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Abstract. In this paper we describe the fixed locus of a symplectic involution

on a hyperkähler manifold of type K3[n] or of Kummer n type. We prove that
the fixed locus consists of finitely many copies of Hilbert schemes of K3 surfaces

of lower dimensions and isolated fixed points.

1. Introduction

An involution ι on a hyperkähler manifold is symplectic if it preserves the holo-
morphic symplectic form. Consider a hyperkähler manifold X of K3[n] type, i.e.,
deformation equivalent to a Hilbert scheme of n points on a K3 surface or of Kum-
mer n type, i.e. deformation equivalent to the Albanese fibre of the Hilbert scheme
of n + 1 points on an Abelian surface. We are interested in describing the fixed
loci of symplectic involutions on X. In [17] Nikulin proved that the fixed locus
of a symplectic involution on a K3 surface consists of 8 isolated fixed points. The
second named author proved in [9] that the fixed locus of a symplectic involution on
a hyperkähler manifold deformation equivalent to a Hilbert square of a K3 surface
consists of 28 isolated points and one K3 surface. Here we generalize these results
to any hyperkähler manifold of K3[n] type.

Theorem 1.1. Let X be a hyperkähler manifold of K3[n] type, and let ι be a
symplectic involution on X. Then, up to deformation, the fixed locus F of ι consists
of finitely many copies of Hilbert schemes of K3 surfaces S[m] (where m ≤ n

2 ) and
possibly isolated fixed points (only when n ≤ 24). The fixed locus F is stratified into
loci of even dimensions F2m, where max(0, n2 −12) ≤ m ≤ n

2 . Each fixed locus F2m

of dimension 2m has ∑
2m=n−k−2l

(
8

k

)(
k

l

)
connected components, each one of which is a deformation of a copy of S[m]. In
particular, the fixed locus Z of largest dimension is the following.

(i) If n is even, then Z consists of one copy of S[n2 ];

(ii) If n is odd, then Z consists of 8 copies of S[n−1
2 ].

A key ingredient in the proof of this theorem is that the moduli space of pairs
consisting of a hyperkähler manifold of K3[n] type (or of Kummer n type) together
with a symplectic involution is connected. Using the Global Torelli theorem first
we prove that (X, ι) is birational to a “standard pair”, and then we prove that
birational pairs can be deformed one into the other while preserving the group
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action. A “standard pair” for K3[n] type manifolds is a deformation of (S[n], G),
where S is a K3 surface and G is a symplectic involution on S[n] induced by a
symplectic involution on S.

Theorem 1.2. Let X be a manifold of K3[n] type or of Kummer n type. Let
G ⊂ Auts(X) be a finite group of numerically standard automorphisms. Then
(X,G) is a standard pair.

As a corollary to this theorem we obtain that the fixed locus of the symplec-
tic involution ι has the form of the fixed locus on S[n] of a symplectic involution
coming from the K3 surface S. Thus, we can restrict to the case when X = S[n].
Furthermore, since the involution ι acts as the identity on the effective classes in
H2(X,R), it preserves the exceptional divisor of S[n]. Therefore, it descends to an
action on SymnS. Depending on the parity of n, we can see that the number of
irreducible components of the fixed locus of largest dimension is either one or eight.
Using basic combinatorics, one can count the number of irreducible components of
the fixed locus in each possible dimension.

In an analogous way, we compute the fixed locus of a symplectic involution on a
hyperkähler manifold of Kummer n type, by reducing to the case of an involution
coming from the sign change on the abelian surface A:

Theorem 1.3. Let X be a hyperkähler manifold of Kummer n type, and let ι be a
symplectic involution on X. Then, up to deformation, the fixed locus F of ι consists
of finitely many copies of Hilbert schemes of K3 surfaces S[m] (where m ≤ n+1

2 )
and possibly isolated fixed points (only when n ≤ 48). The fixed locus F is stratified
into loci of even dimensions F2m, where max(0, n+1

2 − 24) ≤ m ≤ n+1
2 . Each fixed

locus F2m of dimension 2m has Nn
m (for the precise formula see the last section)

connected components, each one of which is a deformation of a copy of S[m].

2. Preliminaries

Let X be a hyperkähler manifold, i.e., a complex Kähler simply connected man-
ifold such that H2,0(X) ∼= C is generated by a holomorphic symplectic 2-form. If
X is deformation equivalent to the Hilbert scheme S[n] of n points of a K3 surface
S, we say that X is of K3[n] type. If X is deformation equivalent to the generalized
Kummer 2n-fold Kn(A) of an abelian surface A, we say that X is of Kummer n
type.

