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manifolds
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Abstract

The Kobayashi pseudometric on a complex manifold M is the maxi-
mal pseudometric such that any holomorphic map from the Poincaré
disk to M is distance-decreasing. Kobayashi has conjectured that this
pseudometric vanishes on Calabi-Yau manifolds. Using ergodicity of
complex structures, we prove this result for any hyperkähler manifold
if it admits a deformation with a Lagrangian fibration, and its Picard
rank is not maximal. The SYZ conjecture claims that any parabolic
nef line bundle on a deformation of a given hyperkähler manifold is
semi-ample. We prove that the Kobayashi pseudometric vanishes for
all hyperkähler manifolds satisfying the SYZ property. This proves the
Kobayashi conjecture for K3 surfaces and their Hilbert schemes.
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1 Introduction

The Kobayashi pseudometric on a complex manifold M is the maximal
pseudometric such that any holomorphic map from the Poincaré disk to
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M is distance-decreasing (see Section 1.3 for more details and references).
Kobayashi conjectured that the Kobayashi pseudometric vanishes for all
projective varieties with trivial canonical bundle (see Problems C.1 and F.3
in [Ko1]). The conjecture was proved for projective K3 surfaces via the
nontrivial theorem in [MM] that all projective K3 surfaces are swept out
by elliptic curves (see Lemma 1.51 in [Vo]). We prove the conjecture for
all K3 surfaces as well as for many classes of hyperkähler manifolds. For
an extensive survey on problems of Kobayashi and Lang we recommend the
beautiful survey papers [Vo] by Voisin and [D] by Demailly.

Using density arguments and the existence of Lagrangian fibrations, it
was proved in [KV] that all known hyperkähler manifolds are Kobayashi
non-hyperbolic. Then in [V3] this result was generalized further to all hy-
perkähler manifolds with b2 > 3. All known examples of hyperkähler mani-
folds have b2 > 5, and this has been conjectured to be true in general.

We introduce the basics of hyperkähler geometry and Teichmüller spaces
in Subsection 1.1. Upper semicontinuity of the Kobayashi pseudometric is
discussed in Subsection 1.4. Our main results are in Sections 2 and 3.

For a compact complex manifold M , the Teichmüller space Teich is the
space of complex structures up to isotopies. The mapping class group Γ,
or the group of “diffeotopies”, acts naturally on Teich. Complex struc-
tures with dense Γ-orbits are called ergodic (see Definition 1.17). If the
Kobayashi pseudometric of M vanishes, then the Kobayashi pseudometric
vanishes for all ergodic complex structures on M in the same deformation
class (Theorem 2.1). As a corollary, the Kobayashi metric on all K3 surfaces
vanish (Corollary 2.2), and the Kobayashi metric on a hyperkähler manifold
vanishes for all ergodic complex structures (Theorem 2.3). The SYZ con-
jecture predicts that all hyperkähler manifolds admit Lagrangian fibrations.
Assuming this conjecture to be true, we show the vanishing of the Kobayashi
pseudometric for all hyperkähler manifolds with b2 > 7 (which is expected
for all hyperkähler manifolds). When, in addition, the complex structure is
non-ergodic we prove that the infinitesimal Kobayashi pseudometric defined
by Royden vanishes on a Zariski dense open subset of the manifold.

We summarize the main results of this article in the following theorems;
please see the main body of the paper for details of the definitions and of
the proofs.

Theorem 1.1: Let M be a compact simple hyperkähler manifold. Assume
that a deformation of M admits a holomorphic Lagrangian fibration and the
Picard rank of M is not maximal. Then the Kobayashi pseudometric on M
vanishes.

Proof: See Corollary 2.14.
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Remark 1.2: All known examples of hyperkähler manifolds can be de-
formed to one which admits a Lagrangian fibration ([KV, Claim 1.20]). By
the above result, the Kobayashi pseudometric on known manifolds vanishes,
unless their Picard rank is maximal.

Theorem 1.3: Let M be a compact simple hyperkähler manifold with
b2(M) > 7. Assume that any nef bundle on any deformation of M is
semiample or that M is projective and admits a birational holomorphic La-
grangian fibration with a smooth base and no multiple fibres in codimension
one. Then the Kobayashi pseudometric on M vanishes and the infinitesimal
pseudometric vanishes on a Zariski dense open subset of M .

Proof: See Corollary 3.4 and Theorem 3.1.

1.1 Teichmüller spaces and hyperkähler geometry

We summarize the definition of the Teichmüller space of hyperkähler mani-
folds, following [V2].

Definition 1.4: Let M be a compact complex manifold, and Diff0(M)
a connected component of its diffeomorphism group (the group of iso-

topies). Denote by Comp the space of complex structures on M , equipped
with a structure of Fréchet manifold, and let Teich := Comp /Diff0(M). We
call it the Teichmüller space of M .

