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Abstract. In this paper we classify the possible degenerate fibers which can occur in a semistable
degeneration of two-dimensional tori under the assumption that the canonical bundle of the total
space of the family is trivial.

1. Preliminaries

Let π : X → ∆ be a proper map of a Kähler manifold X onto the unit disk ∆ = {t ∈ C :| t |< 1},
such that the fibers Xt are nonsingular compact complex manifolds for every t 6= 0. We call π a
degeneration and the fiber X0 = π−1(0) - the degenerate fiber.

Definition 1.1. A map ψ : Y → ∆ is called a modification of a degeneration π if there exists a
birational map f : X → Y such that ψ = π ◦ f and ψ is an isomorphism outside of the degenerate
fiber.

A degeneration is called semistable if the degenerate fiber is a reduced divisor with normal crossings.
Not every degeneration can be modified to a semistable one. Nonetheless, it is possible to reduce any
degeneration to a semistable one after a base change according to Mumford’s theorem ([1]).

Definition 1.2. The polyhedron Π(V ) of a variety with normal crossings V = V1 + · · · + Vn,
dimVi = d is the polyhedron whose vertices correspond to the irreducible components Vi and the
vertices Vi1 , · · · , Vik

form a (k − 1)−simplex if Vi1 ∩ · · · ∩ Vik
6= 0.

2. Basic Tools

Let π : X → ∆ be a semistable degeneration of surfaces whose degenerate fiber is X0 = V1 + V2 +
· · · + Vn. We will state some results from [2].

Lemma 2.1. ([2]) Let C = Vi ∩ Vj be a double curve of a semistable degeneration of surfaces. Then
(C2)Vi

+ (C2)Vj
= −TC, where TC is the number of triple points of the fiber X0 on C.

Lemma 2.2. ([2]) Let T be the number of all triple points of π, then

χ(Xt) =

n∑

i=1

χ(Vi) −
∑

i<j

χ(Ci,j) + T,

where Ci,j = Vi ∩ Vj

Remark 2.1. ([2]) For a variety with normal crossing X0 there is a natural mixed Hodge structure
with weight filtration W and W0H

m(X0) ∼= Hm(Π(X0)).

Theorem 2.1. (Kulikov [2], Persson [4]) Let π : X → ∆ be a semistable Kähler degeneration of
surfaces, then

h1(Xt) =

n∑

i=1

h1(Vi) −
∑

i<j

h1(Ci,j) + 2h1(Π) + ckh1,

pg(Xt) =

n∑

i=1

pg(Vi) + h2(Π) +
1

2
ckh1,

where ckh1 = dim Coker (⊕H1(Vi) → ⊕H1(Ci,j)), d is the number of double curves of the fiber X0

and Π is its polyhedron.
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Lemma 2.3. A surface V is ruled or CP
2 if and only if H0(V, nKV ) = 0 for every n > 0.

3. Main Theorem

We prove the following theorem which is analogous to the classification theorems in [2] which
Kulikov gives for K3-surfaces and Enriques surfaces.

Theorem 3.1. Let π : X → ∆ be a semistable Kähler degeneration of two-dimensional tori such
that KX is trivial. Then the degenerate fiber X0 is one of the following four types:

(i) X0 = V1 is a nonsingular torus;
(ii) X0 = V1+V2+· · ·+Vn, n > 1, all Vi are elliptic ruled surfaces, the double curves C1,2, · · · , Cn−1,n

are elliptic curves and the polyhedron Π is a simple path.

����

(iii) X0 = V1+V2+· · ·+Vn, n > 1, all Vi are elliptic ruled surfaces, the double curves C1,2, · · · , Cn−1,n,

Cn,1 are elliptic curves and the polyhedron Π is a cycle.

��

�

�

�

(iv) X0 = V1 + V2 + · · ·+ Vn, n > 1, all Vi are rational surfaces, and all the double curves Ci,j are
rational. The polyhedron Π is a triangulation of the real 2-dimensional tori T 2.

In the first case the monodromy M is trivial, i.e. N = logM = 0. In the second and the third
cases N2 = 0. And, in the fourth case the monodromy is of maximal rank.

Proof. Case (i) is when X0 has a single component.
Let n > 1. If D ∈ Pic(X) and V is a component of the fiber, then let DV = i∗(D) = D · V, where

i : V ↪→ X is the inclusion. For D,D′ ∈ Pic(X) the intersection index on V is defined: D ·D′ · V =
DV ·D′

V . The fibers Xt and X0 are linearly equivalent and in addition X0 = V1 + · · ·+Vn ∼ 0, hence
by the adjunction formula,

KVi
= KX ⊗ [Vi] |Vi

= OVi
(
∑

j 6=i

−Vj) = −
∑

j 6=i

Ci,j

because KX is trivial. Then KVi
is anti-effective, and thus all of Vi are ruled surfaces. Consider a

double curve Ci,j on Vi. We have:

2g(Ci,j) − 2 = (KVi
+ Ci,j , Ci,j)Vi

= −
∑

k 6=i,j

(Ci,k, Ci,j)Vi
= −TCi,j

,

where TCi,j
is the number of triple points of X0 on Ci,j . Since TCi,j

≥ 0 and g(Ci,j) ≥ 0, there are
two possibilities:

(A) g(Ci,j) = 0 and TCi,j
= 2, so Ci,j is a rational curve and there are exactly two triple points

on Ci,j .
(B) g(Ci,j) = 1 and TCi,j

= 0, so Ci,j is an elliptic curve and Ci,j does not intersect any other
double curve.

