
RATIONAL SURFACES IN INDEX-ONE FANO

HYPERSURFACES

ROYA BEHESHTI AND JASON MICHAEL STARR

Abstract. We give the first evidence for a conjecture that a general, index-
one, Fano hypersurface is not unirational: (i) a general point of the hypersur-
face is contained in no rational surface ruled, roughly, by low-degree rational
curves, and (ii) a general point is contained in no image of a Del Pezzo surface.

1. Introduction

For complex, projective varieties a classical notion is unirationality: A variety
rationally dominated by projective space is unirational. A modern notion is rational
connectedness: A variety is rationally connected if every pair of points is contained
in a rational curve. Every unirational variety is rationally connected. The two
notions agree for curves and surfaces. Conjecturally they disagree in higher dimen-
sions.

Conjecture 1.1. For every integer n ≥ 4 there exists a non-unirational, smooth,
degree-n hypersurface in Pn.

A smooth hypersurface in Pn of degree d ≤ n is an index-(n + 1 − d), Fano

manifold. By [2] and [9], every Fano manifold is rationally connected. Versions of
Conjecture 1.1 have been around for decades. The specific case n = 4 is attributed
to Iskovskikh and Manin, [7].

In [8], Kollár suggested an approach to proving Conjecture 1.1. A general point
of an n-dimensional, unirational variety is contained in a k-dimensional, rational
subvariety for each k < n. Thus, Conjecture 1.1 for n ≥ 5 follows from the next
conjecture.

Conjecture 1.2. For every integer n ≥ 5, there exists a smooth, degree-n hyper-
surface in Pn whose general point is contained in no rational surface.

In fact the conjecture fails for n = 4. The following argument was related to
us by Rahul Pandharipande and Joe Harris and independently by Miles Reid. For
every smooth degree 4 hypersurface X ⊂ P4, for general p ∈ X , the set Cp of lines
L osculating to X to order 3 at p is a smooth conic in the projective tangent bundle
PTpX ∼= P2. Of course L∩X = 3p+ qL for a point qL. Varying L in Cp, the points
qL sweep out a rational curve Bp (of degree 6). Varying p in a rational curve D, the
union of the curves Bp is a rational surface BD. Finally, varying D among rational
curves in X , a general point of X is contained in a rational surface BD.

We give the first evidence for Conjecture 1.2.
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Theorem 1.3. For every integer n ≥ 5, every smooth, degree-n hypersurface X in

Pn contains a countable union of closed, codimension-2 subvarieties containing the

image of every generically-finite, rational transformation P1×P1
99K X mapping a

general fiber {t} × P1 isomorphically to an (n− 1)-normal, smooth, rational curve

in X.

Theorem 1.4. For every integer n ≥ 5, every smooth, degree-n hypersurface in

Pn contains a countable union of closed, codimension-2 subvarieties containing the

image of every generically finite, regular morphism from a Del Pezzo surface to X.

A projective variety is k-normal if every global section of the restriction ofOPn(k)
is the restriction of a global section on Pn.

We present two approaches here. First, given a rational surface S and a regular
morphism f : S → X , to prove deformations of f are contained in a codimension-2

subvariety ofX it suffices to prove
∧n−4

(f∗TX/TS)/Torsion has no nonzero section.
In Section 2 this is used to prove Theorems 1.3 and 1.4.

Second, a rational surface with a pencil of rational curves gives a morphism from
P

1 to a parameter space of rational curves onX . There is a construction of algebraic
differential forms on the parameter space. Since P1 has only the zero form, these
forms impose restrictions on rational curves in the parameter space. In Section 3,
these restrictions are used to prove the following generalization of Theorem 1.3.

Theorem 1.5. For every integer n ≥ 5, every smooth, degree-n hypersurface X in

Pn contains a countable union of closed, codimension-2 subvarieties containing the

image of every generically-finite, rational transformation S 99K X from a surface

with a pencil of curves mapping the general curve isomorphically to an (n − 1)-
normal, smooth curve of genus 0 or 1, also assumed non-degenerate if the genus is

1.

As the second approach does not apply to Theorem 1.4, the first approach is
more productive. However, further progress in proving Conjecture 1.2 will likely
use both approaches, as well as new ideas.

Acknowledgments. The authors thank Mike Roth for many illuminating discus-
sions. We also thank the referee for helpful comments which improved the exposi-
tion.

2. The first approach

Let X be a smooth, degree-n hypersurface in Pn, n ≥ 5. Denote by Hilb(X) the
Hilbert scheme of X . Theorem 1.3 follows easily from the next theorem.