Remark 1.5: In many important cases, such as for Calabi-Yau mani-
folds ([Cat]), Teich is a finite-dimensional complex space; usually it is non-
Hausdorff.

Definition 1.6: Let Diff(M) be the group of orientable diffeomorphisms of
a complex manifold M . Consider the mapping class group

Γ := Diff(M)/Diff0(M)

acting on Teich. The quotient Comp /Diff = Teich /Γ is called the moduli

space of complex structures on M . Typically, it is very non-Hausdorff. The
set Comp /Diff corresponds bijectively to the set of isomorphism classes of
complex structures.

Definition 1.7: A hyperkähler manifold is a compact Kähler holomor-
phically symplectic manifold.
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Definition 1.8: A hyperkähler manifold M is called simple if π1(M) = 0,
H2,0(M) = C. In the literature, such manifolds are often called irreducible

holomorphic symplectic, or irreducible symplectic varieties.

The equivalence between these two notions is based on Yau’s solution
of Calabi’s problem ([Bes]), as is the following theorem of Bogomolov that
motivated the last definition.

Theorem 1.9: ([Bo1]) Any hyperkähler manifold admits a finite covering
which is a product of a torus and several simple hyperkähler manifolds.

Remark 1.10: Further on, all hyperkähler manifolds are assumed to be
simple, Comp is the space of all complex structures of hyperkähler type on
M , and Teich its quotient by Diff0(M).

A simple hyperkähler manifold admits a primitive integral quadratic
form on its second cohomology group known as the Beauville-Bogomolov-
Fujiki form. We define it using the Fujiki identity given in the theorem
below; see [F]. For a more detailed description of the form we refer the
reader to [Bea] and [Bo2].

Theorem 1.11: (Fujiki, [F]) Let M be a simple hyperkähler manifold of
dimension 2n and α ∈ H2(M,Z). Then

∫
M

α2n = cq(α, α)n, where q is a
primitive integral quadratic form on H2(M,Z) of index (3, b2(M)− 3), and
c > 0 is a rational number.

Definition 1.12: ¿From Theorem 1.11, the form q is defined uniquely up
to a sign, except the case of even n and b2 6= 6. To fix the sign, we make
the additional assumption that q(ω, ω) > 0 for every Kähler form ω. Such
a form q is called the Bogomolov-Beauville-Fujiki form (or the BBF

form) of M . It exists and is unique on any simple hyperkähler manifold.

Remark 1.13: The BBF form is remarkably similar to the intersection
form on second cohomology of a complex surface. In particular, for any two
Kähler classes ω, ω′ ∈ H2(M,R), one has q(ω, ω′) > 0 (see e. g. [H1] or
[Bou]).

The mapping class group of a hyperkähler manifold can be described in
terms of the BBF form as follows.
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Theorem 1.14: ([V2]) Let M be a simple hyperkähler manifold, Γ its

mapping class group, and Γ
ϕ

−→ O(H∗(M,Z), q) the natural map. Then ϕ
has finite kernel and its image has finite index in O(H∗(M,Z), q).

Definition 1.15: Let TeichI be a connected component of the Teichmüller
space containing I ∈ Teich, and ΓI the subgroup of the mapping class group
preserving TeichI . The group ΓI is called the mondromy group of (M, I)
([Mar1]).

Remark 1.16: In [V2] it was shown that ΓI is a finite index subgroup in
O(H∗(M,Z), q) independent of I.

1.2 Ergodic complex structures

Definition 1.17: LetM be a complex manifold, Teich its Teichmüller space,
and I ∈ Teich a point. Consider the set ZI ⊂ Teich of all I ′ ∈ Teich such
that (M, I) is biholomorphic to (M, I ′). Clearly, ZI = Γ · I is the orbit of
I. A complex structure is called ergodic if the corresponding orbit ZI is
dense in Teich.

Theorem 1.18: Let M be a simple hyperkähler manifold or a compact
complex torus of dimension > 2, and I a complex structure on M . Then
I is non-ergodic iff the Neron-Severi lattice of (M, I) has maximal possible
rank. This means that rkNS(M, I) = b2(M) − 2 for M hyperkähler, and
rkNS(M, I) = (dimCM)2 for M a torus.

Proof: See [V3].

1.3 Kobayashi pseudometric/pseudodistance

LetM be a complex manifold. Recall that a pseudometric onM is a function
d on M×M that satisfies all the properties of a metric (or distance function)
except for the non degeneracy condition: d(x, y) = 0 only if x = y. The
Kobayashi pseudometric (a.k.a. pseudodistance) dM on M is defined as the
supremum of all pseudometrics d on M that satisfy the distance decreasing
property with respect to holomorphic maps f from the Poincaré disk (D, ρ)
to M :

f∗d 6 ρ or equivalently d(f(x), f(y)) 6 ρ(x, y) ∀x, y ∈ D.

