from the study
of a related geometric inequality, namely the mass-angular momentum-charge inequality [25]. For
this it will be necessary to place added restrictions on the initial data, which are ultimately not
necessary for the existence of potentials on S (or the validity of Theorem 1.1), but serve the purpose
of allowing the following motivational discussion. Thus, for the time being we will assume that the
axisymmetry of S extends to axisymmetry of M, that M is simply connected, and that there is no
charged matter or momentum density in the Killing direction:

(2.1) Lhg=Lk=5CF=%,B=0, divy E = divy B = Jgm(n) = 0.

Under these conditions it is straightforward to obtain a potential for the electric field on the bulk.
To see this observe that

(2.2) d(ig*E) =Ly« E —1,d*E =0,

where ¢ denotes interior product and x is the Hodge star. It follows from simple connectivity that
there is an electric potential satisfying

(2.3) dx =iy *x E = niElsl-jldxj.
Since exterior derivatives commute with pullback, we may restrict this equation to S to find
(2.4) dx = E(n)i,e?,

where ¢ is the volume form of v and x = i*y with i : S < M the inclusion map. Now note that
equation (2.4) has a solution y € C*°(.5) independent of any hypotheses on M, since stability implies
that the apparent horizon S is topologically a 2-sphere and hence simply connected. The desired
electric potential y is then defined as a solution to (2.4). Similarly, we define the magnetic potential
to be a solution of the equation

(2.5) dyp = B(n)bna(Q).

Note that both x and ¢ are axisymmetric, as it is clear that ¢,dx = ¢,dy) = 0.
In order to construct the angular momentum potential, let p = k — (Try k)g be the momentum
tensor with associated 1-form

(2.6) P =x(p(n) An) = ty*p(n).
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Then
(2.7) dP = £, *p(n) — tyd *p(n) = —ty * [xd x p(n)] = 1y *87J () = 1y * 87 JErm(n) — 2E x B(n)].
Since F x B = %(F A B) and

(28) 1y % [t % (E A B)] = 1y x dB(E) = 1) (xE A di) = (1% E) A dip = %d(xAqu)—dS(AJz),

we have

(2.9) d (P — xd + dx) = 8muy * Jpar(n) = 0.
It follows that there exists a ‘charged twist potential’ such that

(2.10) dw =P — xdip + 1pdy.

In analogy with the electromagnetic potentials, we may restrict this equation to .S and set w = i*w
to find

(2.11) dw = k(n, 77)L7,5(2) — xd + dyx.

As above, this equation has a solution w € C'°°(S) independent of any hypotheses on M, and thus
the desired charged twist potential w is then defined to be a solution of (2.11). Note that ¢,dw =0
so that this potential is also axisymmetric.

We now record how the potentials just constructed encode the angular momentum (1.6) and charge
(1.7) of S. In what follows, as well as in the remaining sections, we will make use of a convenient
coordinate system on S. By virtue of the fact that S is axisymmetric and topologically a 2-sphere,
there exists a global set of polar coordinates (0, ¢), with 6 € [0, 7] and ¢ € [0, 27), such that n = 0,
and the metric takes the form

(2.12) v = e**77dh* + €7 sin? 0d¢?,

where o € C°°(S) depends only on 6 and ¢ is a constant related to the area by A = 4we€. Note that
in order to avoid conical singularities at the two axis points I' = {6 = 0,7}, we must have

(2.13) =g 2 Redies o fo e R0

6—0 Circumference  6—0 e7/2sin 6
and a similar expression at § = 7, so that ¢(0) = o(7) = ¢. Although arguments for the existence of
such a coordinate system have been given previously [8, 20], we provide a detailed proof in Appendix
B which is appropriate for the current setting. In these coordinates the electromagnetic potentials
are given by

(2.14) X' = E(n)esinb, ' = B(n)esin b,
where the prime represents d%' Hence
1 1 x(m) — x(0)
2.1 c=— | E A, = — ! - A A
(2.15) 0 4F/S (n)dA, 47T/Sxd9/\d¢ 2,
and similarly
P(m) —(0)

(2.16) Q="
As for the angular momentum, we find that the charged twist potential is given in coordinates by

(2.17) W' = k(n,n)esind — xp' + Py,
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and therefore

(2.18) J = /S(k(n,n) +¢E(n) —xB(n))dA, = 817T/Sw’d9/\ dg = “’(”);“’(0),

3. THE AREA FUNCTIONAL

In this section the horizon stability condition will be used to derive a lower bound for the area
in terms of a set of quantities related to harmonic maps from S? — H(QC. From now on it will be
assumed that the surface S is a stable future apparent horizon; similar arguments hold if S is a
stable past apparent horizon. Stability asserts that the principal eigenvalue of the stability operator
(1.9) is nonnegative. Therefore, if ¢ denotes the positive principal eigenfunction then for any test
function v € C*°(S) we have

0< / v?or ! Ly
S
(3.1) = /S V- Vier ') +2(X - Ver) o7 o2 + (W + div, X — |X|2) v?

