MATH 319/320, SPRING 2020 MIDTERM 1

FEBRUARY 27

Each problem is worth 10 points.

Problem 1. Let $F_{0}=F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$ be the Fibonacci sequence. Prove that for all natural numbers $n, F_{n} \leq 2^{n}$.

Solution. We prove this by strong induction.
Base case $(n=1,2): F_{1}=1<2^{1}=2 . F_{2}=2<2^{2}=4$.
Inductive step: Assume for some $n \geq 2$ that for all $1 \leq k \leq n, F_{k} \leq 2^{k}$.
Then $F_{n+1}=F_{n}+F_{n-1} \leq 2^{n}+2^{n-1}<2^{n}+2^{n}=2^{n+1}$ as wanted.

Problem 2. Prove that $x^{2}=3$ does not have a rational solution, but that it has a positive real solution.
Solution. Suppose $x^{2}=3$ has a rational solution $\frac{p}{q}$ with $p, q \in \mathbb{Z}, q \neq 0$ and with gcd 1 . Then $p^{2}=3 q^{2}$ implies $3 \mid p$. Let $p=3 p^{\prime}$. Then $3\left(p^{\prime}\right)^{2}=q^{2}$ implies 3 divides q, a contradiction.
To prove that there is a positive real solution, let $S=\left\{x \in \mathbb{R}: x>0, x^{2}<\right.$ $3\}$. Then $1 \in S$ so S is non-empty. Also, if $x \geq 3$ then $x^{2} \geq 3$ so S is bounded by 3 . Let $\alpha=\sup S$. Note that $\alpha>1$.
Suppose first that $\alpha^{2}>3$. Let $0<\epsilon<1$. Then $(\alpha-\epsilon)^{2}=\alpha^{2}-2 \alpha \epsilon+\epsilon^{2}>$ $\alpha^{2}-2 \alpha \epsilon$. Let $\epsilon=\min \left(\frac{1}{2}, \frac{\alpha^{2}-3}{2 \alpha}\right)$. It follows that $\alpha-\epsilon>0$ and $(\alpha-\epsilon)^{2}>3$, so $\alpha-\epsilon$ is an upper bound for S, contradiction.
Next suppose that $\alpha^{2}<3$. Let $0<\epsilon<1$. Then $(\alpha+\epsilon)^{2}=\alpha^{2}+2 \alpha \epsilon+\epsilon^{2}<$ $\alpha^{2}+(2 \alpha+1) \epsilon$. Choose $\epsilon=\min \left(\frac{1}{2}, \frac{3-\alpha^{2}}{2 \alpha+1}\right)$. Then $\alpha+\epsilon>0$ and $(\alpha+\epsilon)^{2}<3$ so α is not an upper bound for S.
Hence, by trichotomy, $\alpha^{2}=3$.

Problem 3. Prove that each non-empty open interval of \mathbb{R} contains both rational and irrational numbers.

Solution. Let $a<b$. We first check that there is a rational number r with $a<r<b$. If $a<0<b$ then we are already done, so we may assume a and b have the same sign, which may be assumed positive, or take negatives. Choose an integer $n>\frac{1}{b-a}$ so that $n a+1<n b$. Let m be the least integer greater than $n a$. Then $m-1 \leq n a$ implies $m<n b$. It follows that $a<\frac{m}{n}<b$.

To prove the claim for irrationals, assume again that a and b have the same sign, since otherwise $a<0<b$ and we can replace a with $\frac{b}{2}$. Assume $0<a<b$. Find rational r with $\frac{a}{\sqrt{2}}<r<\frac{b}{\sqrt{2}}$. Then $a<r \sqrt{2}<b$ and $r \sqrt{2}$ is irrational, since otherwise $\sqrt{2}$ would be rational.

Problem 4. Show that if $z_{n}=\left(a^{n}+b^{n}\right)^{\frac{1}{n}}$ where $0<a<b$, then $\lim \left(z_{n}\right)=b$. Solution. Write $z_{n}=b\left(1+\left(\frac{a}{b}\right)^{n}\right)^{\frac{1}{n}}$. We show that, for every $\epsilon>0$, for all sufficiently large $n, 1 \leq\left(1+\left(\frac{a}{b}\right)^{n}\right)^{\frac{1}{n}} \leq 1+\epsilon$, which implies the claim. Since $0<\frac{a}{b}<1,\left(\frac{a}{b}\right)^{n}$ is decreasing and converges to 0 . Thus, for all n sufficiently large,

$$
1 \leq 1+\left(\frac{a}{b}\right)^{n} \leq 1+\epsilon<1+n \epsilon \leq(1+\epsilon)^{n} .
$$

Taking nth roots proves the claim.

Problem 5. Let $S \subset \mathbb{R}$ be a bounded set and $S_{0} \subset S$ a non-empty subset. Prove

$$
\inf S \leq \inf S_{0} \leq \sup S_{0} \leq \sup S
$$

Solution. Let $\alpha=\inf S$. Then α is a lower bound for S so, for any $s \in S_{0}$, $s \in S$ so that $\alpha \leq s$. In particular, $\alpha \leq \inf S_{0}$. Let $\beta=\sup S$. Then β is an upper bound for S, so, for any $s \in S_{0}, s \in S, s \leq \beta$. Thus β is an upper bound for S_{0} so $\sup S_{0}<\beta$. Let $s \in S_{0}$. Then $\inf S_{0} \leq s \leq \sup S_{0}$. Chaining together these inequalities proves the claim.