Here ρ denotes the Poincaré metric on D.
The following is S. Kobayashi’s standard construction of dM . Let

δM (p, q) = inf{ ρ(x, y) | f : D → M holomorphic, f(x) = p, f(y) = q }.
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Although it does not satisfy the triangle inequality in general, this is a very
useful invariant of the complex structure on M . For an ordered subset
S = {p1, ..., pl} of M , let

δSM (p, q) = δM (p, p1) + δM (p1, p2) + ...+ δM (pl, q).

Then the triangle inequality is attained by setting

dM (p, q) = inf δSM (p, q)

where the infimum is taken over all finite ordered subsets S in M .

Royden introduced an infinitesimal version of dM as follows. The Koba-
yashi-Royden Finsler norm on TM is given, for v ∈ TM , by

|v|M = inf{
1

R
| f : D → M holomorphic, R > 0, f ′(0) = Rv }.

It is the largest “Finsler” pseudonorm on TM that satisfies the distance
decreasing property with respect to holomorphic maps from the Poincaré
disk and therefore it is automatically “distance decreasing” with respect to
holomorphic maps. Royden showed that | |M is upper semicontinuous and
that dM is the integrated version of | |M , see [Roy]. In particular, this im-
plies the well known fact that dM is a continuous function for a complex
manifold M .

We recall that both the pseudometric and its infinitesimal version are
insensitive to removing complex codimension two subsets of M .

Theorem 1.19: Let M be a complex manifold and Z ⊂ M be a complex
analytic subvariety of codimension at least 2.1 Then dM\Z = dX |M\Z and
| |M\Z = (| |X)|M\Z .

Proof: Theorems 3.2.19 and 3.5.35 in [Ko2].

Corollary 1.20: Let τ : M 99K M ′ be a birational equivalence of Calabi-
Yau manifolds. Suppose that the Kobayashi pseudometric on M vanishes.
Then it vanishes on M ′.

Proof: It is easy to check (see subsection 4.4 in [H1]) that the excep-
tional set of τ is a subvariety of codimension at least 2. Then Theorem 1.19
can be applied to obtain that the Kobayashi pseudometric vanishes on M
and M ′ (by the distance decreasing property) whenever it vanishes on the
smooth locus of τ .

1In fact, the same proof would work for any subset Z ⊂ M of Hausdorff codimension
at least 3.
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1.4 Upper semi-continuity

Recall that a function F on a topological space X with values in R∪{∞} is
upper semi-continuous if and only if {x ∈ X |F (x) < α } is an open set for
every α ∈ R. It is upper semi-continuous at a point x0 ∈ X if for all ε > 0
there is a neighbourhood of x0 containing {x ∈ X |F (x) < F (x0) + ε }. If
X is a metric space, this is equivalent to

lim sup
ti→t0

F (ti) 6 F (t0),

for all sequence (ti) converging to t0. ¿From its very definition, the infimum
of a collection of upper semicontinuous functions is again upper semicontin-
uous.

We will be interested in the upper semicontinuity of dMt
and | |Mt

in
the variable t for a proper smooth fibration π : M → T , i.e., π is holomor-
phic, surjective, having everywhere of maximal rank and connected fibers
Mt = π−1(t). This follows in the standard way as is for the case of | |M by
the following result of Siu.

Theorem 1.21: ([Siu]) Let f : D −→M be a holomorphic immersion of a
Stein manifold D to a complex manifold M . Identify D as the zero section
of the pullback X = f∗TM . Then there is a holomorphic immersion of a
neighbourhood of D in X which extends f .

Since π is locally differentiably trivial, we may assume that M is differen-
tiably a product T ×M and π its projection to the first factor. One easily
deduce from the above theorem of Siu applied to the graph of a holomor-
phic map from D = D that δJ(t)(p, q) and |v|J(t) are upper semicontinuous
with respect to p, q ∈ M , v ∈ TM and t ∈ T , where we have replaced the
subscript Mt by its associated complex structure J(t). It follows then that
δS
J(t)(p, q) is upper semicontinuous with respect to p, q and t and hence so is

dJ(t)(p, q). We have established the following proposition, c.f. [Zai].

Proposition 1.22: Let π : M → T be a proper holomorphic and surjective
map having everywhere of maximal rank and connected fibers Mt = π−1(t).
Then dMt

and | |Mt
are upper semicontinuous with respect to all variables

involved, including t.