:/ — (]Vloggpl\Q —2X -Vliog 1 + ]X]Q) v? + 20 (Vlog o1 — X) - Vo + Wo.
S

Let
1

e?/2sin @
be an orthonormal frame on S, and consider an axisymmetric test function so that es(v) = 0. This,
together with £,k(n,n) = 0 from (1.5), and an integration by parts shows that

(3.3) /SX(eg)eg(log ©1)v? = 0.

Then (3.1) implies that

(32) el = ’]’L’ €y = 60/2—0897 €3 = 64)7

(3.4) 0< /S Vol + Wo? — X (e3)%0? — |es(log p1)|?v? — |(e2(log 1) — X (e2))v — ea(v)]?.

Lemma 3.1. Under the hypotheses of Theorem 1.1, for any azxisymmetric v € C*°(S) the following
stability inequality holds

(3.5) /S (Vo + Ko?) dA, > /S (k(n,e3)” + E(n)> + B(n)? + A) v*dA.,

Proof. In light of (3.4), the desired inequality follows from the charged dominant energy condition
(1.4) and the computation

1 ) ) 1 1
(3.6) p+J(n) = pem + Jem(n) + 87r(|Ey + B 47TE x B(n) > o

(E(n)2 + B(n)2) .
O

In order to choose an appropriate test function v, we rely on the intuition that the stability
inequality (3.5) should be saturated for the extreme KNdS black hole. By analyzing the second
variation of area one may verify that this is indeed the case for a test function of the form below.

We then choose
2

A
(3.7 o= VG =1+ %Ry,
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where a is a constant to be specified. Each term of (3.5) will be computed separately. Observe that
(2.14) and (2.17) yield

(38) / (E()* + B(n)?) v'dAy = / ¢ Cory (X +07) d4,
g §2 sin” 6
and
—20
(3.9) / k(n,e3)*vidA, = / e (s = (W Xy —oy)?dA,
g ) sin* 6

where dA is the area form on the round sphere S?. Furthermore, calculations show that the Gauss
curvature is given by

(3.10) K—ea_% in0 — o cosd — ~o” in@—l(ine "y
) = <o 5 o' cos 50 8 5 (sindo’)
and
6720 12
(3.11) IVol* = o <Ca — 20" + caa’2> .
a
It follows that
12 ! ! 12 / : AYA
9 9 o | & Lol (a0 Cqa0'cos®  (u(sinbo’)
: dA, = o a — - - — dA.
(3.12) /S(|Vv| + Kv)dA, /§2 ¢ [4@ 6 2 4 sin 2sin 6

Integrating the last two terms by parts produces

/ . N
/ o c [_ (a0’ cosf  (a(sinfo’) ] A
S2

sin 0 2sinf
(3.13) >
= [0 |7+ eotd - Go | aa -+ 2me (Go(0) + o).
SZ
so that
2 2
3.14 Vol? + Kv?)dA., = drcage™ ¢ + e ¢ Sa + (o — G0 — (14 Ad%cos® 0)o | dA,
¥
g 52 4¢, 4

where

Aa?
(315) Qg = Ca(O) = C-a(ﬂ') =1 + T
and we have used
(3.16) ¢l cot O — ¢y = —(1+ Aa®cos? 6).

By combining (3.8), (3.9), and (3.14), the stability inequality Lemma 3.1 yields
(3.17) Areag + o > La(V),

where

12
(3.18) Ba = /82 (42(1 + <a> dA, ¥ = (o,w,x, ),
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and
Zo (D) :/ (1 + Aa?cos? 0)od A

S2
(3.19)

“ ¢ T P+ P e A () e ) aa
— w - — — ] e :
'\ 4 sin* 0 X X sin? § X 4

Finally, by recalling that A = 4we®, (3.17) may be rewritten as

Ia(q’)*ﬁa

(3.20) A > 4me” 4rea

Inequality (3.20) is the desired area lower bound which will play a central role in the proof of
Theorem 1.1. Typically when establishing geometric inequalities in the spirit of (1.11), after a lower
bound has been achieved for the area in terms of a functional related to a harmonic map energy,
the next step is to show that the functional attains a global minimum at an appropriate extreme
black hole configuration. This is fairly straightforward when the cosmological constant is not present,
since in that case the functional Z, is simply a renormalized harmonic map energy. In the current
situation, when A # 0, the primary difficulty arises from the fact that Z, depends on the area A. A
consequence of this is that an infimum may not exist when minimizing the functional over all maps
U with fixed angular momentum 7 and charge @, since the triple (A, 7, Q) may not arise from an
extreme KNdS black hole. A similar situation occurs in [14], and is resolved with a scaling argument
which we now generalize.

Lemma 3.2. Given (4,7,Q) € R3, there exists a unique (fl,j, Q) € R3 which saturates (1.11)
and satisfies

(3.21) J =547 )= —A, A<
A

Moreover, inequality (1.11) is equivalent to the inequality A>

Proof. Consider the curve in R given by

J
(322) ) = (4. T (0).@) = (. 557 57 )
For small 7 the two sides of (1.11) have the asymptotics

0 [ (o) 2]

Thus, for small 7 inequality (1.11) holds when restricted to the curve f, although for large 7 it is
clear that the opposite inequality holds. It follows that there exists a time 7 = A for which (1.11)
is saturated. Further analysis of the zeros of the associated quartic equation show that this time is
unique among those for which 7 = A(r) < 4Z.