Theorem 2.1. Let Z be an irreducible subscheme of Hom(P1,Hilb(X)) satisfying,

(i) the associated morphism Z × P
1 → Hilb(X) does not factor through the

projection Z × P1 → Z, and

(ii) the image of a general point of Z×P1 parametrizes a smooth, (n−1)-normal,

rational curve in X.

Then there exists a codimension ≥ 2 subvariety of X containing all curves parametrized

by Z × P
1.
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A morphism P1 → Hilb(X) is equivalent to a closed subscheme S ′ ⊂ P1 × X ,
flat over P1. If a general point of P1 parametrizes a smooth rational curve, then
S′ is an irreducible surface. Any desingularization S of S ′ is a surface fitting in a
diagram,

S
f

π

X

P
1

(1)

Associated to this diagram there is a derivative map

df : TS → f∗TX

and a torsion-free sheaf
n−4∧

(f∗TX/TS)/Torsion.

Proposition 2.2. Let Z be an irreducible subvariety of Hom(P1,Hilb(X)) satisfy-

ing,

(i) the associated morphism Z × P
1 → Hilb(X) does not factor through the

projection Z × P1 → Z,

(ii) a general point of Z × P1 parametrizes a smooth curve in X, and

(iii) there is no codimension 2 subvariety of X containing all curves parametrized

by Z × P1.

Then, for the morphism P1 → Hilb(X) parametrized by a general point of Z, the

torsion-free sheaf
∧n−4

(f∗TX/TS)/Torsion associated to the diagram in Equation 1

has a nonzero global section.

Remark 2.3. This proposition holds if P1 is replaced by any other curve, and even
if Hom(P1,Hilb(X)) is replaced by the scheme of all maps from smooth projective
connected curves to Hilb(X).

Proof. Replacing Z by a dense, Zariski open subset if necessary, we may assume Z
is smooth. Let V ′ ⊂ Z ×P1 ×X be the pullback of the universal family to Z ×P1.

Let φ : V → V ′ be a desingularization of V ′. Denote by g′ the projection map
from V ′ to Z×X , and denote by p′ the projection map from V ′ to Z. Let g = g′◦φ,
and let p = p′ ◦ φ.

V

g

φ

p

V ′

p′

g′

Z ×X

Z × P1

Z.

Replacing Z by a dense, Zariski open subset if necessary, we may assume p is
smooth, cf. [6, Corollary III.10.7]. Associated to the morphism g is the derivative
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map,

dg : TV → g∗TX .

Associated to the morphism p is the derivative map,

dp : TV → p∗TZ .

By hypothesis, dp is surjective. Denote by Tp the kernel of dp. Because Z × P
1 →

Hilb(X) does not factor through Z, the restriction of g to a general fiber of p maps
generically finitely to its image. Therefore the following sheaf homomorphism is
generically injective,

dg : Tp → g∗TX .

As Tp is locally free and V is integral, the sheaf homomorphism dg is injective on
all of X .

Denote Coker(dg) by N ,

N := Coker(dg : Tp → g∗TX).

The following is a commutative diagram with exact rows

0 Tp

=

TV
dp

dg

p∗TZ 0

0 Tp g∗TX N 0

By the universal property of cokernels, there is a unique sheaf homomorphism,

u : p∗TZ → N ,

such that the following diagram commutes,

0 Tp

=

TV
dp

dg

p∗TZ

u

0

0 Tp g∗TX N 0

By generic smoothness, the rank of dg at a general point of V equals the di-
mension of the closure of Image(g). By hypothesis, this is ≥ n− 2. Therefore the
rank of u at a general point is ≥ n − 4. Thus, the restriction of u to a general
(n − 4)-plane in the fiber of p∗TZ has rank n − 4. A general (n − 4)-plane is the
tangent space of a general (n− 4)-dimensional subvariety of Z. We may replace Z
be the smooth locus inside a general (n−4)-dimensional subvariety of Z. Therefore
we may assume Z is (n− 4)-dimensional and u is generically injective.

Associated to u, there is an induced map,

n−4∧
(u) : p∗

n−4∧
TZ →

n−4∧
N/Torsion.

Because u is generically injective and n ≥ 5, this map is generically injective.
Let z be a general point of Z, and denote by S ′ and S the fibers of p′ and p

over z, respectively. Since V is smooth, S is a smooth surface. Let f : S → X
be the restriction of g to S. The restriction of N to S is precisely f ∗TX/TS. The
restriction of p∗TZ to S is precisely the trivial vector bundle TZ,z ⊗C OS . Since
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z is general, the restriction of
∧n−4

(u) is generically injective. Therefore, it is a
nonzero map,

n−4∧
(u)|S : (

n−4∧
TZ,z)⊗C OS → (

n−4∧
f∗TX/TS)/Torsion.