In the case (A) we see that Ci,j intersects some other double curves which must be rational as
well and also contains two triple points. Thus every Vi is a ruled surface and the set of double curves
on Vi consists of a disjoint union of a finite union of elliptic curves and a finite number of cycles of
rational curves.
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Let V = Vi0 be one of the components, let φ : V → V̄ be a morphism onto the minimal model
V̄ (φ is a composition of monoidal transforms) and let L be an exceptional curve on V such that
L ∼= P1, (L2)V = −1 and L is blown down to a point by the morphism φ. Then (L,KV )V = −1, so
(L,

∑
j 6=i0

Ci0,j)V = 1. Thus, either L intersects only one of the connected components of the divisor∑
j 6=i0

Ci0,j or L coincides with one of Ci0,j . It follows that the number of connected components

of the divisor
∑

j 6=i0
φ∗Ci0,j equals the number of connected components of the divisor

∑
j 6=i0

Ci0,j

since KV̄ = φ∗KV .
In Lemma 2.18 from [2] Kulikov gives a list of possible components of an effective divisor linearly

equivalent to −KV̄ , where V̄ is either a minimal ruled surface or CP
2. Since the reduced divisor

∑

j 6=i0

φ∗Ci0,j ∼ −KV̄ ,

we have the following possibilities for V :
(a) V is a rational surface and

∑
j 6=i Ci,j is a cycle of rational curves;

(b) V is a rational or an elliptic ruled surface and
∑

j 6=i Ci,j = C is a single elliptic curve;

(c) V is a ruled elliptic surface and
∑

j 6=i Ci,j = C1 + C2 consists of two disjoint elliptic curves.

Case 1: One of Vi is of type (a). Then the double curves on the components adjacent to Vi also
form a cycle, hence the components adjasent to Vi are also of type (a). Since X0 is connected, it
follows that all Vi are rational surfaces and their double curves form cycles. Therefore, the polyhedron
Π is a triangulation of a compact real surface without a boundary. There is no boundary, because
there are exactly two triple points on each double curve.

Since Vi and Ci,j are rational, pg(Vi) = 0, h1(Vi) = 0, h1(Ci,j) = 0 and from the second equality,
ckh1 = 0 (see [4]). Then the first formula in Theorem 2.1 says that h1(Π) = 2 and the second formula
says that h2(Π) = pg(Xt) = 1. We also know that h0(Π) = 1 (from Remark 2.1). There is only one
real surface without boundary with these cohomology numbers, namely the torus T 2. In this case
the degenerate fiber falls into type (iv) in the statement of the theorem.

Case 2: All of the Vi have types (b) or (c). Then X0 has no triple points (T = 0) and thus Π is
1-dimensional, so h2(Π) = 0.

Let the number of rational surfaces be r. For a ruled elliptic surface Vi the Euler characteristic
χ(Vi) is 0, while for a rational surface χ(Vi) = 1. Also, χ(Ci,j) = 0 for an elliptic curve Ci,j .
Therefore, after we apply Lemma 2.2, we get r = χ(Xt) = 0. In other words, there are no rational
surfaces in the fiber X0.

Since for an elliptic ruled surface Vi we have pg(Vi) = 0, then from the second formula in Theorem
2.1 we get ckh1 = 2. Now we substitute it in the first formula in this theorem and use that h1(Vi) =
2, h1(Ci,j) = 2 to obtain that

n = 1 + d− h1(Π),

where n is the number of components and d is the number of double curves.
If h1(Π) = 0, then n = d+ 1 and Π is a tree. Moreover, on each component Vi there are at most

two double curves, therefore Π is a simple path described in the case (ii) of the theorem.
If h1(Π) = 1, then n = d and there is one loop in the graph, hence Π is a simple cycle from case

(iii) (because again there are at most two edges coming out of every vertex).
If h1(Π) ≥ 2, then there will be at least one vertex in which there are at least three edges meeting

which is a contradiction.
The claims about the monodromy follow from the fact that N = 0 if and only if h2(Π) = 0 and

ckh1 = 0; and N2 = 0 if and only if h2(Π) = 0 (see Theorem 2.7 in the paper [2]). �
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