Lastly, the inequality A > A holds if and only if the point (A4, 7, Q) lies below the surface in R3
defined by equality in (1.11); here ‘below’ refers to the interpretation of the J-axis as measuring
height. Therefore A > A if and only if the inequality (1.11) holds. O

(3.23) T2 (1) +

The fact that (fl, J, Q) saturates (1.11) implies that these values for the area, angular momentum,
and charge arise from an extreme KNdS solution. This particular extreme KNdS solution yields a
map ¥y (see Appendix A) which is a candidate minimizer for a rescaled version of the functional
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in (3.19). To construct the rescaled functional let M(7, Q) denote the mass of the extreme KNdS
black hole, and set

M(T, Q)
Note that a is the value of the parameter a in the extreme KNS solution (Appendix A) having
angular momentum J and charge (), and moreover

g o AA A A
(324) 4= ———~ > V= (an>X7¢) - <U+ IOg Z? E('W ZX) A¢> .

- w(m) —w(0 A X(m) — x(0 A ) — (0
EYPT S LU N S (5 (IS [ B )
A calculation shows that
A e A i
(3.26) Zo(V) = Z5(V) — 2log 1 (1 4+ Aa“cos” 6)dA = Z,(¥) — 8oy log T
SQ
and therefore (3.20) becomes
Za(9)—Bs A2
(327) A >4we ma —,
A2

Lemma 3.3. The area-angular momentum-charge-A inequality (1.11) holds if T,(¥) > T;(%g).

Proof. Computation of the area of the extreme KNS horizon yields

Za(Y0)—Fa A
(328) 4e Amag — A
From (3.27) we then have A > A, and the desired result follows Lemma 3.2. O

4. MINIMIZATION AND THE PROOF OF THEOREM 1.1

In this section we study the minimization properties of the functional Z,, when the parameters
a and A defining the functional arise from an extreme KNdS black hole; it will be extremized over
the space of maps ¥ = (o,w, x, ) : S — H% having angular momentum and charge 7, Q., and @
arising from the same extreme KNdS solution. The fundamental reason behind the success of the
minimization procedure to follow, is the fact that Z, is closely related to a harmonic map energy.
To give the precise relationship, let  C S? be a domain which does not intersect the axis I', and
consider the functional Zo(¥) which is obtained from (3.19) by restricting the domain of integration
to Q. Let u = —0 /2 — logsin § and set ¥ = (u,w, x, 1) : S?\ T' — HZ, then the quasi-harmonic map
energy over {2 is given by

2
(4.1)  Eq(9) = / Ca (u'2 + e (W 4 XU — X))+ (P HYP) + A (ﬁ) e sin? 9) dA.
Q

Recall that the complex hyperbolic plane H% is the homogeneous Riemannian manifold (R*, hy) with
metric
(4.2) ho = du® + e*(dv + xdip — hdx)? + e (dx* + dip?),

and therefore the pseudo-energy (4.1) differs from the harmonic energy by the factor (, and the last
term involving A. Now integrate by parts and use (3.16) in the form

(4.3) divse (¢, V logsinf) = —(1 + Aa® cos? 0)
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to obtain

(4.4) Ta (V) = Eq (V) — / (1 + Aa?cos? 0) log sin 0dA — Ca(o + 2logsin 0)9, log sin Ods,
Q a0

where v is the unit outer normal to 9€2. This shows that Z, may be considered as a regularization of
E since the infinite term [ (,(logsin#)? has been removed. Furthermore, since the two functionals
differ only by a boundary term and a constant, they must have the same critical points.

Let Wy = (00, wo, X0, %0) be the renormalized map arising from the extreme KNdS solution which
is associated with the functional Z,. As is shown in Appendix A, ¥q is a critical point of Z,. It is
the purpose of this section to show that ¥y realizes the global minimum for Z,.

Theorem 4.1. Suppose that ¥ = (o,w,x,v) is smooth and satisfies the asymptotics (4.10) with
w|r = wolr, X|Ir = xolr, ¥|r = Yo|r, then for any p > 1 there exists a constant C > 0 such that

(4.5) To() — Ty(T) > C / (dist (8, 50) — D) 4,

S2
where D is the average value of distH(zc(\i’, Tp).

The proof of this result is based on convexity of the quasi-harmonic energy under geodesic de-
formations; such a property is well-known for the pure harmonic energy when the target space is
nonpositively curved. To explain how this works, let Q. = {(6,¢) € S? | sinf > ¢}. Then with a
cut-and-paste argument it will be shown that we may assume that ¥ satisfies

(4.6) supp(w — wo, X — X0, % — o) C .