By our assumption TZ,z is (n − 4)-dimensional. Therefore this nonzero map is

equivalent to a nonzero global section of (
∧n−4 f∗TX/TS)/Torsion (well-defined up

to nonzero scaling). �

Proposition 2.4. Let P1 → Hilb(X) be a morphism with associated diagram as in

Equation 1. If the curve parametrized by a general point of P1 is smooth, rational

and (n− 1)-normal then

h0(S, ωS ⊗
n−2∧

f∗TX) = 0.

Proof. Pulling back the short exact sequence of tangent bundles

0→ TX → TPn |X → NX/Pn
∼= OX (n)→ 0

to S and taking its (n− 1)st exterior power gives another short exact sequence

0→
n−1∧

f∗TX →
∧n−1

f∗TPn → f∗OX(n)⊗
∧n−2

f∗TX → 0.

Tensoring this sequence with ωS ⊗ f∗OX(−n) gives the following short exact se-
quence

0→ ωS⊗f
∗OX (−n)⊗

n−1∧
f∗TX → ωS⊗f

∗OX(−n)⊗
n−1∧

f∗TPn → ωS⊗
n−2∧

f∗TX → 0.

By applying the long exact sequence of cohomology, we conclude that

h0(S, ωS ⊗
n−2∧

f∗TX) = 0

if both

(i) h0(S, ωS ⊗ f∗OX(−n)⊗
∧n−1

f∗TPn) = 0, and

(ii) h1(S, ωS ⊗ f∗OX(−n)⊗
∧n−1

f∗TX) = 0.

Proof of (i). Consider the Euler exact sequence on Pn

0→ OPn → OPn(1)n+1 → TPn → 0.

Pulling this back to S, and taking its nth exterior power gives the following exact
sequence

0→
∧n−1

f∗TPn → f∗OX (n)⊕(n+1) → f∗OX(n+ 1)→ 0.

Tensoring with ωS ⊗ f∗OX(−n) gives an injective map

ωS ⊗ f
∗OX(−n)⊗

∧n−1
f∗TPn → ω

⊕(n+1)
S .

Thus it suffices to prove h0(S, ωS) = 0. Because the general fibers of S → P1 is a
rational curve, S is a rational surface. Therefore h0(S, ωS) = 0.

Proof of (ii). There is a canonical isomorphism

ωS ⊗ f
∗OX(−n)⊗

∧n−1
f∗TX ∼= ωS ⊗ f

∗OX(−n+ 1).
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So by Serre duality, it suffices to prove h1(S, f∗OX (n−1)) = 0. Let C be a general
fiber of the map π : S → P1. There is a short exact sequence

0→ f∗OX(n− 1)⊗ IC/S → f∗OX(n− 1)→ f∗OX(n− 1)|C → 0, (2)

where IC/S is the ideal sheaf of C in S. By hypothesis, the image of C by f is
(n− 1)-normal in Pn, therefore the map

H0(S, f∗OX (n− 1))→ H0(C, f∗OX(n− 1)|C)

is surjective. The long exact sequence of cohomology associated to the sequence in
Equation 2 gives an isomorphism

H1(S, f∗OX(n− 1)⊗ IC/S) ∼= H1(S, f∗OX(n− 1)). (3)

Recall a coherent sheaf F on S is called π-relatively globally generated if the
following sheaf homomorphism is surjective,

π∗π∗F → F .

The surface S is smooth and the general fiber of π is a smooth, rational curve.
Therefore if F is π-relatively globally generated, then R1π∗F is the zero sheaf.

Of course, since f∗OX (n − 1) is globally generated, it is π-relatively globally
generated. Because IC/S ∼= π∗OP1(−1), the twist f∗OX(n−1)⊗IC/S is π-relatively

globally-generated. Thus the sheaves R1π∗(f
∗OX(n − 1)) and R1π∗(f

∗OX(n −
1) ⊗ IC/S) are each zero. So, by the Leray spectral sequence, there are canonical
isomorphisms

H1(S, f∗OX(n− 1)) ∼= H1(P1, π∗(f
∗OX(n− 1))), (4)

H1(S, f∗OX(n− 1)⊗ IC/S) ∼= H1(P1, π∗(f
∗OX(n− 1)⊗ IC/S)). (5)

Taken together, Equations 3, 4 and 5 give a canonical isomorphism

H1(P1, π∗(f
∗OX(n− 1))) ∼= H1(P1, π∗(f

∗OX (n− 1))⊗OP1(−1)).