Definition 2.1. Let X be a complex manifold and let G be a subgroup of Aut(X),
the group of automorphisms of X. A deformation of the pair (X,G) consists of the
following data:

(i) A flat family X → B, where B is connected and X is smooth, and a distin-
guished point 0 ∈ B such that X0

∼= X.
(ii) A faithful action of the group G on X inducing fibrewise faithful actions of

G.
Two pairs (X,G) and (Y,H) are deformation equivalent if (Y,H) is a fibre of a

deformation of the pair (X,G).

In this paper we are mostly interested in deformations of the pair (X,Z2), where
X is of K3[n] type and Z2 is generated by a symplectic involution.
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Definition 2.2. Let S be a K3 surface and let G ⊂ Auts(S) be a subgroup of
the symplectic automorphisms on S. Then G induces a subgroup of the symplectic
morphisms on S[n] which we still denote by G. We call the pair (S[n], G) a natural
pair. The pair (X,H) is standard if it is deformation equivalent to a natural pair.
If A is an abelian surface, the same definitions apply to the generalized Kummer
2n-fold Kn(A) and symplectic automorphisms preserving 0 ∈ A, however the reader
should notice that the induced action of G on H2(Kn(A)) is not necessarily faithful.

Definition 2.3. Let G be a finite group acting faithfully on a manifold X. Define
the invariant locus TG(X) inside H2(X,Z) to be the fixed locus of the induced
action of G on the cohomology. The co-invariant locus SG(X) is the orthogonal
complement TG(X)⊥. The fixed locus of G on X is denoted by XG.

As automorphisms of K3 and abelian surfaces are better known, it is interesting
to determine whether an automorphism group on a manifold of K3[n] type (or of
Kummer n type) is standard or not, we give the following criterion:

Definition 2.4. Let Y be a manifold of K3[n] type or of Kummer n type. A
pair (Y,H) is called numerically standard if the representation of H on H2(Y,Z)
coincides with that of a standard pair (X,H), up to the action of the monodromy
group. More specifically, there exists a K3 (or abelian) surface S with an H action
such that

• SH(S) ∼= SH(Y ),
• TH(S)⊕Zδ = TH(S[n]) ∼= TH(Y ) (and analogously for the Kummer n case),
• The two isomorphisms above extend to isomorphisms of the Mukai lattices
U4⊕E8(−1)2 (or U4 in the Kummer case) after taking the canonical choice
of an embedding of H2 into the Mukai lattice described by Markman [8,
Section 9] for the K3[n] type case and by Wieneck [20, Theorem 4.1] for
the Kummer case.

This definition is slightly stronger than the one given in [10] for manifolds of
K3[n] type , but they coincide when n− 1 is a prime power, which was the case of
interest in that paper. Notice that it is relatively easy to check the first two condi-
tions, while the third one is more involved but often unnecessary, see Proposition
4.13.

Let X be a compact complex manifold and Diff0(X) a connected component of
its diffeomorphism group. Denote by Comp the space of complex structures on X,
equipped with the structure of a Fréchet manifold.

Definition 2.5. The Teichmüller space ofX is the quotient Teich := Comp /Diff0(X).

The Teichmüller space is finite-dimensional for a Calabi-Yau manifold X (see
[4]). Let Diff+(X) be the group of orientable diffeomorphisms of a complex mani-
fold X. The mapping class group Γ := Diff+(X)/Diff0(X) acts on Teich.

By Huybrechts’s result [7, Theorem 4.3], non-separated points in the moduli
space of marked hyperkähler manifolds correspond to birational hyperkähler man-
ifolds. Consider the equivalence relation ∼ on Teich identifying non-separated
points. Let Teichb = Teich /∼ be the birational Teichmüller space.
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Let X be a hyperkähler manifold, and let Teich be its Teichmüller space. Con-
sider the map P : Teich → PH2(X,C), sending a complex structure J to the line
H2,0(X, J) ∈ PH2(X,C). The image of P is the open subset of a quadric, defined
by Per :=

{
l ∈ PH2(X,C)

∣∣ q(l, l) = 0, q(l, l̄) > 0
}
.

Definition 2.6. The map P : Teich → Per is called the period map, and the set
Per is called the period domain.

The period domain Per is identified with the quotient SO(3,b2−3)
SO(2)×SO(1,b2−3) .

Theorem 2.7. (Verbitsky’s Global Torelli, [19]) The period map P : Teich0
b → Per

is an isomorphism on each connected component of Teichb.

