MAT 536 SPRING 2020 HOMEWORK 3

Problem 1. Suppose that the function f(z) is holomorphic in a domain D and satisfies

$$|f(z)^2 - 1| < 1$$

for all $z \in D$. Prove that either $\operatorname{Re} f(z) > 0$ or $\operatorname{Re} f(z) < 0$ throughout D.

- **Problem 2.** Recall that a *Möbius transformation* of the complex line \mathbb{CP}^1 is a linear transformation with non-zero determinant. The Möbius transformations form a group, called the *Möbius group*. Prove that the action of the Möbius group on \mathbb{CP}^1 is three-transitive, i.e. for any two triples $\{z_1, z_2, z_3\}$ and $\{w_1, w_2, w_3\}$ of distinct points in \mathbb{CP}^1 , there is a Möbius transformation T such that $Tz_k = w_k, k = 1, 2, 3$.
- **Problem 3.** Prove that for any two quadruples $\{z_1, z_2, z_3, z_4\}$ and $\{w_1, w_2, w_3, w_4\}$ of distinct points in \mathbb{CP}^1 there is a Möbius transformation T such that $Tz_k = w_k, k = 1, 2, 3, 4$, if and only if their cross-ratios are equal.
- **Problem 4.** Consider the so-called *anharmonic group* a subgroup of the Möbius group, generated by the transformations $z \to 1/z$ and $z \to 1-z$. Show that its action on $1, 0, \infty$ gives an isomorphism with S_3 , the symmetric group on 3 elements.
- **Problem 5.** Map the domain between the two circles |z| = 1 and $|z \frac{1}{2}| = \frac{1}{2}$ conformally onto the upper half-plane.

1