MAT535 HW 10

Due on 4/26 in class. Each problem is worth 10 points. You are required to do four of the problems of your choice. You can do the rest for extra credit.

Problem 1. Show that $I(\mathbb{A}^n) = (0)$.

Problem 2. If $I \subset R$ is any ideal, show that $\sqrt{I} := \text{rad } I$ is a radical ideal.

Problem 3. Prove that:

- (a) $S \subset I(Z(S))$.
- (b) $W \subset Z(I(W))$.
- (c) If W is an algebraic set, then W = Z(I(W)).
- (d) If $I \subset k[x_1, \ldots, x_n]$ is any ideal, then $Z(I) = Z(\sqrt{I})$ and $\sqrt{I} \subset I(Z(I))$.

Problem 4. (a) Show that the set $X = \{(t, t^2, t^3) \in \mathbb{A}^3 | t \in k\}$ is closed in \mathbb{A}^3 and find I(X).

- (b) Same for the subset $Y=\{(t^3,t^4,t^5)\in \mathbb{A}^3|t\in k\}$ of $\mathbb{A}^3.$
- (c) Show that I(Y) can't be generated by less than three polynomials. *Hint:* Is I(Y) a graded ideal?

Problem 5. Show that $W=\{(x,y,z)\in \mathbb{A}^3|x^2=y^3,y^2=z^3\}$ is an irreducible closed subset of \mathbb{A}^3 and find I(W).

Problem 6. Find the radical $\sqrt{(y^2 + 2xy^2 + x^2 - x^4, x^2 - x^3)}$.

Problem 7. Let X be a Noetherian topological space. Prove that:

(a) If an irreducible closed set Y is contained in a union $\cup X_i$ of finitely many closed sets X_i , then $Y \subset X_i$ for some i.

1

- (b) X has finitely many components.
- (c) X is the union of its components.
- (d) X is not the union of any proper subset of its components.