Although we will not need this, a little reflection will show that one can
relax many of the conditions on π. An immediate consequence of the above
proposition is the following.
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Corollary 1.23: For M a compact complex manifold, let diam(M) be the
diameter of M with respect to dM . Then diam(M) is upper semicontinuous
with respect to the variation of the complex structure on M .

Proof: We need to show that diam(Mt) is upper semicontinuous with
respect to t for a family as given above, i.e. for all t0 ∈ T and sequences (ti)
converging to t0,

lim sup
ti→t0

diam(Mti) 6 diam(Mt0).

If the inequality is false, then after replacing the sequence (ti) by a
subsequence there is an ε > 0 such that diam(Mti) > diam(Mt0) + ε for
all i. By compactness and the continuity of the pseudometric on each Mt,
there exist pi, qi such that diam(Mti) = dMti

(pi, qi). Replacing by a further
subsequence if necessary, we may assume that the sequences (pi) and (qi)
are convergent. Let p, q ∈ Mt0 be their respective limit. Then by upper
semicontinuity, we have

diam(Mt0) + ε 6 lim sup
i→∞

dMti
(pi, qi) 6 dMt0

(p, q) 6 diam(Mt0).

This is a contradiction.

2 Vanishing of the Kobayashi pseudometric

2.1 Kobayashi pseudometric and ergodicity

The main technical result of this paper is the following theorem. Recall that
an ergodic complex structure I on M is one which has a dense Diff(M)-orbit
in the deformation space of complex structures.

Theorem 2.1: Let M be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic
complex structures in the same deformation class.

Proof: Let diam : Teich −→ R>0 map a complex structure I to the
diameter of the Kobayashi pseudodistance on (M, I). By Corollary 1.23, this
function is upper semi-continuous. Let I be an ergodic complex structure.
The set of points I ′ ∈ Teich such that (M, I ′) is biholomorphic to (M, I)
is dense, because I is ergodic. By upper semi-continuity, 0 = diam(I) >

infI′∈Teich diam(I ′).

Corollary 2.2: Let M be a K3 surface. Then the Kobayashi pseudometric
on M vanishes.
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Proof: Notice that any non-ergodic complex structure on a hyperkähler
manifold is projective. Indeed, if the rank of the Picard group is maximal,
the set of rational (1, 1)-classes is dense in H1,1(M), hence the Kähler cone
contains a rational class and M is projective. For all projective M , one has
diam(M) = 0 (see Lemma 1.51 in [Vo] or Corollary 4.5 in [Lu0]). Therefore
Theorem 2.1 implies that diam(M) = 0 for non-projective complex struc-
tures as well.

The same argument leads to the following result.

Theorem 2.3: LetM be a hyperkähler manifold admitting a complex struc-
ture with vanishing Kobayashi pseudometric and b2(M) > 4. Then the
Kobayashi pseudometric vanishes for all complex structures I in the same
deformation class.

Proof: The diameter of the Kobayashi pseudometric is upper semicon-
tinuous, by Corollary 1.23. Choose any ergodic complex structure J on M
(such J exists because b2(M) > 3). By definition of ergodic complex struc-
tures, in any neighbourhood of I one has a complex manifold isomorphic to
(M,J). By upper semicontinuity, one has diam(M,J) 6 diam(M, I) = 0.
Now vanishing of the Kobayashi pseudometric follows from Theorem 2.1.

2.2 Lagrangian fibrations in hyperkähler geometry

The theory of Lagrangian fibrations on hyperkähler manifolds is based on
the following remarkable theorem of D. Matsushita

Theorem 2.4: ([Mat1]) Let M be a simple hyperkähler manifold, and ϕ :
M −→X a surjective holomorphic map, with 0 < dimX < dimM . Then
the fibers of ϕ are Lagrangian subvarieties on M , and the general fibers of
ϕ are complex tori.1

Remark 2.5: Such a map is called a Lagrangian fibration. All the known
examples of hyperkähler manifolds admit Lagrangian fibrations ([KV, Claim
1.20]).

Definition 2.6: A cohomology class η ∈ H2(M,R) is called nef if it lies in
the closure of the Kähler cone; a line bundle L is nef if c1(L) is nef. A nef line
bundle L is big if

∫
M

c1(L)
dimC M 6= 0. A non-trivial nef line bundle L on a

1These fibers are known to be abelian varieties, even if torus is non-algebraic; see [AC].
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hyperkähler manifold is called parabolic if it is not big. ¿From the definition
of the BBF form, this is equivalent to q(c1(L), c1(L)) = 0. Lagrangian
fibrations are in bijective correspondence with semiample parabolic bundles,
as follows from Matsushita’s theorem.

Claim 2.7: Let M be a simple hyperkähler manifold, and L a non-trivial
semiample bundle on M . Assume that L is not ample. Consider the holo-
morphic map π : M −→ Proj(

⊕
N H0(M,LN ). Then π is a Lagrangian

fibration. Moreover, every Lagrangian fibration is uniquely determined by
a parabolic nef line bundle.

