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We present arguments that show why it is difficult to see rich extra dimensions in the Universe. More
precisely, we study the conditions under which significant size and variation of the extra dimensions
in a Kaluza-Klein compactification lead to a black hole in the lower dimensional theory. The idea
is based on the hoop (or trapped surface) conjecture concerning black hole existence, as well as on
the observation that dimensional reduction on macroscopically large, twisted, or highly dynamical
extra dimensions contributes positively to the energy density in the lower dimensional theory and
can induce gravitational collapse. We analyze these conditions and find that in an idealized scenario
a threshold for the size exists, on the order of 10−19m, such that extra dimensions of length above
this level must lie inside black holes, thus shielding them from the view of outside observers. The
threshold is highly dependent on the size of the Universe, leading to the speculation that in the
early stages of evolution truly macroscopic and large extra dimensions would have been visible.

The idea that there exist extra spatial dimensions be-
yond the familiar three has persisted for a century. It
cannot be dismissed outright as mere mathematical spec-
ulation, as it supplies plausible solutions to difficult prob-
lems from particle physics to cosmology. Excitations in
extra small dimensions lead to massive particles that
could be a candidate for dark matter [10], or help ex-
plain the small mass of neutrinos [9]. The idea has also
led to a number of insights in quantum gravity, such as
the gauge theory-gravity correspondence [5], and black
hole entropy counting [25]. Macroscopically ‘large’ extra
dimensions have remarkably been suggested as an elegant
solution to the hierarchy problem [6–8, 21]. The issue of
detecting these dimensions in the current generation of
experiments is highly model-dependent [1–3], but should
they exist, it would be reasonable to expect their char-
acteristic length to be no larger than ∼ 10−18m, as the
LHC has probed length scales down to an attometre [15].
This apparent smallness of extra dimensions remains to
be satisfactorily explained.

In this note we propose a possible resolution: if there
are regions of 4-dimensional spacetime in which extra
compact dimensions are sufficiently rich to be observed,
such regions must be trapped behind black holes. We will
define carefully below what this means. Our argument
produces a rough estimate on the threshold geometry at
which horizon formation would occur. The underlying
mechanism is that the size, and the amount that extra
dimensions warp and twist over a given spacetime region,
produces an effective energy-momentum density which in

turn can lead to collapse. We argue that once the extra
dimensions get sufficiently large, given a fixed amount of
twist, they must be hidden behind a black hole.

The intuitive model of black hole formation is that if
matter is enclosed in a sufficiently small region, a self-
gravitating system should collapse with a horizon arising
to enclose it. This heuristic picture is expressed in terms
of the hoop conjecture [26]. A refined form of this idea is
the trapped surface conjecture [24], which asserts that a
trapped surface forms in the vicinity of a body U if the
following inequality holds

R(U) .
G

c2
m(U), (1)

where m(U) is a measure of the mass andR(U) expresses
(in units of length) the size of U . The symbol . indicates
that there is a universal constant involved that depends
on the definition of R and m. The trapped surface con-
jecture has been rigorously established in spherical sym-
metry [16, 17] with R(U) given by the radius, and with-
out symmetry hypotheses [23] where R(U) is determined
from the largest embedded torus within U .

An inequality of the form (1) is precisely stated in
terms of the initial value formulation of general relativity,
which is the proper setting for studying dynamics. When
(1) holds, it can be shown that an apparent horizon must
be present within the initial data. The existence of an
apparent horizon signals that a black hole must be con-
tained in the spacetime. In fact, once a trapped surface or
apparent horizon is detected, the Hawking-Penrose sin-
gularity theorems [14] together with weak cosmic censor-
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ship [19] imply that a horizon will form. The advantage
of this approach is that the formation of black holes can
be detected without knowledge of the full evolution.

We will demonstrate our proposal in the setting of
standard Kaluza-Klein theory, in which there is a sin-
gle extra spatial circle direction ‘twisted’ over the usual
4-dimensional spacetime. The ambient 5-dimensional
spacetime is taken to satisfy the vacuum Einstein equa-
tions. The length L of this circle, and the amount that
it twists over the 4-dimensional spacetime, vary as one
moves along this base space. Roughly, when the length
of the circle or the amount that it twists, is too large or
changes in a sufficiently rapid fashion over a domain of
fixed size, a trapped region must form. We will present
precise conditions on these geometric quantities that pro-
duce apparent horizons, and argue that therefore such a
rich extra dimension would be inaccessible to experimen-
tal detection.