It is possible to compute the Kähler cone of a hyperkähler manifold from numer-
ical data on the second cohomology (see [1] and [11] for the general theory), the
following will be needed for our main result:

Proposition 2.8. Let X be a manifold of K3[n] type, n odd. Let a ∈ Pic(X) be
a class of negative square greater than −6− 2n and of divisibility two. Then there
are no Kähler classes orthogonal to a.

Proof. There is a canonical choice of an embedding of H2(X,Z) into the Mukai
lattice U4 ⊕ E8(−1)2 which is described by Markman [8, Section 9]. Let Zv :=
(H2)⊥ in this embedding. The lattice L := 〈v, a〉 is generated by v and v+a

2 , whose

square is at least −2 by hypothesis and at most v2/4, therefore by [2, Thm 5.7]
a⊥ is a wall for the space of positive classes, hence there cannot be a Kähler class
orthogonal to it. �

In particular, it follows from the results in [1] and [11] that if there is a Kähler
class orthogonal to the Picard lattice, the Kähler cone coincides with the positive
cone.

Some lattice theory will be used in the following, the main reference here is [18],
where all of the following can be found. For a lattice L we define the discriminant
group AL := L∨/L. Let l(AL) denote the length of this group. If the lattice L is
even, AL has a bilinear form with values in Q/Z induced from the bilinear form on
L. This associated quadratic form is called the discriminant form of L and is de-
noted by qAL . If (l+, l−) is the signature of L, the integer l+− l− is called signature
of qAL and, modulo 8, it is well defined.

The following concerns primitive embeddings of lattices, i.e., embeddings where
the quotient is torsion free:

Lemma 2.9. [18, Proposition 1.15.1] Let S and N be even lattices of signature
(s+, s−) resp. (n+, n−). Primitive embeddings of S into N are determined by the
sets (HS , HN , γ,K, γK), where K is an even lattice with signature (n+−s+, n−−s−)
and discriminant form −δ where δ ∼= (qAS ⊕−qAN )|Γ⊥γ /Γγ and γK : qK → (−δ) is

an isometry. Moreover, two such sets (HS , HN , γ,K, γK) and (H ′S , H
′
N , γ

′,K ′, γ′K)
determine isomorphic sublattices if and only if

• HS = λH ′S, λ ∈ O(qS),

• ∃ ε ∈ O(qAN ) and ψ ∈ Isom(K,K ′) such that γ′ = ε◦γ and ε◦γK = γ′K◦ψ,

where ε and ψ are the isometries induced among discriminant groups.
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Here Γγ is the graph of γ. When a lattice L is a G-representation, we will call the
sublattice TG(L) fixed by L the invariant lattice, and its orthogonal complement
SG(L) - the coinvariant lattice.

3. Fixed loci: local case

The Hilbert scheme (C2)[n] represents a local model for K3[n]. Thus to analyze

the irreducible components of the fixed locus of ı on K3[n] we first need to analyze
the local geometry. The surface C2 has a natural symplectic form ω = dx∧ dy and
the involution

ı : x 7→ −x, y 7→ −y
preserves this form. The quotient of C2 by the involution is a singular surface that
admits a symplectic resolution:

Â1 → A1 = C2/ı.

It is elementary to see that the ı-fixed locus on (C2)[2] is isomorphic to Â1. Below
we show a generalization of this statement:

Lemma 3.1. For any n we have(
(C2)[n]

)ı
= (Â1)n/2,

if n is even and for odd n:(
(C2)[n]

)ı
= M((n− 1)δ/2 + e1, e1)

⋃
M((n− 1)δ/2 + e2, e1)

where the M(v, w) is the quiver variety for the quiver of the affine Dynkin diagram

of type Ã1 and δ = e1 + e2 is the imaginary root of the corresponding root system.
The quiver varieties are connected and of dimension:

dim (M((n− 1)δ/2 + e1, e1)) = n− 1, dim (M((n− 1)δ/2 + e2, e1)) = n− 3.

To explain the statement we need to remind our reader some basics of the theory
of the quiver varieties [15]. A quiver is a directed graph Q with a set of vertices I.
Given α ∈ NI , the set of representations of the quiver is:

Rep(Q,α) = ⊕a∈QMat(αh(a) × αt(a)),

where h(a) and t(a) are the head and the tail of the corresponding arrow. The
group

G(α) =

(∏
i∈I

GL(αi)

)
/C∗

acts on the vector space of representations.
The cotangent bundle of the space of representations is the space of the repre-

sentations of the double of the quiver Q̄:

T∗Rep = Rep(Q̄, α),

where the double is the quiver obtained from Q by adjoining a reverse arrow a∗ for
every arrow a ∈ Q.