This is possible only if h1(P1, π∗(f
∗OX(n− 1))) = 0. �

Proof of Theorem 2.1. Let Z satisfy the hypotheses of Proposition 2.2, and let S
and f satisfy the conclusion of Proposition 2.2. The injective sheaf homomorphism
df : TS → f∗TX induces a multiplication map,

2∧
TS ⊗

n−4∧
f∗TX →

n−2∧
f∗TX .

Because
∧3

TS is the zero sheaf, the kernel of the multiplication map contains the
image of the following sheaf homomorphism

2∧
TS ⊗ TS ⊗

n−5∧
f∗TX →

2∧
TS ⊗

n−4∧
f∗TX .

This image is precisely the kernel of the following sheaf homomorphism

2∧
TS ⊗

n−4∧
f∗TX →

2∧
TS ⊗

n−4∧
(f∗TX/TS).

Therefore the multiplication map factors uniquely through this surjective sheaf
homomorphism, i.e., there is an induced sheaf homomorphism,

2∧
TS ⊗

n−4∧
(f∗TX/TS)→

n−2∧
f∗TX .
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Because
∧n−2

f∗TX is locally free and X is integral, every coherent subsheaf is
torsion-free. Thus the homomorphism factors through the torsion-free quotient,

2∧
TS ⊗

n−4∧
(f∗TX/TS)/Torsion→

n−2∧
f∗TX .

On the open dense subset of S where f is unramified, this homomorphism is
clearly injective. Because the domain of the homomorphism is torsion-free and S
is integral, the sheaf homomorphism is injective on all of X . Tensoring with the
canonical bundle of ωS, this gives an injective sheaf homomorphism

(
∧n−4

(f∗TX/TS))/Torsion→ ωS ⊗
∧n−2

f∗TX .

By hypothesis, (
∧n−4(f∗TX/TS))/Torsion has a nonzero global section. Therefore

ωS ⊗
∧n−2

f∗TX also has a nonzero global section.
On the other hand, for Z satisfying the hypothesis of Theorem 2.1, Proposition

2.4 implies,

h0(S, ωS ⊗
∧n−2

f∗TX) = 0.

Thus Z does not satisfy the hypothesis of Proposition 2.4, i.e., it does not satisfy
Hypothesis (iii). Therefore there exists a codimension 2 subvariety of X containing
all the curves parametrized by Z × P1. �

Proof of Theorem 1.3. For every generically-finite, rational transformation P1 ×
P

1
99K X restricting to a closed immersion on a general fiber, there is an asso-

ciated rational transformation

P
1

99K Hilb(X), t 7→ Image({t} × P
1).

By properness of the Hilbert scheme and the valuative criterion, this extends
to a regular morphism. Therefore, associated to each rational transformation
is an element in the Hom-scheme Hom(P1,Hilb(X)). Those rational transfor-
mations satisfying the hypothesis of Theorem 1.3 give a locally closed subset of
Hom(P1,Hilb(X)). As Hom(P1,Hilb(X)) is a countable union of quasi-projective
varieties, this subset is also a countable union of quasi-projective subvarieties. By
Theorem 2.1, for each such subvariety Z, there is a codimension-2 subvariety of X
containing every curve parametrized by Z×P1. This subvariety contains the image
of each rational transformation P1×P1

99K X giving a point in Z. Therefore, there
exists a countable union of codimension-2 subvarieties of X containing the image
of every rational transformation satisfying the hypothesis of Theorem 2.1. �

The proof of the Theorem 1.4 is similar to the proof of Theorem 2.1. There is a
preliminary proposition.

Proposition 2.5. Let X be a smooth hypersurface of degree n in Pn. For every

Del Pezzo surface S and every generically finite morphism f : S → X, the only

global section of
∧n−4

(f∗TX/TS)/Torsion is the zero section.

Proof. The proof is similar to the proof of Theorem 2.1. By the same type of
argument, it suffices to prove,

(i) h0(S, ωS ⊗ f∗OX(−n)⊗
∧n−1 f∗TPn) = 0, and

(ii) h1(S, ωS ⊗ f
∗OX(−n)⊗

∧n−1
f∗TX) = 0.
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The proof of (i) is the same as in the proof of Theorem 2.1, since h0(S, ωS) = 0.
As for (ii), there is a canonical isomorphism

ωS ⊗ f
∗OX (−n)⊗

∧n−1
f∗TX ∼= (ω−1

S ⊗ f
∗OX(n− 1))−1.