Next, let ¥y, ¢t € [0,1] be a geodesic in HZ connecting ¥, = ¥ and ¥y, this means that for each (6, ¢)
in the domain, t — \i/t(e, ®) is a geodesic. It then follows that (wy, x¢,%:) = (wo, X0, %0) on S?\ Q,
so that in particular o, = o¢ + t(0 — 0p) on this domain. The fact that o; is linear together with
convexity of the quasi-harmonic energy yields

d? ] - -
(4.7) @Ia(lllt) > 2 /S2 |V dlstH%(\Il, \IIO)IQdA.
Furthermore, since ¥ is a critical point
(4.8) iI (Uy)|t=0 =0
. dt a t)it=0 — Y.

Theorem 4.1 may then be established by integrating (4.7) and applying the Poincaré inequality. In
the remainder of this section we will justify each of these steps.

Before proceeding we record the appropriate asymptotic behavior of ¥. Our assumptions here are
based on the asymptotics (6§ — 0,7) of the extreme KNdS map ¥y, which are given by

A ) .
(4.9) oolr = log <47T> , wo, X0, Yo = O(1), a(,wf, X0, %6 = O(sind), wh+xo¥y—1boxo = O(sin® ).

We then require that ¥ satisfies

(4.10) o|p =log (f) L won =0(1), oW Y = 0sing), W —x = O(SinH‘S 9),
T

for some 6 > 0.
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In order to carry out the proof of Theorem 4.1 as outlined above, we first show that it is possible
to approximate Z,(¥) by replacing ¥ with a map W, which satisfies (4.6). This is achieved with a
cut and paste argument. Define a Lipschitz cut-off function

0 if sinf < ¢,
(4.11) 0-(0) = Egg((i?f)) if e < sing < yz,
1 E if sinf > /e,
and let
(4.12) Ve = (0,we, Xe, ¥e), (Wes Xes ¥e) = (wo, X0, %0) + $e(w — wo, X — X0, ¥ — tho),
so that U, = (0, wo, X0,%0) on S\ Q..
Lemma 4.2. lim._,0Z,(V.) = Z, (7).
Proof. Write
(4.13) Za(¥e) = Zo(Ye)lsino<e + Za(Ye)locsino< e T Za(¥e)lsino> o
and observe that
(4.14) Za(¥e)lsino>yz = Za(¥)

by the dominated convergence theorem. Moreover

2
(1+ Aa® cos? 0)o + (A <4A> e’ |dA
7r

o(1)

Ia(qls) ’sin 0<e — /

sin 0<ge

o(1)

(4.15)

o? e / / 2, € 2 2
+ Ca o T (wo + X0t — Yoxo)” +——=55 (Xo +¥5) | dA
sin 6<e sin® 0 sin” 0 ~— ——~
o(1) O(sin® 6) O(sin? 0)

—0.

Next consider the region € < sinf < /e, and note that uniform boundedness of the following
integrand implies

2 2 A ? —0o
(4.16) /5<sin9<\/§ <(1 + Aa® cos” 0)o + (A <47r) e > dA = O(\/e).

To proceed further use the fact that w|r = wolr, XIr = xolr, Y|r = o|r together with (4.9) and
(4.10) yields

(4.17) w —wol + |x — Xo| + [¢ — Y| = O(sin® 9).
Then since

(4.18) Xe = X + (1 — 02) X0 + ¥L(x — Xo)
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and similarly for ¢., we have that for some constant C' independent of &

e~
| G 6P+ uRaa
e<sin < /2 sin 9

4.19 C
e v | X2 X8 O 9+ 0 P | o
c<sinO</z sin 0 NG~ N ——— ~— ———
O(sin?60)  O(sin? 0) O(]sin9>2 O(sin? 0) O(sin20) O<1sin9>2
oge oge
=0(e).

Finally a calculation shows that

wl + xeth — Yext =g (W' + x¥ — ¥x) + (1 — ve)(wh + xot6 — Yoxo) + ¢r(w — wo)

(4.20)
+ oL (xo¥ — Yox) + (1 — @) (¥ — 1ho) (x — x0) — (x = x0) (¥ — tho)'],
and hence
/ + Xé‘ws 1/’5)(5) A
<sm9<\f 0
< / (W 4 X — O+ (wh + xouh — doxh)? + 2w — wo)? | df
<sin < /e sin® X ~~
O(sin?129 g) O(sin® ) O(m)Q
(4.21) e
C 2 2/ 11 1\2
+ 57 | 200 — 00+ @ = )P — X0 (= o — w)? |
<sin <4/ S 0
O(;;;zf O(sm6 0) O(sin® 6)
1
=0 (! log 6|) '
It follows that Zo(Ve)|.csing<,z — 0 O

The next proposition establishes the primary tool used in the minimization procedure. Namely,
the quasi-harmonic energy (4.1) is convex along geodesic deformations.

Proposition 4.3. Let F; : Q) — ]H[(QC be a family of smooth maps, where 2 is a domain in S?. Suppose
that for each (0,¢) € Q the curve t — F(6,¢), t € [0,1] is a geodesic, then

2

d
—FEq (Ft >2 |VdIStH2(F1,F())| dA.

4.22
( ) dtz

Proof. Let vy and hg denote the metrics on the round 2-sphere and complex hyperbolic plane,
respectively. Then the square of the harmonic energy density is

(4.23) |dF |2 = 2 (ho)im®: F} 0, F".