The moment map µ : Rep(Q̄, α)→ Lie(G(α)) is given by:

µ(x)i =
∑
h(a)=i

xaxa∗ −
∑
t(a)=i

xa∗xa.



6 LJUDMILA KAMENOVA, GIOVANNI MONGARDI, ALEXEI OBLOMKOV

Let Q0 be a quiver and u, v ∈ NI0 . We define Q to be the quiver with the set of
vertices I = I0 ∪ ∞ and the set of arrows is the union of the set of arrows of Q0

and the arrows vi from ∞ to i ∈ Q0. Respectively, we define:

M(v, w) = Rep(Q̄, α), Gv = G(α),

where α is the vector with coordinates: αi = ui, i ∈ I0 and α∞ = 1. Nakajima [15]
defines the quiver variety as the GIT quotient of the subvariety of M(v, w):

M(v, w) = µ−1(0)//(Gv, χ),

where χ is the character of the group defined by χ(g) =
∏
k∈I det(g−1

k ). We indicate
the dependence of the quiver variety on the underlying quiver by the subindex:
MQ0

(v, w), MQ0
(v, w).

In our study we are most interested in the quiver varieties associated to the
following two quivers:

Q0 = • , Q′0 = • •

these are the quivers of affine Dynkin diagrams of types Ã0 and Ã1. Let the dimen-
sion vectors be (v, w) = ((n), (1)), (v, w) = ((n1, n2), (0, 1)), then the corresponding
enhanced quivers are:

Q = 1 ∞ , Q′ = 1 2 ∞ ,

in the pictures of the quivers we introduced the labels of the vertices.

The starting point of our proof is the quiver description of the space
(
C2
)[n]

[16]:

MQ0
((n), (1)) =

(
C2
)[n]

.

Proof of lemma 3.1. The involution ı on C2 induces an action on the MQ0
((n), (1)),

this involution acts trivially on C1 which corresponds to the vertex∞, and the space
Cn corresponding to the vertex 1 decomposes into the anti-invariant and invariant
parts Cn = Cn1 ⊕ Cn2 .

The vector space Cn in the quiver description of the Hilbert scheme corresponds
to the quotient space C[x, y]/I in the interpretation of the natural Hilbert scheme.
Moreover, the image of the map corresponding to the arrow from ∞ to 1 is the
span of 1 ∈ C[x, y]/I, hence the image is invariant under the involution ı. Thus,
the involution invariant part of the quiver variety union of the quiver varieties
constructed from the quiver representations is of the form:

Cn1 Cn2 C1 .

More formally, we conclude that we have an inclusion:((
C2
)[n]
)ı
⊂

⋃
n1+n2=n

MQ′0
((n1, n2), (0, 1)).

Next we recall the result of [5] that concerns with the classification of connected
non-empty quiver varieties. The result from the last part of the introduction in [5]
states that the quiver variety MQ0(v, w) is non-empty if and only if v is a positive
root of the Kac-Moody Lie algebra corresponding to the quiver Q0 and if it is
non-empty, then it is connected.
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The Kac-Moody Lie algebra corresponding to the quiver Q′0 is the Lie algebra
of the loop group of SL2 and the roots of this Lie algebra are:

nδ, e1 + nδ, e2 + nδ,

here δ = e1 + e2.
Thus, we can refine our previous inclusion:((

C2
)[n]
)ı
⊂MQ′0

((n/2, n/2), (0, 1)), if n is even,((
C2
)[n]
)ı
⊂
⋃
ε=±

MQ′0
(((n+ ε1)/2, (n− ε1)/2), (0, 1)), if n is odd.

In the case of even n we observe that since the ı-invariant locus is not empty,
the inclusion is actually an equality. The fact that the corresponding quiver variety
is the Hilbert scheme of points on the surface Â1 is standard (see, for example,
Theorem 4.9 in [14] ).

In the case of odd n we observe that the involution fixed locus must have at
least two connected components. Indeed, if I ⊂ C[x, y] is an involution fixed
ideal, then the quotient space C[x, y]/I has an action of the involution and the
dimension d(I) := dim (C[x, y]/I)

ı
is constant along any connected component of((

C2
)[n]
)ı

. It is not hard to find two monomial ideals I± of codimension n and

d(I±) = (n ± 1)/2, these two ideals belong to two disjoint connected components.
Thus, we conclude that in the case of odd n, the inclusion is also an equality.