Denote ω−1
S ⊗f

∗OX (n−1) by L. The sheaf f∗OX (n−1) is globally generated. By

the hypothesis that S is a Del Pezzo surface, ω−1
S is ample. Thus L is ample. By

Kodaira vanishing, h1(S,L−1) = 0. So, using the canonical isomorphism, h1(S, ωS⊗

f∗OX (−n)⊗
∧n−1

f∗TX) = 0. �

Proof of Theorem 1.4. By the same countability argument as at the beginning of
the section, it suffices to prove that for every flat family

D

p

φ
X × V

V

such that φ is generically finite and a general fiber of p is a Del Pezzo surface, the
image of φ is contained in a subvariety of codimension ≥ 2. Let S be the fiber
of p over a general point of V , and let f be the restriction φ|S : S → X . As in
the proof of the Proposition 2.2, if the image of φ is contained in no subvariety

of codimension ≥ 2, then H0(S,
∧n−4

(f∗TX/TS)/Torsion) has a nonzero global
section. Thus Proposition 2.5 proves the image of φ is contained in a subvariety of
codimension ≥ 2. �

3. The second approach

Let n ≥ 4 be an integer. Let X be a smooth hypersurface in Pn of degree n. Let
M be a proper, smooth variety parametrizing a family of genus g curves in X .

Theorem 3.1. Assume g = 0 or 1. Assume dim(M) = n − 3 and the curves

parametrized by M sweep an (n−2)-fold in X. Assume a general curve parametrized

by M is embedded, smooth, and (n−1)-normal. Further, if g = 1, assume the curve

is nondegenerate. Then hn−3,0(M) ≥ 1. In particular, M is not uniruled.

Here is the outline of the proof.

(i) There is a natural correspondence between X and M giving a map

φ : H1(X,Ωn−2
X )→ H0(M,Ωn−3

M ).

It suffices to prove φ 6= 0.
(ii) For a point m of M , taking the fiber of a global section of Ωn−3

M at m gives
a map

φm : H1(X,Ωn−2
X )→ Ωn−3

M ⊗ κ(m).

If m is a general point of M , there is a description of φm as the composition
of a number of explicit “component” maps. To prove φ 6= 0, it suffices to
prove φm is surjective.

(iii) The hypotheses imply the component maps are surjective. For instance,
one of the component maps is the “restriction of sections” map

H0(X,OX(n− 1))→ H0(C,OX (n− 1)|C)
8



where C is the curve parametrized by m. Surjectivity of this map is pre-
cisely the hypothesis that C is (n− 1)-normal.

There is one preliminary reduction having to do with the type of family of curves
parametrized by M . Embedded smooth curves in X are parametrized by a scheme
that is simultaneously an open subset of three different proper parameter spaces:
the Chow variety of X , the Hilbert scheme of X and the Kontsevich space of
stable maps to X . Thus there are (at least) three ways to generalize the notion
of embedded smooth curves. This last one is most useful to us. The Kontsevich
(coarse moduli) space is denoted by Mg,0(X).

Because a general curve parametrized by M is embedded and smooth, there is
a rational transformation ζ : M 99K Mg,0(X). For smooth projective varieties M ,
hn−3,0(M) is a birational invariant. So we are free to blow-up M without changing
hn−3,0(M). Therefore assume ζ is regular on all of M .

There is a universal family of curves over Mg,0(X) and a map from this family
to X . The pullback family of curves is denoted π : CM →M . The pullback of the
map is denoted fM : CM → X .

3.1. Construction of the forms. First we construct the (n − 3)-forms on M .
Then there will be some work to prove some of these are nonzero. The (n − 3)-
forms are constructed using the obvious correspondence

M
π
←− CM

fM

−−→ X

between M and X . The first part of this correspondence is straightforward: For
every pair of integers (p, q) there is a pullback map

f∗
M : Hq+1(X,Ωp+1

X )→ Hq+1(CM ,Ω
p+1
CM

).

The other part of the correspondence is an “integration along fibers” map

I : Hq+1(CM ,Ω
p+1
CM

)→ Hq(M,ΩpM ).

Naively it is clear what this is, but we include the construction below for complete-
ness.

Integration along fibers. Let U ⊂ M be the (dense) open subset over which
CU := π−1(U) is a family of smooth curves. There is a canonical isomorphism

π∗ΩpU ⊗ ωπ|U
∼= Ωp+1

Cu
/π∗Ωp+1

U

where ωπ|U is the relative cotangent bundle ΩCU/U . Composing with the quotient
map gives

φp : Ωp+1
CU
→ π∗ΩpU ⊗ ωπ|U

As proved in [3] this extends to a sheaf homomorphism on all of CM

φp : Ωp+1
CM
→ π∗ΩpM ⊗ ωπ.

This sheaf homomorphism gives a map of cohomology

φp,∗ : Hq+1(CM ,Ω
p+1
CM

)→ Hq+1(CM , π
∗ΩpM ⊗ ωπ).