We then have

2
(4.24) Eo(Fy) = / Ca (detP + A (f) e sin? 9) dA,
Q T
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where Fy = (ut,wt, Xt, ¥t). Observe that since F} is a geodesic and H% is negatively curved
tg 3 / CaldFy|?dA = / Cav (V405 Fy, V05 Fi)po + (ViVi0: Fy, 05 Fy)py ) dA

:/Qfa’Yé] (Vi Fy, V0t Fy)py + <RH(2C(atFt7aiFt)atFtvath>ho> dA
(4.25)

> /Q Cal V[0 Fif g 2, dA
2/ |VdiStH%(F1,F0)|2dA,
(9]

where the last step follows from the fact that (, > 1 and F; is a geodesic parameterized on the
interval [0, 1], so that |0.F}|p, = distH% (Fy, Fp).

In what follows, for simplicity of notation, we refrain from indicating dependence on t. To complete
the proof it is sufficient to show that

(4.26) O7e*™ = 2(ii + 2u?)e*" > 0,
where @ = Jyu. From the geodesic equation we have

(4.27) i + T FIF! =0,

and a computation of Christoffel symbols for hg yields

(4.28) Iy, =T, =Ty =T, =0, T¢, =-2" T¢ =2pe™, T¢, =—2xe"

(4.29) Iy =—e® — 2%, Ty, =—e —2x%", TIY, =2xpe™
It follows that
(4.30) i = 20 + (e + 2% 2 + (e 4+ 2x 2t )ih? — dpetiioy + dyettin) — dxpett ).

Note that the expression on the right-hand side is related to the constant squared length of the
velocity vector for the geodesic

H12 0 2 du (- i c\2 2u (.2 72
(4.31) B2 =i 4 e (@ + Xt — vX)? + 2 (2 + 2.
Therefore
(4.32) i +20% = 2|F|} — e (x* + ¥?) >

We are now in a position to prove the main result of this section.

Proof of Theorem 4.1. Recall that U, satisfies (4.6). Thus, if \112 is the geodesic connecting ¥ to
U, as described at the beginning of this section, then o! = og + t(c — 0¢). Observe that

d? d2

4. —— T, (WL

d2
—5Lo. (V) + @ISAQE(‘I’Z) :

I Ip)
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Then using the linearity of o! together with Proposition 4.3 produces

d? S

I, = @EQE(\I]&‘) -3 /395 Ca(og 4+ t(o — 00) + 2logsin 0)0, log sin Ods

(4.34)
> 2/ |V distysz (We, Wo)[*dA
Qe

On the other hand, direct computation yields

. 2 Ao — 2 ,—20t
I :/§2\Q Ca <(U %) + (0 —o0)e (wh + xo0vg —woxf))2> dA

2 sint 6

— 2p—0" A 2 t
Lo <a<(000) o o)+ () (0_00)26_0>M

sin2 0

_ 2
> / (@—-00)" 4
S2\Q. 2

9 / IV distygs (B, Bo)[2dA,
S2\Q ¢

(4.35)

since distyz (U, ¥y) = |u— up| on S?\ Q.. Note that the passing of j—; into the integral in (4.38)
is justified, since each term on the right-hand side of the first equality is uniformly integrable.
Combining (4.37) and (4.38) gives the desired convexity statement
d? - -
(4.36) —T,(T) > 2 [ |Vdistg: (V. Tg)|?dA.
dt? §2 c

We next observe that (4.8) holds. To see this, use that the extreme KNdS map Vg satisfies
the Euler-Lagrange equations for the functional Z, (see Appendix A), together with the fact that
%wé = %Xé = %w}; = 0 in a neighborhood of the axis I, to find

d

1 .
(4.37) @Ia(‘l’t)h:o = 5@06(0 — 09p)sinf|g_y = 0.

Note that justification for passing % into the integral is analogous to that in the previous paragraph.
Now integrating (4.36) twice and applying the Poincaré inequality produces

~ ~ ~ ~ 2
(4.38)  T,(T.) — To(Tg) > 2 / |V distygs (P, Wo)[2dA > C (distHé(\I'E,\Ilo) - DE> dA,
SQ

S2
where D is the average value of disty: (T, Uy).
By Lemma 4.2 lim.,0Z,(¥.) = Z,(¥), and thus in order to complete the proof it suffices to show

that the limit may be passed under the integral on the right-hand side. By the triangle inequality
and some algebra, it is enough to show

(4.39) lim dist?m(gc(\ilg, ¥)dA = 0.

e—0 Jg2
To see this, use the triangle inequality ajd direct calculation to find
distyz (W, W) < distya (1, we, Xey Y2 ), (1,0, Xey 1e)) + dist (0, w, Xe, 92), (4,0, X, ¥e))
(4.40) + distH(zc((u, W, X, Ye), (U, w, x, 1))
<C [e*(|w — we| + [¥ex = xel + Ixl[¥ = el) + e (Ix = xel + [ — ¥ ])] -
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Since the right-hand side is uniformly bounded independent of €, the dominated convergence theorem
applies to give (4.39). O