The formula for the dimension of the quiver varieties is standard and could be
found, for example, in [5]. �

For small value of n, the result above has a more intuitive explanation. Indeed, if
n = 2, then the fixed locus

(
(C2)[2]

)
is the closure of the locus consisting of the pairs

of points z, ı(z), z 6= (0, 0). On the other hand, if n = 3, there are two connected
components of the involution: the closure of the locus of triples (z, (0, 0), ı(z)),
z 6= (0, 0) and an isolated point which is the square of the maximal ideal (x, y)2.
Then the connected components could be revealed by the analysis of the punctual

Hilbert scheme (C2)
[3]
(0,0) which is the cone over the twisted cubic: the involution

acts on the rulings of the cone preserving the vertex of the cone and infinite points
of the rulings.

Let us fix notations for the two connected components of the involution, we
denote the component of smaller dimension and large dimension by:((

C2
)[n]
)ı
−
,
((

C2
)[n]
)ı

+

4. Fixed loci of symplectic involutions

We recall some properties of the irreducible components of the fixed locus of a
symplectic involution.

Proposition 4.1. [3, Proposition 3] Let X be a hyperkähler manifold and ι be a
symplectic involution on X. Then the irreducible components of the fixed locus of ι
are symplectic subvarieties of X.

Proof. For completeness we are going to include the proof. Let Z be an irreducible
component of the fixed locus of ι. Since ι is a periodic endomorphism, Z is smooth
by [6]. After restricting to Z, we have the orthogonal decomposition TX|Z =
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TZ ⊕ NZ , where TZ and NZ are the eigenspaces corresponding to +1 and −1,
respectively. Since ι is a symplectic involution, then for any z ∈ Z, TzZ and NZ,z
are orthogonal and symplectic. �

The moduli space of pairs consisting of a hyperkähler manifold of K3[n] type
together with a symplectic involution is connected. This follows from the following
result of the second named author [10, Theorem 2.5]. Here we include a more
general version of the result where we remove the assumption that n− 1 is a prime
power.

Theorem 4.2. Let X be a manifold of K3[n] type or of Kummer n type. Let
G ⊂ Auts(X) be a finite group of numerically standard automorphisms. Then
(X,G) is a standard pair.

Proof. First, we want to prove that (X,G) is birational to a standard pair by using
the Global Torelli theorem, and then we want to prove that birational pairs can be
deformed one into the other while preserving the group action. For the first step, up
to deforming X, we can suppose that Pic(X) := SG(X)⊕Zδ, where δ ⊂ TG(X) is as
in Definition 2.4. Let S be the K3 (resp. Abelian) surface with a G-action such that
NS(S) = SG(S) = SG(X) and TG(S) = T (S) = T (X). The K3 (resp. Abelian)
surface S is uniquely determined if, under the identification T (S) = T (X), we have
σS = σX in T (X)⊗C. An easy computation shows that S[n] (resp. Kn(S)) and X
are Hodge isometric and, by the requirement of Definition 2.4, this Hodge isometry
extends to an isometry of the Mukai lattice, so with a suitable choice of markings
f, g the pairs (X, f) and (S[n], g) (resp. Kn(S)) are in the same component of the
Teichmuller space, thus by Theorem 2.7 they are birational and the birational map
commutes with the G-action by our construction of the Hodge isometry.

Now we continue with the second step. Let U be a representative of local de-
formations of X, with total family X and let V be a representative of local de-
formations of Y , with total family Y. By classical results of Huybrechts [7], up
to shrinking the family there is an isomorphism U ∼= V and a fibrewise birational
map ϕ : X 99K Y. Let us restrict to the local deformations of the pairs (X,G) and
(Y,G), which are the families over UG (which coincides with V G). Let t ∈ UG be
a point such that Pic(Xt) = SG(Xt), which is true for very general points. There
is a Kähler class orthogonal to SG(Xt) and, as G is symplectic, this class lies in
the orthogonal complement to Pic(Xt). Thus, the Kähler cone is the full positive
cone and all manifolds birational to Xt are isomorphic to it, so Xt ∼= Yt (and the
isomorphism is compatible with the G-action), so the pairs (X,G) and (Y,G) are
both deformation equivalent to (Xt, G), and our claim holds. �

Corollary 4.3. Let X be a manifold of K3[n] type and let ι be a symplectic involu-
tion. Then the fixed locus of ι has the form of the fixed locus on S[n] of a symplectic
involution coming from the K3 surface S.