Proof: The first statement of Claim 2.7 is a corollary of Theorem 2.4.
Let M

π
−→ X be a Lagrangian fibration. By Matsushita’s results ([Mat1]),

X is projective and H∗(X) ∼= H∗(CPn). Denote by η ∈ H2(M,Z) the ample
generator of Pic(X). Then π∗η = c1(L), where L = π∗OX(1) is a parabolic
nef bundle on M .

The SYZ conjecture ([Saw], [V1]) claims that any parabolic nef line
bundle on a hyperkähler manifold is semiample, that is, it is associated with
a Lagrangian fibration. This is true for K3 surfaces (as it follows from the
Riemann-Roch formula) and for all deformations of Hilbert schemes of K3
surfaces ([Mar4] and [BM]).

Further on, we shall need a birational version of Matsushita’s theorem
on Lagrangian fibrations, which is due to Matsushita-Zhang.

Theorem 2.8: ([MZ, Theorem 1.4]) Let X be a projective hyperkähler
manifold, and P an effective R-divisor on X. Then there exists a birational
modification τ : X ′ 99K X, where X ′ is a projective hyperkähler manifold
such that τ∗P is nef.

Theorem 2.9: Let M be a projective hyperkähler manifold, and L a line
bundle of Kodaira dimension 1

2 dimCM . Then there exists a birational mod-
ification τ : M ′ 99K M from a projective hyperkähler manifold such that
τ∗L is semiample, and induces a Lagrangian fibration as in Claim 2.7.

Proof: Let L be a nef bundle on a Kähler manifold. Recall that
the numerical Kodaira dimension of L is the maximal k such that
c1(L)

k 6= 0. The Kodaira dimension of L is the Krull dimension of the
ring

⊕
N H0(M,LN ).

Consider the modification τ : M ′ 99K M produced by the Matsushita-
Zhang theorem. Then the numerical dimension of τ∗L is equal to 1

2 dimCM ,

– 10 – version 1.0, August 26, 2013



L.Kamenova, S.Lu, M.Verbitsky Kobayashi metric on hyperkähler manifolds

by [V0], and the Kodaira dimension stays the same. As shown in [Kaw, The-
orem 1] (see also [BCEKPRSW, Proposition 2.8]), whenever the numerical
dimension of a nef bundle is equal to its Kodaira dimension, the bundle is
semiample. Then Theorem 2.9 follows from Claim 2.7.

This result motivates the following definition.

Definition 2.10: Let τ : M ′ 99K M be a birational map of hyperkähler
manifolds, and L a Lagrangian fibration on M . Then τ∗L is called a bira-

tional Lagrangian fibration on M ′. Its fibers are proper preimages of
those fibers of L which are not contained in the exceptional locus of τ .

2.3 Kobayashi pseudometrics and Lagrangian fibrations

The idea to use Theorem 2.11 is suggested by Claire Voisin. We are very
grateful to Prof. Voisin for her invaluable help.

Theorem 2.11: Let M be a simple hyperkähler manifold admitting two La-
grangian fibrations associated with two non-proportional parabolic classes.
Then the Kobayashi pseudometric on M vanishes.

Proof: Let πi : M −→Xi, i = 1, 2, be the Lagrangian fibration maps.
Since the general fibers of πi are tori, the Kobayashi metric vanishes on each
fiber of πi. To prove that the Kobayashi pseudometric vanishes on M , it
would suffice to show that a general fiber of π1 intersects all fibers of π2.

Let now ωi be an ample class of Xi lifted to M , and 2n = dimCM .
Since the ωi’s are not proportional, the standard linear-algebra argument,
often called the Hodge index formula, implies that q(ω1, ω2) > 0. Indeed,
q(ω1, ω2) 6= 0 or else the space (H1,1(M,R), q) would contain a 2-dimensional
isotropic plane while its signature is (1, b2−3). The number q(ω1, ω2) is not
negative, because every neighbourhood of (ω1, ω2) contains pairs of Kähler
forms (ω′

1, ω
′
2) onM , and q(ω′

1, ω
′
2) > 0 for any pair of Kähler forms (Remark

1.13).
Clearly, the fundamental class [Zi] of a fiber of πi is proportional to ωn

i .
Fix the constant multiplier in such a way that [Zi] = ωn

i . The fibers of πi
intersect if

∫
M
[Z1] ∧ [Z2] > 0. However, Fujiki’s formula (Theorem 1.11)

implies that
∫
M
[Z1] ∧ [Z2] = Cq(ω1, ω2)

n > 0. This means that Z1 and Z2

always intersect.