Consider the standard warped product with U(1) bun-
dle fibration, in which the vacuum 5-dimensional space-
time metric g5 takes the form

g5 = e
2√
3
φ
g + e

− 4√
3
φ

(dz + 2A)
2
, (2)

where g represents the 4-dimensional spacetime metric.
The z coordinate parameterizes the S1 direction and is
understood to be periodically identified, z ∼ z + 2π`,
where ` is a canonical length scale which we may choose
to be a meter. A is a 1-form on spacetime which can
be interpreted as measuring how the extra S1 dimension
is twisted above the base spacetime, and geometrically
determines the connection of the U(1) bundle. The cir-
cumference of the S1 direction is 2πL where

L =
√

gzz` = e
− 2√

3
φ
`. (3)

Consider now the 4-dimensional theory with spacetime
(N,g), 2-form field strength F = dA, and scalar field
(dilaton) φ described by the action

S =
1

2κ

�
N

(
R(g)− 2|dφ|2g − e−αφ|F |2g

)
dvolg, (4)

where κ = 8πG
c4 , R(g) and dvolg are the scalar curvature

and volume form of g respectively. For α = 2
√

3, the field
equations arising from this action are equivalent to the
5-dimensional vacuum Einstein equations for the metric
g5. We are primarily interested in this case, but for gen-
erality we will leave it unfixed. Note that for α = 0 and
φ ≡ 0, the action (4) reduces to Einstein-Maxwell the-
ory whereas for α = 2, it corresponds to a part of the
low energy effective action of string theory. We treat F
as the curvature of the U(1) connection A which invari-
antly measures how the S1 fibers twist over N . The field

equations are

∆gφ =− α

4
e−αφ|F |2g, divg

(
e−αφF

)
= 0,

Rab =2∇aφ∇bφ+ 2Lab,
(5)

where ∇ and Rab are the connection and Ricci curvature
with respect to g, and

Lab = e−αφ
(
gcdFacFbd −

1

4
gab|F |2g

)
. (6)

Furthermore, the effective 4-dimensional stress-energy
tensor induced from the 5-dimensional vacuum equations
is given by

κTab = 2∇aφ∇bφ− |∇φ|2ggab + 2Lab. (7)

Let M be a compact spacelike hypersurface in N
with unit timelike normal vector field n, an induced
positive definite metric g and extrinsic curvature k, as
well as induced ‘electric’ and ‘magnetic’ spatial vector
fields E = F (n, ·) and B = ?F (n, ·). An initial data
set (M, g, k, E,B, φ) for the Einstein-Maxwell-scalar field
system (5) must satisfy the following constraint equations

2κµ =R(g) + (Tr k)2 − |k|2g, divgB = 0,

κJ =divg(k − (Tr k)g), divgE = αg (E,∇φ) ,
(8)

where µ and J are energy and momentum densities, re-
spectively, defined by

κµ = (n · dφ)2 + |∇φ|2g + e−αφ
(
|E|2g + |B|2g

)
,

κJ = 2(n · dφ)∇φ− 2e−αφE ×B.
(9)

The function n · dφ represents, for the initial value prob-
lem, the freely specifiable initial velocity of φ. De-
fine characteristic constants Ei of the initial data set
(M, g, k, E,B, φ) by

E31 =

 
M

`5 e−αφ (|E|g − |B|g)2 dvolg,

E32 =

 
M

`5 (|n · dφ| − |∇φ|g)2 dvolg,

(10)

where the ‘slashed’ integral indicates an average over M ,
and the quantities Ei are normalized to have units of
length. We then arrive at the following black hole exis-
tence result, where the size of the spacelike hypersurface
is measured in terms of radius and volume.

Theorem. If at least one of the two characteristic
constants of an initial data set (M, g, k, E,B, φ) for
the Einstein-Maxwell-scalar field system (5) satisfies the
richness condition

E3i & `5
Rad(M)

Vol(M)
, i = 1 or 2, (11)

then there exists an apparent horizon within M .
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The proof of this result is by contradiction, and fol-
lows from the trapped surface conjecture. According to
equation (1) and using the following definition of mass

m(M) =
1

c2

�
M

(µ− |J |g) dvolg, (12)

we conclude that the contrapositive of the trapped sur-
face conjecture can be expressed as follows: if the initial
data set is devoid of apparent horizons then

Rad(M) & κ

�
M

(µ− |J |g) dvolg. (13)

Observe that the Cauchy-Schwarz inequality yields

κ (µ− |J |g) ≥ e−αφ (|E|g − |B|g)2

+ (|n · dφ| − |∇φ|g)2 .
(14)

Dividing (13) by Vol(M) and combining with (14) then
produces

E3i ≤ E31 + E32 . `5
Rad(M)

Vol(M)
, (15)

for i = 1, 2. Therefore, the reverse of this inequality
implies that there must exist an apparent horizon within
M .