Proof of Theorem 1.1. From the given initial data (M, g,k, E, B) we obtain the four quantities
(o,w, X, 1) consisting of a metric component and three potentials, as explained in Section 2. Let
(A, J,Q) be the area, angular momentum, and charge of the horizon S € M. From Lemma 3.2
there exists a corresponding triple (/1, J , Q) which arises from an extreme KNS solution, and is
such that the desired inequality (1.11) is reduced to showing A> A. Let

7 S iA A A
4.41 . A— U = = loe = . 2y, 2
( ) a m(j’ Q), (J’UJ?X7,¢J) <0-+ Og A’ AQw’ AX? A¢) )
then Lemma 3.3 asserts that A > A is valid as long as
(4.42) Ta(W) > Ta(Lo),

where @ is the extreme KNdS map with the same angular momentum and charge (j , Q) Finally,
observe that Theorem 4.1 is applicable, since smoothness of the initial data together with the po-
tential formulas (2.14) and (2.17) guarantee that the asymptotics (4.10) hold for ¥. This establishes
(4.42) and completes the proof of inequality (1.11).

Consider now the case of equality in (1.11). From the proof of Lemma 3.2, this yields (fl, J, Q) =
(A, J,Q) and hence ¥ = . In particular, the equality of areas implies that Zo(V) > Z,(¥) which
gives ¥ = ¥ from the gap bound in Theorem 4.1. Namely, the gap bound gives that distH% (U, )

is constant, but distH%(‘i/, W()=0 at the axis I', and hence it must vanish identically. In light of

(3.27), equality of the areas also produces equality in the stability inequality (3.5), when v is chosen
as in (3.7). It follows that on S

(4.43) pem—|Jem(n)| = Jenm(0s) = JEn(9p) = 11| = Oy log 1 = |(0p log w1 —X(9p))v—0pv| = 0,
and

(4.44) |E|? +|B|*> — E(n)? — B(n)*> = 2E x B(n) = 0.

A computation shows that (4.44) implies

(4.45) E(ez2) = Bles), E(es) = —B(e2),

and since the proofs above are invariant under the transformation £ — —FE we must then have
(4.46) E(e2) = E(e3) = B(e2) = B(e3) = 0.

Furthermore, the potential formulas (2.14) show that E(n) and B(n) agree with their counterparts
in the extreme KNS solution, and thus the full electromagnetic field (E, B) is that of the extreme
KNdS solution on the horizon.

Lastly, from (4.43) we have

00/2
(4.47) k(n, 8p) = Dy log (%) — 9 log (e 901) .

Vi

Moreover, the potential equation (2.17) implies that k(n,0y) equates with its counterpart in the
extreme KNdS spacetime. All together this shows that the coefficients of the stability operator L
arise from the extreme KNS data, so that the eigenfunction satisfying Ly; = 0 corresponds to
the same quantity in the extreme KNdS setting. Hence k(n,dy) agrees with its counterpart in the
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extreme KNdS solution. We conclude that (S,~, k(n, ), E, B) arises from an extreme KNdS horizon.
O

APPENDIX A. THE KERR-NEWMAN-DE SITTER SPACETIME

The Kerr-Newman-de Sitter black hole solves the Einstein-Maxwell equations with positive cos-
mological constant

1~ . 1 -
(Al) Rab - iRgab + Agab = 87rTab =2 <Fachc - 4’F|2gab> )

(A.2) dF =0, dxi F = 0.
In Boyer-Lindquist-like coordinates the KNdS metric [10] is given by

. 2 2
(A.3) g:—& (dt—asm 9d¢> +Edr +*d02 Agsin® g <adt r2 +a d¢>

z A, AV T
where
r2A a’A
(A4) Ar:(r2—|—a)<1—3)—2mr—l—q2, E:1+T’
a?A
(A.5) ANpg=1+— 3 cos 29, ¥ =7r? +acos? 0,

and the field strength and vector potential (F' = d.A) take the form

ge™ o gpcost

\/Arze B VAY s.inﬁ6

(A.6) A=

1
(A7) F= 2 [(qe(r2 — a®cos? 0) — 2qyra cos 9) " Nel (gp(r* — a® cos® 0) + 2geracosf) €2 A 63] .

Here the following orthonormal coframe is used

A asin? 6
0 __ T 1_
(A.8) e = \/—Z <dt dgb) e =4/ A dr
2, 2
(A.9) = [ = s, e3:,/A9sin9<adt—r ta d¢>,
Ay by =

and the parameters m, a, and ¢ = {/q2 + qg define the mass, angular momentum, and charge through
the formulas

m am q )
(A]'O) = -9 = =9 Qe = Eev Qb = —_

The geometry of the KNdS solution depends crucially on the zeros of the polynomial A,.. In order
to avoid naked singularities and other undesirable features, the relevant parameters must satisfy
certain restrictions. If

(A.11) a’A <3 and m_., <m<m?’

crit — crit?
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where miﬁit are the two positive solutions of the equation
0 —mi + (a’A — 3) ((aQA —3)2 4+ 108A(a® + q2)) 2
(A.12) A
(a? + ) ((a%A — 3)% + 12 (a2 + ¢2))°
* 30A ’

then A, has four real roots r—_ < r_ < ry < r., one of which is simple and negative with the rest
positive. The roots r_ and r represent inner and outer event horizons, while the root r. corresponds
to a de Sitter cosmological horizon. An extremal black hole occurs when at least two of the three
positive roots coincide, and in this situation the geometry near the horizon becomes asymptotically
cylindrical. In particular, if m = m_,, then r_ =r, and if m = mgit then ry = 7.

