MAT535 HW 9

Due on 05/05 in class. Each problem is worth 10 points. You are required to do four of the problems of your choice. You can do the rest for extra credit.

Problem 1. Show that $I\left(\mathbb{A}^{n}\right)=(0)$.
Problem 2. If $I \subset R$ is any ideal, show that $\sqrt{I}:=\operatorname{rad} I$ is a radical ideal.
Problem 3. Prove that:
(a) $S \subset I(Z(S))$, where S is any subset of the polynomial ring $k\left[x_{1}, \cdots, x_{n}\right]$.
(b) $W \subset Z(I(W))$, where W is any subset of the affine set \mathbb{A}^{n}.
(c) If W is an algebraic set, then $W=Z(I(W))$.
(d) If $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is any ideal, then $Z(I)=Z(\sqrt{I})$ and $\sqrt{I} \subset I(Z(I))$.

Problem 4. (a) Show that the set $X=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3} \mid t \in k\right\}$ is closed in \mathbb{A}^{3} and find $I(X)$.
(b) Same for the subset $Y=\left\{\left(t^{3}, t^{4}, t^{5}\right) \in \mathbb{A}^{3} \mid t \in k\right\}$ of \mathbb{A}^{3}.
(c) Show that $I(Y)$ can't be generated by less than three polynomials. Hint: Is $I(Y)$ a graded ideal ?

Problem 5. Show that $W=\left\{(x, y, z) \in \mathbb{A}^{3} \mid x^{2}=y^{3}, y^{2}=z^{3}\right\}$ is an irreducible closed subset of \mathbb{A}^{3} and find $I(W)$.

Problem 6. Find the radical $\sqrt{\left(y^{2}+2 x y^{2}+x^{2}-x^{4}, x^{2}-x^{3}\right)}$.
Problem 7. Let X be a Noetherian topological space. Prove that:
(a) If an irreducible closed set Y is contained in a union $\cup X_{i}$ of finitely many closed sets X_{i}, then $Y \subset X_{i}$ for some i.
(b) X has finitely many components.