Proof. By [12, Cor. 37], the coinvariant lattice of a symplectic involution is always
isometric to E8(−2). Thus, by Proposition 4.12, there is an embedding of E8(−2)
which is numerically standard and all others have an element v inside E8(−2) which
has divisibility 2 and is of square at least −6−2n. The latter case cannot be induced
by an involution on a manifold of K3[n] type, because otherwise an invariant Kähler
class would be orthogonal to v and this is in contradiction with Proposition 2.8.
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Thus, all pairs (X, ι) are numerically standard, therefore Thm. 4.2 applies and we
obtain our claim. �

Corollary 4.4. Let X be a manifold of Kummer n type and let ι be a symplectic
involution. Then the fixed locus of ι has the form of the fixed locus on Kn(A) of
the −1 involution coming from the Abelian surface A.

Proof. All possible symplectic involutions on the second cohomology of a manifold
of Kummer n type X have been classified in [13, Section 5 and 6]. Notice that there
is only one such involution by [13, Prop. 6.1], which however acts as an order four
automorphism on X, therefore a symplectic involution on X must have a trivial
action on H2(X). By Theorem 4.2, the pair (X, ι) is deformation equivalent to the
pair (Kn(A),−1) and our claim holds. �

Example 4.5. Consider Sym2(S), where S is a K3 surface with an involution i.
The involution i induces an involution ι on Sym2(S). The fixed locus of ι has a
component of the form S/i, because locally it consists of unordered pairs of points
{p, i(p)}, where p ∈ S. The rest of the fixed points are isolated unordered pairs of
the form {p, q}, where p and q are fixed points of i on S, with possible repetitions.
In [17] Nikulin proved that i has 8 fixed points on S. In [9] the second named
author proved that the fixed locus of ι on S[2] consists of 28 =

(
8
2

)
isolated points

and one copy of S. The eight fixed points of type {p, p} are contained in the minimal
resolution of S/i which is S.

Example 4.6. Consider Sym3(S), where S is a K3 surface with an involution i.
The involution i induces an involution ι on Sym3(S). The fixed locus of largest
dimension of ι locally looks like {p, i(p), q}, where p ∈ S and q is a fixed point of i on
S. There are 8 connected components of fixed loci of the form S/i, because there are
8 possibilities for q by Nikulin’s result [17]. The rest of the fixed points are isolated
of the form {p, q, r}, where p, q and r are fixed points of i on S. In total, there
are 56 points on S[3] corresponding to triples consisting of three different points
{p, q, r}, and all fixed points of the form {p, p, q} with p 6= q are contained in the
resolution of S/ι. There are eight more isolated fixed points given by schemes fully
supported on one point whose reduced scheme structure encompasses all possible
tangent directions.

The two examples above illustrate the difference between the even and the odd
cases of n when considering symplectic involutions on S[n] and are indicative of the
approach towards the following theorem.

Theorem 4.7. Let X be a hyperkähler manifold of K3[n] type, and let ι be a
symplectic involution on X. Then, up to deformation, the fixed locus F of ι consists
of finitely many copies of Hilbert schemes of K3 surfaces S[m] (where m ≤ n

2 ) and
possibly isolated fixed points (only when n ≤ 24). The fixed locus F is stratified into
loci of even dimensions F2m, where max(0, n2 −12) ≤ m ≤ n

2 . Each fixed locus F2m

of dimension 2m has ∑
2m=n−k−2l

(
8

k

)(
k

l

)
connected components, each one of which is a deformation of a copy of Y [m], where
Y is the K3 resolution of S/ι. In particular, the fixed locus Z of largest dimension
is the following.



10 LJUDMILA KAMENOVA, GIOVANNI MONGARDI, ALEXEI OBLOMKOV

(i) If n is even, then Z consists of one copy of Y [n2 ];

(ii) If n is odd, then Z consists of 8 copies of Y [n−1
2 ].

Proof. From Corollary 4.3, we can restrict to the case when X = S[n] and ι comes
from a symplectic involution on S. Let us denote by Y the minimal resolution of
S/ι. Since the involution ι acts as the identity on the effective classes in H2(X,R),
it preserves the exceptional divisor of S[n]. Therefore, it descends to an action on
SymnS.

By Proposition 4.1, the irreducible components of the fixed locus of ι are sym-
plectic subvarieties of X, and in this case each one of them has even dimension
2m. Let us label the fixed locus of dimension 2m by F2m. By Nikulin’s theorem in
[17], the symplectic involution on the K3 has 8 fixed points f1, · · · , f8. Each strata
F2m looks like SymmS/ι× Symn−2m(f1 ∪ · · · ∪ f8). Let l1, · · · , l8 be the degrees of
f1, · · · , f8.