We now derive the quasi-harmonic map ¥y = (00, wo, X0, %0) associated with an extreme KNdS

solution. At an extreme horizon A, = 0 and thus the induced metric is given by

) Ng(r2 + a?)?sin? 0
Al = ——d¢? - do”.
(A.13) Yo = A 40"+ SEP ¢
This easily fits into the canonical form (2.12) by setting
Ag(r? +a?) A . 2 +a?
(A14) OOZIOgT7 Eze :T
To find the electromagnetic potentials recall from (2.14) that
(A.15) Xo = E(eq)efsin, Y, = Bley)efsind,
where {e;}, i =0,1,2,3 form the frame dual to (A.8), (A.9). Moreover
(A.16) E = 1,,F = E(ey)e?, B = 1oy %4 F = B(ey)e?,
with
1
(A.17) E(e1) = 2 [qe(ri — a*cos? 0) — 2qyr acos 0],
1
(A.18) B(ey) = 5P [qb(ri — a” cos? 0) + 2qeryacos 0] .
It then follows that
1
(A.19) Xo= -~z [qe(ri + a*) cos 0 + gyriasin? 0],
1
(A.20) o = —= [qb(ri + a?) cos  — qeryasin® 9] .
In order to find the charged twist potential recall from (2.17) that
(A.21) wo = k(e1,8p)esinf — xov + Yoxo,
where the second fundamental form may be expressed as
(A.22) K(e1,05) = (05, Ver N) = —(Vey 05, N) = (V. 05)

in which NV is the unit normal to the t = 0 slice. A computation with Christoffel symbols then yields

A, asin? 0 ary (r? +a%)Agsin? 6
(A.23) *(Ve,8p) = - <r¢¢ - rf¢> = r .

—
—
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Furthermore

2 2 2
ar +
(A.24) —xoxh + oy = LD g1 4 cost),

and since A, = 0 the following relation holds

rf_A
3

By combining (A.23), (A.24), and (A.25) we arrive at

é(r%r +a*)X.

(A.25) (r? 4+ a*)Ap = (r2 + a?) (1 — 3

A
) + g(ri +a®)¥ =2mr, —¢® +

ar, (7“_2|r + a?)

(A.26) wh = =232

A
{<2mr+ + g(ri + a2)2> sin? 6 4 2¢* cos? 0] .
Integration then produces
ary(r? + a? 0 ([ m(r:+ a? 2 A(r? +a?
+(r% )[COS <_(+ )~I—q+(+ )E)

(A.27) wo = =2 ) a’ry a? 3a?
' acos®\ (m(ri —a?) ¢ A(r3 +a?)?
+ arctan " 25,2 — . .
+ T + +

Note that in the case of an extreme Kerr-Newman horizon, that is A = 0, this simplifies so that the
second line vanishes and the entire expression reduces to the formula in [13, Lemma 3.4]. Having
constructed the extreme KNdS map Wy, it may be verified that the values of the angular momentum
and charge as given by (2.15), (2.16), and (2.18) coincide with those given in (A.10).

The map ¥y satisfies the Euler-Lagrange equations for the functional Z, in (3.19):

1 2 —20 -0
@(C‘lsmea) ——2Ca< - oW - wx)2+ e(x’2+w’2))
(A.28) ,
+2(1+ a’ A cos? 0) — 2A¢, < >
6720
1 e o ! 2 20

A.30 " ry 4 ! I ol Vol —
( ) sin @ << sin0X> sint o (W +xy" =X =0,
(A-31) S /+ oo 7 (W +x¥ =X )X =0

' sinf \*siné sint 0 X X )x =0.
In order to elucidate the quasi-harmonic map structure of the equations, let ug = —0(/2 — logsin

and \ifo = (uo,wo, X0, %0). Then \i’o satisfies the Euler-Lagrange equations for the functional F in
(4.1):

2
(A.32) ﬁ (CasinBu') = 2¢,e*™ (W + X' +X)? + Cae®™ [ (X? + ') + A (i) sin? 9] ,
(A.33) (Ca sin fe'™ (W' + x' — ¢X'))/ =0,
(A.34) (Ca sin fe*" ') — 2(ae4“(w' +x¢' — X)W =0,

sin 6
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(A.35) ﬁ (Casinfe® ") + 2¢,e™ (W' + x¢' — ¥x')x' = 0.
These clearly reduce to the axisymmetric harmonic map equations for S? — ]HI(% when A = 0.

