MAT 536 SPRING 2020 HOMEWORK 3

Problem 1. Suppose that the function $f(z)$ is holomorphic in a domain D and satisfies

$$
\left|f(z)^{2}-1\right|<1
$$

for all $z \in D$. Prove that either $\operatorname{Re} f(z)>0$ or $\operatorname{Re} f(z)<0$ throughout D.
Problem 2. Recall that a Möbius transformation of the complex line $\mathbb{C P}^{1}$ is a linear transformation with non-zero determinant. The Möbius transformations form a group, called the Möbius group. Prove that the action of the Möbius group on $\mathbb{C P}^{1}$ is threetransitive, i.e. for any two triples $\left\{z_{1}, z_{2}, z_{3}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}\right\}$ of distinct points in $\mathbb{C P}^{1}$, there is a Möbius transformation T such that $T z_{k}=w_{k}, k=1,2,3$.

Problem 3. Prove that for any two quadruples $\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$ and $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ of distinct points in $\mathbb{C P}^{1}$ there is a Möbius transformation T such that $T z_{k}=w_{k}, k=1,2,3,4$, if and only if their cross-ratios are equal.

Problem 4. Consider the so-called anharmonic group - a subgroup of the Möbius group, generated by the transformations $z \rightarrow 1 / z$ and $z \rightarrow 1-z$. Show that its action on $1,0, \infty$ gives an isomorphism with S_{3}, the symmetric group on 3 elements.

Problem 5. Map the domain between the two circles $|z|=1$ and $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ conformally onto the upper half-plane.