Let us denote by Ui some small analytic neighborhoods around fi. Since S
is connected, we can connect any involution fixed point point to a point inside
(U1)[n1] × · · · × (U8)[n8] for some ni ≥ 0. Respectively, the fixed locus inside these

analytic neighborhoods are the products U~n,~s =
(
(U1)[n1]

)ı
s1
× · · · ×

(
(U8)[n8]

)ı
s8

where si is ± if ni is odd and si = ∅ if ni is even. Let k(~n,~s) be a number of
odd ni and l(~n,~s) is the number i such that si = − then the dimension of U~n,~s is
n− k(~n,~s)− 2l(~n,~s).

By moving a pair of points z, i(z) from one neighborhood Ui to another Uj we

connect analytic sets U~n,~s and U ~n′,~s′ as long as k(~n,~s) = k(~n′, ~s′) and l(~n,~s) =

l(~n′, ~s′). On the other hand, it’s also clear that the if we can connect analytic sets

U~n,~s and U ~n′,~s′ then k(~n,~s) = k(~n′, ~s′), because we can only move points between

the neighborhoods in pairs. Finally, if the invariant l(·, ·) changes along a path then
the dimension of the connected component would change too. Thus we proved our
formula for the number of connected components.

Now we shall describe explicitely the fixed locus Z = F2[n2 ] of largest dimension.

Let m = [n2 ] be the largest integer not greater than n
2 , i.e., m = n

2 if n is even

and m = n−1
2 if n is odd. Then the fixed locus of largest dimension is of the

form {x1, ι(x1), x2, ι(x2), · · · , xm, ι(xm)} if n is even, i.e., one copy of SymmS/ι,
where xi ∈ S for 1 ≤ i ≤ m. In the case when n is odd, the fixed locus of largest
dimension is of the form {x1, ι(x1), x2, ι(x2), · · · , xm, ι(xm), xm+1}, where xi ∈ S
for 1 ≤ i ≤ m and xm+1 is a fixed point, i.e., Z contains eight copies of SymmS/ι
since there are 8 choices for xm+1. In both cases, the dimension of SymmS/ι is
2m. �

Remark 4.8. As a special case of this theorem when n = 2 we obtain the description
of the fixed locus F of ι on S[2] that the second named author proved in [9], namely
that F consists of 28 =

(
8
2

)
isolated points and one copy of the minimal resolution

of S/ι.

Remark 4.9. The involution fixed locus does not have a zero dimensional component

if n > 24. On the other hand,
(

K3[24]
)ı

has a zero dimensional component which

is the product of eight squares of maximal ideals of the involution fixed locus.

Finally, let us conclude with the analogous result in the Kummer case. To state
the combinatorial part of the result we need a few extra notations. Given a subset
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I ⊂ Z4
2, we denote by |I| the size of the set and ||I|| the element of Z4

2 which is the
total product of the elements in the set. Thus, we define:

Nn
m =

∑
I,||I||=1

(
(n− |I|)/2−m

|I|

)
.

Theorem 4.10. Let X be a hyperkähler manifold of Kummer n type, and let ι be a
symplectic involution on X. Then, up to deformation, the fixed locus F of ι consists
of finitely many copies of Hilbert schemes of K3 surfaces S[m] (where m ≤ n+1

2 )
and possibly isolated fixed points (only when n ≤ 48). The fixed locus F is stratified
into loci of even dimensions F2m, where max(0, n+1

2 − 24) ≤ m ≤ n+1
2 . Each fixed

locus F2m of dimension 2m has Nn
m connected components, each one of which is a

deformation of a copy of S[m]. In particular, the fixed locus Z of largest dimension

is one copy of S[n+1
2 ].

Proof. From Corollary 4.4, we can restrict to the case when X = Kn(A) and ι
comes from a the −1 involution on A. Since the involution ι acts as the identity on
the classes in H2(X,R), it preserves the exceptional divisor of Kn(A). Therefore, it
descends to an action on Symn+1A preserving the fibre over 0 of the Albanese map.
Let us first look at this action on Symn+1A, and then let us look at the Albanese
fibre of the fixed locus.