We now indicate the derivation of the main inequality (1.11). There are two methods for doing this.
The first consists of algebraic manipulations centered on the two equations A, = 0 and 0,A, = 0,
which is carried out in [14] for the uncharged case. The second method is motivated by black hole
thermodynamics. Consider the Smarr formula [16] for the mass of a (not necessarily extreme) KNdS

solution

(A-36) M= + LA Q) - = - Q?+ -~

~ 16x 2 3 2ur Ar 9672

The temperature is computed by varying the mass function with respect to the entropy S = A/4,
and is given by

Q> AJ? AA( A AA2)

OM 1 167> 2A A A% A?
A. T := = 1— 4.72 2y _ B2, 4 AAn
(A.37) oS 8t M [ A? (17°+ @) 3 <Q * 271') * 48772}
Moreover, the first law of black hole thermodynamics states that
(A.38) dM =TdS + QdT + ®dQ),

where 2 and ® denote the angular velocity and electric potential respectively, and have the expres-
sions
2

(A.39) Q:aMzﬂj(l—AS), g IM_ mQ (Q2+S—A8).

oJ MS 37 oQ 2MS T 32
In the dynamical setting, Hawking’s area theorem (second law of black hole thermodynamics) asserts
that S > 0 where dot represents a time derivative. Thus, assuming conservation of black hole angular
momentum and charge, and the physically reasonable supposition that black hole mass increases with
area, then the first law (A.38) implies that the temperature is nonnegative. In conclusion, heuristic
physical reasoning leads to 7' > 0 which is equivalent to (1.11).

Lastly, we mention that given a triple (A, J,Q) which saturates (1.11) (with A < 47 /A) as in
Lemma 3.2, we may insert these values into the Smarr formula to obtain the mass as a function of
J and Q). This gives the angular momentum parameter as a function of the same quantities via the
formula

J
(A.40) a MT.Q)
From here all the remaining parameters m, ¢, and ¢, of (A.10) may be determined in terms of J
and @, and we may construct a KNdS spacetime. This solution must be extreme, since according to
(A.37) saturation of (1.11) implies that M (as a function of A) has a critical point at the given triple
(A, J,Q), and hence m achieves one of the extreme values miit; a calculation shows that a(J, Q)
satisfies (A.11).

APPENDIX B. CANONICAL COORDINATES

The purpose of this appendix is to establish the existence of the coordinate system introduced in
Section 2 which yields the simple expression for the horizon metric (2.12). As previously mentioned,
arguments for the existence of such a coordinate system have been given previously [8, 20] under
certain hypotheses. Here we provide a detailed proof in the context appropriate for the current
results.
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Proposition B.1. Let v be a smooth axisymmetric Riemannian metric on a topological 2-sphere S,
and denote the associated Killing field by n. Then there exist global coordinates (6, ¢) with 6 € [0, 7]
and ¢ € [0,27), such that n = 0, and the metric takes the form

(B.1) v = €2°77d6? + €7 sin® 0dp?,
where o € C*(S) depends only on 0 and c is a constant related to the area by A = 4mwe®.

Proof. Let {S;} C S denote the components of the zero set of . Then each S; is of even codimension
[26, Theorem 34], and is therefore a point. Moreover, according to [26, Theorem 40] we have the
following relation between Euler characteristics 2 = x(S) = >, x(S;), and hence the zero set of n
consists of exactly two points, a north and south pole {p;,p_}.

Let a(t), t € [0,] be a minimizing geodesic parameterized by arclength connecting the south to
north pole, that is «(0) = p_, a(l) = py. Let &4, s € [0,27) denote the 1-parameter flamily of
isometries associated to 1, and set as(t) = ®s(a(t)). Then for each s the curve ¢t — «ag(t) is a
geodesic, and a(t) = aar(t) = a(t). By construction (¢, s) forms a system of global coordinates on
S\ a, and (0, 0;) = 1 as well as v(0s,0s) = |n|*>. In addition, the geodesic and Killing equations
imply that

(B2) at7(6t7 77) - fY(ata vc’)ﬂ?) = 0.
Thus, since (9, n) = 0 at p+ we must have (9, ds) = v(0;,n) = 0 everywhere. It follows that
(B.3) v = dt* + |n|*ds®.

In order to put the metric in the form (B.1) we will make use of a potential for the volume form
£(@). By Cartan’s formula and the fact that 7 is a Killling field

(B.4) 0= 2,75(2) = dLn8(2) + Lnd6(2) = dLn8(2).

Since S is simply connected there exists a function f such that df = LnE(Q). Note that n(f) =
£@(n,m) = 0 so that f is a function of ¢ alone. Moreover, since |df| vanishes only at the north and
south poles, it may be assumed that f is strictly increasing. Therefore a new coordinate system may
be defined by 6 = f(t) and ¢ = s. Observe that

(B.5) 12 =1V =DV ) = 1'e®(@,00) = nl,
and hence f = |n|. It follows that

(B.6) v = |n|7?d6” + |n*de”.
Now set

_ 200 f(0))
(B.7) cosf =1 = 70)
then

(f(D) — f(0))*sin* 0

(B8) AP

do? + |n|*de?.

Finally, defining e~ = |n|~2sin? 0 and e = (f(I) — £(0))/2 produces the desired result. O
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