The morphism π determines a Leray spectral sequence for cohomology of sheaves
on CM . The spectral sequence has an abutment map

Hq+1(CM , π
∗ΩpM ⊗ ωπ)→ Hq(M,ΩpM ⊗R

1π∗ωπ).
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Of course there is a trace isomorphism

R1π∗ωπ
∼=
−→ OM .

So the abutment map can be written as

a : Hq+1(CM , π
∗ΩpM ⊗ ωπ)→ Hq(M,ΩpM ).

This gives the integration along fibers map

I = a ◦ φp,∗ : Hq+1(CM ,Ω
p+1
CM

)→ Hq(M,ΩpM ).

Lemma 3.2 ([3]). For every pair of integers (p, q) there is a natural map of C-

vector spaces

φp,q = I ◦ f∗
M : Hq+1(X,Ωp+1

X )→ Hq(M,ΩpM ).

In particular, this gives a map of C-vector spaces

φ = φn−3,0 : H1(X,Ωn−2
X )→ H0(M,Ωn−3

M ).

3.2. Description of the forms – overview. The goal is to prove φ 6= 0. Proving
this directly from the definition of φ seems difficult: the definition is fairly simple,
but not very explicit.

What would be a more explicit description of φ? Because elements ofH0(M,Ωn−3
M )

are sections of the sheaf Ωn−3
M , one possibility is to try to describe the values of

these sections at some point m ∈ M . The fiber Ωn−3
M ⊗ κ(m) is the vector space

of (n− 3)-linear alternating forms on the Zariski tangent space TmM . Thus, given
a point m ∈ M , given an element α ∈ H1(X,Ωn−2

X ) and given an (n − 3)-tuple of
tangent vectors θ1, . . . , θn−3 ∈ TmM , the map φ is a rule

(α, θ1, . . . , θn−3) 7→ 〈φ(α)|m, θ1 ∧ · · · ∧ θn−3〉 ∈ C.

Equivalently, it is a map

φm : H1(X,Ωn−2
X )→ (

n−3∧
TmM)∨.

An explicit description of φ is quite simply an explicit description of the rule φm
for general m. In particular, if φm 6= 0 for some m then φ 6= 0.

In fact there is such a description, at least when m is in the open subset U
parametrizing embedded smooth curves: φm is the composition of a number of
simple, explicit maps. To be honest, there are quite a number of these component
maps. For this reason the composition φm is not very simple. But it is explicit.

Lemma 3.3. Denote by L the invertible sheaf on C

L :=

n−2∧
NC/X ⊗N

∨
X/Pn |C .
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There is a commutative diagram

H0(X,Ωn
Pn(2X)|X)

r

res

H1(X,Ωn−2
X )

φm

H0(C,Ωn
Pn(2X)|C)

H0(C,ψ)

H0(C, ωC ⊗L
∨)

s

H1(C,
∧n−2

NC/X ⊗N
∨
X/Pn |C)∨

δ†

H0(C,
∧n−3

NC/X)∨

w†

(
∧n−3

H0(C,NC/X ))∨
(
V

dζ)†

(
∧n−3 TmM)∨

(6)

Of course this is meaningless without an explicit description of the component
maps, which we give next. But before describing the component maps it is worth
putting things in perspective. The proof that φm 6= 0 uses only Lemma 3.3, not
the definition from Lemma 3.2. So, the reader is probably asking, why did we
bother with Lemma 3.2? Think of it this way: We are about to give an explicit
map from global (n − 2, 1)-forms on X to (n − 3, 0)-forms on U . Holomorphic
(n−3, 0)-forms on U are meromorphic (n−3, 0)-forms on M (with poles contained
in M − U). Now a uniruled variety has no nonzero holomorphic forms, but it has
many nonzero meromorphic forms. Therefore it is crucial that these meromorphic
forms are actually holomorphic on all of M . This is precisely what Lemma 3.2
gives, i.e., Lemma 3.2 is a global regularity result.

In order to make the rule φm explicit, we first must make the inputs of the rule
explicit: α ∈ H1(X,Ωn−2

X ) and the tangent vectors θ1, . . . , θn−3. This is what we
do next.

3.3. Description of the inputs – Griffiths residue calculus. Griffiths de-
scribed the primitive middle cohomology of a hypersurface X in P

n as the residues
of meromorphic n-forms on Pn with poles along X , cf. [5, Section 8]. One can make
the description purely algebraic. For the part we need, this is particularly simple.
There is a short exact sequence of sheaves on X

0 −−−−→ Ωn−2
X −−−−→ Ωn−2

Pn (X)|X −−−−→ Ωn−1
X ⊗OPn(X)|X −−−−→ 0. (7)

The long exact sequence of cohomology gives a connecting map

res : H0(X,ΩnPn(2X)|X)→ H1(X,Ωn−2
X ) (8)

By a small amount of diagram-chasing

h1(X,Ωn−2
Pn (X)|X) = 0.