Further on, we shall use a birational version of this statement.
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Theorem 2.12: Let M be a simple hyperkähler manifold admitting a La-
grangian fibration A and a birational Lagrangian fibration B associated to
two non-proportional parabolic classes. Then the Kobayashi pseudometric
on M vanishes.

Proof: Let τ : M 99K M ′ be a birational modification such that B is
the pullback of a Lagrangian fibration on M ′. Since M and M ′ have trivial
canonical bundle, the exceptional locus of τ has codimension at least two,
hence a general fiber L of B is birationally equivalent to a torus outside of
this exceptional locus. By Theorem 1.19, the Kobayashi pseudometric on L
vanishes. The same argument as used in Theorem 2.11 shows that L meets
all general fibers of A and thus the Kobayashi pseudodistance between any
two general points x, y in M vanishes. Indeed, take a general fiber L of B.
Let x′, y′ be the points where the fibers of A associated with x, y intersect
L. The Kobayashi pseudodistance d(x′, y′) vanishes, because it vanishes on
L, and d(x, x′) = d(y, y′) = 0, because these are points in the same complex
tori.

Theorem 2.13: Let M be a simple hyperkähler manifold with a Lagrangian
fibration ϕ : M −→X. Then M has a deformation admitting both a
Lagrangian fibration and a birational Lagrangian fibration that correspond
to different classes η, η′ ∈ H2(M,Z) respectively.

Proof: Let η ∈ H1,1(M) be a parabolic nef class associated with ϕ as
in Claim 2.7. Denote by Teichη the divisor parametrizing deformations of
M for which η is of type (1,1). As shown in [KV], for a dense subset D0

of J ∈ Teichη where η is nef, the corresponding bundle L with c1(L) = η
is semiample, giving a Lagrangian fibration (M,J)−→ Proj(

⊕
N H0(LN )).

When J /∈ D0, the Kodaira dimension of L is at least dim
⊕

N H0(LN ), by
upper semicontinuity. Since η is nef whenever Pic(M) is generated by η,
we may assume that for all J /∈ D0, Pic(M) contains a positive vector. As
shown by Huybrechts, [H1, Theorem 3.11], (M,J) is then projective.

Therefore, by Theorem 2.9, these manifolds admit a birational Lagrangian
fibration

Consider now the action of the monodromy group ΓI on H2(M,Z). As
follows from Remark 1.16, ΓI is an arithmetic subgroup in O(H2((M,Z), q).
Therefore, ΓI contains an element γ such that γ(η) 6= η. It is easy to see that
the divisors Teichη and Teichγ(η) intersect transversally. Their intersection
corresponds to a manifold M with two birational Lagrangian fibrations A
and B. Replacing M by a birationally equivalent hyperkähler manifold
where A is holomorphic, we obtain the statement of Theorem 2.13.
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Corollary 2.14: LetM be a simple hyperkähler manifold with a Lagrangian
fibration. Then the Kobayashi pseudometric vanishes for all ergodic complex
structures on M .

Proof: Consider a deformation (M, I ′) of M admitting two birational
Lagrangian fibrations. Then the Kobayashi pseudometric of (M, I ′) vanishes
by Theorem 2.12. For an ergodic complex structure I, we obtain

diam(I) 6 inf
I′∈Teich

diam(I ′) = 0

by upper semi-continuity.

3 Vanishing of the infinitesimal pseudometric

In this section, we are interested in conditions that guarantee the vanishing
of the infinitesimal Kobayashi pseudometric | |M on a Zariski dense open
subset of M . Recall that the SYZ conjecture predicts the existence of a
Lagrangian fibration for every hyperkähler M, dimCM = 2n. Furthermore,
if the base of the fibration is smooth (this is conjectured, see [Hw0]), then
the base is isomorphic to CPn, as shown by Hwang (see [Hw0, GL]). If M is
projective and admits an abelian fibration, then we have the following two
results.

Theorem 3.1: Let M be a projective manifold with an equidimensional
abelian fibration f : M → B (holomorphic surjective with all fibres of the
same dimension and general fibres isomorphic to abelian varieties) where B
is a complex projective space of lower dimension. If f has no multiple fibres
in codimension one, then | |M vanishes everywhere on M . In particular, if M
is a projective hyperkähler manifold with a birational Lagrangian fibration
over a nonsingular base without multiple fibres in codimension one, then
| |M vanishes everywhere.