Schoen and Yau have established a rigorous mathe-
matical formulation and proof of the result that sufficient
concentration of matter leads to horizon formation [23],
a result that naturally arose from their arguments es-
tablishing the positive mass theorem [22]. Our choice of
mass in (12), is motivated by their usage of the quantity
µ − |J |g which is related to the dominant energy con-
dition. An analogous statement to the theorem may be
proved, following the methods of [23], with the main dif-
ference that the characteristic constants Ei are replaced
with weighted integrals involving the principal eigenfunc-
tion of a certain differential operator on M . We also
point out, that the definition of mass (12) and usage of
the radius to measure size have appeared in other for-
mulations of the trapped surface conjecture, see for ex-
ample [16, 17]. Furthermore, it should be pointed out
[18] that the 2-dimensional apparent horizons discussed
here, correspond to 3-dimensional apparent horizons in
the 5-dimensional spacetime via a quotient by the U(1)
action.

Let us now examine some consequences of the theorem.
In particular, we will consider the case in which the initial
data set encompasses the entire universe. The radius of
the observable universe has been observed to be approx-
imately 1026m [13]. According to the most recent analy-
sis of the cosmic microwave background [4], the universe
does not exhibit any known topological features, and thus
its time slices may be approximated by the simply con-
nected constant curvature model of a round 3-sphere (see

also [12]), or flat Euclidean 3-space in which case M is
taken to be a large ball. We are thus able to compute
the ratio of radius to volume appearing in the theorem,
namely (

`5
Rad(M)

Vol(M)

)1/3

∼ 10−19m. (16)

It follows that if Ei & 10−19m for either i = 1 or 2,
then a black hole must form due to concentration of the
geometry, or richness, of the extra dimension. Although
the theorem does not determine exactly where in M the
apparent horizon is located, it is reasonable to surmise
that the regions where the concentration is highest should
be where the black holes form.

Next we examine the individual cases in which each
characteristic constant satisfies the richness condition
(11). Observe that Jensen’s inequality implies a lower
bound for the first characteristic constant in terms of the
extra dimension’s size and twist

E1 ≥
 
M

L · `2/3 (|E|g − |B|g)2/3 dvolg. (17)

Hence, if the twisting is generically on the order of
(|E|g − |B|g)2/3 ∼ 10−p`−2/3, then the richness condi-
tion will be satisfied when, on the scale of the universe,
the average circumference of the extra dimension satis-
fies avg(L) & 10−19+pm. We then have the existence of
black holes due to the excessive average size of the extra
dimension, and as argued the horizons should be located
in regions where this size is greatest. In this way, large
extra dimensions are hidden from the view of outside
observers. On the other hand, if the size is generically
L ∼ 10−pm, then the richness condition is satisfied when
the average twisting surpasses the threshold 10−19+p`−1,
in which case sufficiently twisted extra dimensions are
hidden behind horizons.

Consider now the second characteristic constant, which
concerns a measurement of rate of change in time and
space of the size of the circle fibers

E2 &
 
M

`5/3 (|n · d logL| − |∇ logL|)2/3 dvolg. (18)

The richness condition will be satisfied if on average,
throughout a time slice of the Universe, the rate of change
of the extra dimension’s size is greater than 10−19m.
Thus, highly dynamical extra dimensions or those with
extreme spatial size variations are enclosed inside black
holes. This may be compared to the result discussed
in [11], where localized variations of a light scalar field
were observed to induce collapse. In a different direc-
tion, Penrose [20, Section 31.12] has sketched an instabil-
ity argument that suggests the emergence of singularities
in supersymmetric compactifications due to Planck-sized
extra dimensions.
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It should be pointed out that the threshold of 10−19m
is tied to the diameter of the universe in the current
epoch. Thus, we speculate that at earlier times, when the
diameter was significantly smaller the threshold would be
much larger. In fact, in the early stages of the universe
truly macroscopic and even large extra dimensions would
have been visible, and allowed to change rapidly without
being trapped behind horizons. Conversely, as the uni-
verse expands into the future, the threshold will drop
and eventually achieve a level on par with the Planck
length, making it virtually impossible to detect the extra
dimensions.

The conclusions of this note suggest that there is a
fundamental tension between the ‘richness’ - the twist-
ing and warping - of extra dimensions and the ability
to explore these dimensions experimentally. We have
restricted attention to the simplest model of extra di-
mensions to emphasize key features of the arguments.
It should be the case, however, that additional (possi-
bly curved) spatial dimensions should produce further
positive contributions to the energy density of the effec-
tive theory, leading to similar effects. The same is also
true if additional matter fields are present and satisfy the
dominant energy condition, or if there is a nonnegative
cosmological constant. Thus, we expect that the results
demonstrated here can be generalized to more compli-
cated models in a robust manner.
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