11



Therefore res is surjective, i.e., every element α ∈ H1(X,Ωn−2
X ) is the image res(β)

of an element

β ∈ H0(X,ΩnPn(2X)|X).

The usual way of saying this is that an (n − 2, 1)-form α on X is the “residue” of
a meromorphic n-form β on Pn with a double pole along X . (Of course Griffiths
describes all (p, q)-forms on X in terms of residues, but we only need the (n−2, 1)-
forms.) Thus the linear map φm determines a linear map

φm ◦ res : H0(X,ΩnPn(2X)|X)→ (

n−3∧
TmM)∨.

Since res is surjective, φm is uniquely determined by φm ◦ res.
While we’re at it, the component map r is just restriction of global sections of

Ωn
Pn(2X)|X to the curve C parametrized by m,

r : H0(X,ΩnPn(2X)|X)→ H0(C,ΩnPn(2X)|C).

3.4. Description of the inputs – the tangent vectors. The inputs of the
rule φm are an element α ∈ H1(X,Ωn−2

X ) and an (n − 3)-tuple of tangent vec-
tors θ1, . . . , θn−3 ∈ TmM . The previous section describes α in terms of a more
explicit element β ∈ H0(X,Ωn

Pn(2X)|X). Lemma 3.3 asserts that φm actually de-
pends only on the restriction r(β) ∈ H0(C,Ωn

Pn(2X)|C), where C is the curve in X
parametrized by m.

In a similar way, Lemma 3.3 asserts that φm depends on the tangent vectors θi
only through certain associated elements, which are more explicit. Recall there is
a morphism ζ : U →Mg,0(X). The derivative of ζ is a map

dζ : TmM → T[C]Mg,0(X)

where C is the embedded smooth curve parametrized by m. Since

T[C]Mg,0(X) = H0(C,NC/X )

dζ(θi) is just a global section of the normal bundle NC/X of C in X .
To be precise, the derivative dζ gives a map between exterior powers

∧
dζ :

n−3∧
TmM →

n−3∧
H0(C,NC/X).

The transpose is a map

(
∧
dζ)† : (

n−3∧
H0(C,NC/X))∨ → (

n−3∧
TmM)∨.

It will turn out there is a map

φ[C] : H0(C,ΩnPn(2X)|C)→ (
n−3∧

H0(C,NC/X))∨

such that

φm ◦ res = φ(1)
m = φ(2)

m ◦ r, φ(2)
m = (

∧
dζ)† ◦ φ[C].

There is another manipulation with the inputs dζ(θi). Wedging global sections
determines a map

w :

n−3∧
H0(C,NC/X )→ H0(C,

n−3∧
NC/X).

12



The component map w† is just the transpose

w† : H0(C,
n−3∧

NC/X)∨ → (
n−3∧

H0(C,NC/X))∨.

3.5. Description of the rule – the tangent bundle sequence. The next com-
ponent map relates H0(C,

∧n−3NC/X)∨ to H1(C,L)∨ for a line bundle L. Then

Serre duality will relate this to H0(C, ωC ⊗ L∨). The final component map will
come from a canonical isomorphism of ωC ⊗ L∨ with another natural line bundle
on C.

The relation of H0(C,
∧n−3

NC/X)∨ to H1(C,L)∨ comes by way of the tangent
bundle sequence of X in Pn

0 −−−−→ TX −−−−→ TPn |X −−−−→ NX/Pn −−−−→ 0.

This gives a sequence of normal bundles on C

0 −−−−→ NC/X −−−−→ NC/Pn −−−−→ NX/Pn |C −−−−→ 0.

Taking (n− 2)nd exterior powers turns this into a sequence

0→
n−2∧

NC/X →
n−2∧

NC/Pn → (

n−3∧
NC/X)⊗NX/Pn |C → 0.

Twisting each term by N∨
X/Pn |C gives an exact sequence,

0→
n−2∧

NC/X ⊗N
∨
X/Pn |C →

n−2∧
NC/Pn ⊗N∨

X/Pn |C →
n−3∧

NC/X → 0. (9)

The long exact sequence of cohomology turns this into a connecting map

δ : H0(C,

n−3∧
NC/X)→ H1(C,

n−2∧
NC/X ⊗N

∨
X/Pn |C).