By Proposition 4.1, the irreducible components of the fixed locus of ι are sym-
plectic subvarieties of X, and in this case each one of them has even dimension
2m + 2. Let us label the fixed locus of dimension 2m + 2 by F2m. The symplec-
tic involution on the Abelian surface A has 16 fixed points f1, · · · , f16, and there
is a natural identification of {f1, . . . , f16} with Z4

2. The same argument as in the
previous theorem implies that there is a natural correspondence between the 2m-
dimensional connected components of the involution fixed locus and the set of pairs:
I− ⊂ Iodd ⊂ Z4

2 such that 2m = n− |Sodd| − 2|S−|.
Finally, let us notice that the Albanese map is constant on the connected com-

ponents and the value of the map on the connected component is 1 iff ||Iodd|| = 1.
�
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Appendix: lattice computations

In this appendix we include all the computations needed in the proof of Corollary
4.3. Let E8 be the unique unimodular even positive definite lattice of rank 8 and
let S := E8(−2) be the same lattice with the quadratic form multiplied by −2. The
discriminant group of S is Z8

2 and its elements are classes [v/2], where v ∈ S. The
discriminant form on these elements takes the values 0 or 1 modulo 2Z (i.e., it is 0
if v2 is divisible by 8 and 1 otherwise). We have the following:
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Lemma 4.11. For every element α in AS there is an element v ∈ S such that
[v/2] = α and v2 ≥ −16.

Proof. As E8 is generated by its roots, the discriminant group of S is generated
by classes of half-roots, which have square −4. Thus, all elements of AS can be
represented by half the sum of at most eight distinct roots. The sum of two roots
is either a root (if they are not orthogonal) or an element of square −8. As there
can be at most a set of four orthogonal roots, the claim follows. �

Let Ln := U3 ⊕E8(−1)2 ⊕ (−2n+ 2) be the lattice corresponding to the second
cohomology of a K3[n] type manifold. We then have the following:

Proposition 4.12. Let Ln and S be as above. Then, up to isometry, there is only
one primitive embedding of S into Ln such that S contains no element of divisibility
two and square bigger than −6− 2n.

Proof. The discriminant group of Ln has one generator whose discriminant form is
− 1

2(n−1) . There is only one element in this group whose order is precisely two, and

it has discriminant form −n−1
2 modulo 2Z. As per Lemma 2.9, primitive embedding

of S into Ln are determined by a quintuple (HS , HLn , γ,K, γK), where the first two
are subgroups of AS and ALn , respectively, and γ is an anti-isometry between the
two. Thus, when n is even, HS , HLn and γ are trivial as all elements of AS have
integer square. When n is odd, either we are in the same case as before or we have
nontrivial HS , HLn and γ. In the latter case, HLn is unambiguously determined
and by Lemma 4.11 the non trivial element of HS is represented by half an element
v of square at least −16 (more specifically, at least −16 if n− 1 is divisible by four
and at least −12 otherwise). Thus, v is an element of square at least −6− 2n and
of divisibility 2 in Ln, as [v/2] is non trivial in ALn . �

We conclude this appendix with a criterion to avoid checking the last condition
in Definition 2.4:

Proposition 4.13. Let (X,G) be a pair such that there exists a K3 (resp. Abelian)
surface S and G ⊂ Auts(S) such that H2(S[n]) (resp. H2(Kn(A))) and H2(X) are
isomorphic G representations. Moreover, suppose that U ⊂ TG(S). Then (X,G) is
numerically standard.

Proof. By the hypothesis we have a Hodge isometry ϕ : H2(X)→ H2(S[n]) (resp.
H2(Kn(A))) which might not extend to an isometry of the Mukai lattice Λ :=
U4⊕E8(−1)2 (resp. Λ := U4), that is, it is not compatible with the two embeddings
ψ1 : H2(X,Z) → Λ and ψ2 : H2(S[n],Z) → Λ. Let δ be half the class of the
exceptional divisor in S[n] (resp. Kn(A)) and let δx := ϕ[−1](δ). Let v be a
generator of ψ2(H2)⊥ and vx be the same for ψ1(H2)⊥. As discussed in in [8,
Section 9], the fact that ϕ does not extend to Λ means that it does not respect
the two gluing data associated to the pairs (v, δ) and (vx, δx). The gluing data
corresponds to a choice of an anti-isometry between the two discriminant groups
AH2 and A〈v〉. However, we have U ⊂ TG(S) and let L := U⊕Zδ ⊂ TG(S[n]) (resp.
TG(Kn(A))), thus, by [18, Thm 1.14.2] applied to L, we can compose ϕ with an
isometry γ of H2(S[n]) (resp. H2(Kn(A))) which is trivial on L⊥ and arbitrarily
non trivial on AL ∼= AH2(S[n]), thus δ ◦ ϕ extends to an isometry of the Mukai
lattices.

�
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In particular, this proposition applies to symplectic involutions on manifolds of
K3[n] type .
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