Proof: Let v ∈ TxM . Then v can be regarded as the first order part
of some non vertical k-jet ν, which in turn push forward to a non-trivial jet
prescription µ at b = f(x) ∈ B. This jet prescription µ is clearly satisfied
by an algebraic holomorphic map h : C → B. Since this map can be chosen
to avoid any subset of codimension two or more, we see by so doing that the
pull back fibration Mh → C has no multiple fibres. Hence all higher order
jet infinitesimal pseudometric vanishes on Mh by Theorem 4.3. Since ν is in
the image of a k-jet on Mh, it also has zero k-jet infinitesimal pseudometric
by the distance decreasing property and therefore |v|M = 0.
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Theorem 3.2: Let M be a projective manifold. Let f : M → B define an
abelian fibration. Assume that there is a subvariety Z ⊂ X that dominates
B and is birational to an abelian variety. Then | |M vanishes everywhere
above a Zariski dense open subset U in B. In particular, this holds for hy-
perkähler manifolds with b2 > 5 having two birational Lagrangian fibrations.

Proof: By hypothesis and the resolution of singularity theorem, Z is the
holomorphic image of a nonsingular projective variety A obtained from an
abelian variety by blowing up smooth centres. By construction, any vector
in A is in the tangent space of an entire holomorphic curve. Let g : A → B
be the composition with the projection to B and disc(g) its discriminant
locus. Let v ∈ TM be a nonzero vector above the complement U in B of
disc(f) ∪ disc(g). If v is vertical, then it is a vector on the fibre A through
p, which is an abelian variety and clearly |v|M 6 |v|A = 0 in this case. If
v is horizontal, then there is a vector v′ in TA by construction such that
f∗v = g∗v

′. Let h : C → A be such that h′(0) = v′ and π : Mh → C be
the pull back fibration via the base change by g ◦ h. Then π has no mul-
tiple fibres and v lies in the image of TMh by construction. Theorem 4.2
from Appendix now applies to show that | |Mh

vanishes and so the distance
decreasing property yields |v|M = 0. The last statement follows from the
projectivity of M by the proof of Corollary 2.2.

We also have the following result modulo the SYZ conjecture.

Theorem 3.3: Let M be a simple hyperkähler manifold with b2 > 7. As-
sume that the SYZ conjecture is true for any deformation of M , and the
Picard rank of M is maximal. Then M admits two birational Lagrangian
fibrations.

Proof. Consider a non-zero integral vector z ∈ Pic(M) such that
q(z, z) = 0, where q denotes the Beauville-Bogomolov-Fujiki form. Since
rkPic(M) > 5, such a vector exists by Meyer’s Theorem (see [Cas], page
75). As shown in the proof of Theorem 2.13, z is associated with a bira-
tional Lagrangian fibration. Denote by Γ1 the group of automorphisms of
the lattice Pic(M). Since this group is arithmetic, it contains an element γ
which does not preserve z. Then γ(z) is another vector associated with a
birational Lagrangian fibration.

The above theorems together imply the following corollary.

Corollary 3.4: Let M be a simple hyperkähler manifold with b2 > 7. As-
sume that the SYZ conjecture is true for any deformation of M . Then dM
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is identically zero. If, further, the rank of Pic(M) is at least 5, then | |M
vanishes on a dense Zariski open subset of M .

Proof: By the proof of Corollary 2.2, M is projective and therefore
Theorem 3.2 applies.

We remark again the expectation that the above assumption on the
rank of the Picard group and on b2(M) should always hold for hyperkähler
manifolds of maximal Picard rank, and hence for nonergodic hyperkähler
manifolds.

4 Appendix on abelian fibrations

The following are some relevant basic results concerning abelian fibrations
found in [Lu0], which was cited and used in [Camp], [Lu1] and [Lu2]. Recall
that a fibration is a proper surjective map with connected fibres. All fibra-
tions are assumed to be projective in this section and abelian fibrations are
those whose general fibres are abelian varieties.

Proposition 4.1: Let e : P → D define an abelian fibration which, outside
0 ∈ D, is smooth with abelian varieties as fibers. Let n0 be the multiplic-
ity of the central fiber P0. Then there is a component of multiplicity n0 in P0.

Proof We may reduce the problem to the case of n0 = 1 by the usual
base change z 7→ zn0 so that the resulting object (after normalization) is
again such a fibration with an unramified cover to the original P . Let
{m1,m2, ...,mk} be the set of multiplicities of the components of P0. By
assumption, there exists integers li such that l1m1 + l2m2 + ...+ lkmk = 1.

As fibrations are assumed to be projective in this paper, we may assume
that f is algebraic. By restricting to Dr = { t : |t| < r } for an r < 1 if
necessary, we can construct an algebraic multi-section si with multiplicity
mi above Dr by simply taking a one dimensional algebraic slice transversal
to the i-th component for each i. Above each point t outside 0, si consists
of mi points s

j
i (t), j = 1, 2, ...,mi. Then it is easy to verify that

(l1
∑

j

sj1(t)) + (l2
∑

j

sj2(t)) + ...+ (lk
∑

j

sjk(t))

is independent of the choice of an origin in the abelian variety Pt. This
gives a section s of the fibration outside 0 and we now show that s must be
algebraic, giving a section of f and establishing our proposition.

This can be accomplished by looking at the base change via z 7→ t = zm

where m is the least common multiple of the mi’s. Then each si lifts to
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mi sections which the cyclic Galois action permutes. Hence, the Galois
action of Zm acts transitively on the m sections constructed by replacing
the ith term in the above expressing with each of the mi sections and so
this set of sections descends to a section of the original fibration as desired.

We remark that (even non projective) elliptic fibrations are all locally
projective so that the above proposition applies to them. Also the above
proposition is really a special case of a result of Lang and Tate found in [LT].

This proposition allows us to do exactly the same analysis as in the case
for elliptic fibrations done in [BL1] to obtain the following theorem. We
refer the reader there or to [Lu0] for the detail of the proof.

Theorem 4.2: Let f : X → C define an abelian fibration over a complex
curve C. Then, for each s ∈ C, the multiplicity of the fibre Xs at s is the
same as the minimum multiplicity ms of the components of Xs. Let the Q-
divisor A =

∑
s(1− 1/ms)s be the resulting orbifold structure on C. Then

the three conditions dX = 0 on X, | |X = 0 on X and (C,A) is nonhyper-
bolic (that is, C is quasiprojective and e(C)− degA > 0) are equivalent for
such a fibration. In the case C is quasiprojective, these three conditions are
equivalent to the absence of non-commutative free subgroups in π1(X) and
to π1(X) being solvable up to a finite extension.

Proof: In the case (C,A) is uniformizable, we may pull back the fibra-
tion to the universal cover U of (C,A) with resulting fibration f̃ : Y → X.
This is the case when C is not quasi projective and otherwise when e(C) 6
degA, with equality if and only if U = C, and when e(C) > degA in which
case either C = U = C and A is supported at one point, or C = P1 and
A is supported at more than two points, see for example [FK]. In all these
cases U is non hyperbolic if and only if (C,A) is. By construction Y has no
multiple fibres over U and is unramified over X (in codimension one) so that
all holomorphic curves in X lifts to Y . Hence the Kobayashi pseudometrics
and norms vanish on X if and only if it is so on Y and so we only need to
show the vanishing of | |Y in this case since the fundamental group charac-
terization in the quasi projective case follows from the same characterization
of the Galois group of the uniformization f̃ : U → C and the exact sequence
of fundamental groups of a fibration without multiple fibres. Note that in
the case U = P1, to show that | |Y vanish at a point above z ∈ U we may
replace U by C = U \ {z} since | |Y 6 | |Y ′ where Y ′ := Y \ f̃−1(z) ⊂ Y .

In the case (C,A) is not uniformizable, then C = P1 and A is sup-
ported at one or two points and the exact sequence of orbifold fundamental
groups shows that π1(X) is a quotient of π1(Xs) for a general fibre Xs, hence
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abelian. Thus it suffice to show that for a point p ∈ X, | |X vanishes there
in this case and for this it is sufficient to replace X by the complement of a
fibre Xz different from the fibre Xw containing p and C by C \ {z}, where
in the case w lies in the support of A, we choose z to be the other point in
this support if one exists. Then (C,A) is uniformizable by C.

Hence it remains to show that | |X vanishes at a point p for the case X
has no multiple fibres and C = C. In fact, given a finite jet prescription
at p, we can find an entire holomorphic curve through p satisfying the jet
prescription as follows. The jet prescription gives rise to a jet prescription
at f(p) ∈ C which we assume without loss of generality to be the origin
of C = C. Let l be the first non vanishing order of the latter jet and let
f̃ : Y → C be the pull back fibration by the base change z 7→ zl. Then the
inverse function theorem allows us to translate the jet prescription at p to
a section jet prescription on Y over 0 ∈ C. As there are no multiple fibres
for f̃ , proposition Proposition 4.1 yield the existence of local sections of f̃
through any point of C. The Cousin principles apply in this situation (i.e.,
an analogue of Weierstrass’ theorem can be worked out, see [BL1, Lu0]) so
that we can patch up a minimal covering family of such sections, including
the one with the jet prescription, to give a global section of f̃ with the jet
prescription and this gives the required entire holomorphic curve.

Instead of restricting our attention to just the first order jets for the
infinitesimal pseudometric, one can generalize the definition of | |X to jets of
arbitrary finite order, see [Lu0]. By their very definition, these infinitesimal
pseudometrics dominates | |X by truncating the jets to first order. The exact
same proof as above yields the following generalization, see [Lu0].

Theorem 4.3: The above theorem holds if | |X is replaced by its more
general k-th order jet version, for all integer k > 0.
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