The component map δ† is just the transpose

δ† : H1(C,

n−2∧
NC/X ⊗N

∨
X/Pn |C)∨ → H0(C,

n−3∧
NC/X)∨.

Define L to be the line bundle

L :=

n−2∧
NC/X ⊗N

∨
X/Pn |C .

The component map s is the isomorphism given by Serre duality

s : H0(C, ωC ⊗L
∨)

∼=
−→ H1(C,L)∨ = H1(C,

n−2∧
NC/X ⊗N

∨
X/Pn |C)∨.

3.6. Description of the rule – the line bundle L. The last thing we need to
understand the rule φm is an alternative description of the line bundle

L :=

n−2∧
NC/X ⊗N

∨
X/Pn |C .

To obtain this, we will identify each of the two factors in this tensor product.

The first factor. The factor
∧n−2

NC/X is the determinant of NC/X . By adjunc-
tion for the embedding C ↪→ X the determinant of NC/X is canonically isomorphic

to ωC ⊗ (Ωn−1
X )∨|C .

13



On the other hand, adjunction for the embedding X ↪→ Pn gives an isomorphism
Ωn−1
X
∼= Ωn

Pn(X)|X . These two adjunction isomorphisms together give

n−2∧
NC/X ∼= ωC ⊗ (ΩnPn(X))∨|C .

The second factor. Also, NX/Pn is isomorphic to OPn(X)|X . Thus the factor,
N∨
X/Pn |C , is isomorphic to OPn(X)∨|C . Together these two identifications give an

identification

L :=

n−2∧
NC/X ⊗N

∨
X/Pn |C ∼= ωC ⊗ [ΩnPn(2X)]∨|C . (10)

Taking the transpose and twisting by ωC gives the isomorphism of OC-modules

ψ : ΩnPn(2X)|C
∼=
−→ ωC ⊗ [

n−2∧
NC/X ⊗N

∨
X/Pn |C ]∨ = ωC ⊗L

∨.

The final component map H0(C,ψ) is the map of global sections associated to ψ

H0(C,ψ) : H0(C,ΩnPn(2X)|C)→ H0(C, ωC ⊗L
∨).

Proof of Lemma 3.3. In the special case that n = 5, this is [3, Theorem 5.1]. The
proof in the general case is very similar. It amounts to much more of the same sort
of diagram-chasing above. We will leave the details to the reader, referring to the
proof of [3, Theorem 5.1] for the key ideas.

�

3.7. Proof of the theorem. Finally we are ready to prove Theorem 3.1. It suffices
to prove the map φ from Lemma 3.2 is nonzero.

Proof of Theorem 3.1. Recall there is a morphism ζ : M → Mg,0(X). The sub-
variety of X swept by curves in M equals the subvariety swept by curves in
ζ(M). Thus the dimension of the subvariety swept by curves in M has dimen-
sion ≤ 1 + dim(ζ(M)). By hypothesis, the curves parametrized by M sweep an
(n− 2)-dimensional subvariety of X . Thus dim(ζ(M)) = n− 3, i.e., ζ is generically
finite. Because our base field is characteristic 0 and because M is smooth, ζ is
generically unramified.

The hypothesis that the curves of M sweep an (n − 2)-dimensional subvariety
of X also implies the map fU : CU → X is generically finite, where U ⊂ M
parametrizes only smooth curves and CU → U is this family of smooth curves.
Because CU is smooth and the characteristic is zero, fU is generically unramified,
i.e., the locus where fU is ramified is a proper subvariety of CU . Therefore, for
a general point m ∈ U the map fU is unramified at a general point of the fiber
Cm ⊂ CU .

Let V be the maximal open subset of M such that

(i) ζ|V : V → Mg,0(X) is unramified,
(ii) every curve Cm parametrized by m ∈ V is embedded, smooth and (n− 1)-

normal,
(iii) if g = 1, Cm is also nondegenerate,
(iv) and fU is unramified at a general point of Cm ⊂ CU .

The arguments above prove V is dense in M . The claim is that for every m ∈ V ,
φm 6= 0. Because the target of φm is 1-dimensional this is equivalent to the claim
that φm is surjective.
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Of course it suffices to prove that φm ◦ res is surjective. This is equivalent to the
claim that the transpose map (φm ◦ res)† is injective. By Lemma 3.3

φm ◦ res = (
∧
dζ)† ◦ w† ◦ δ† ◦ s ◦H0(C,ψ) ◦ r.

Thus the transpose is

(φm ◦ res)† = r† ◦H0(C,ψ)† ◦ s† ◦ δ ◦ w ◦
∧
dζ.

We will prove this in stages, by first proving injectivity of the maps

(w ◦
∧
dζ), s†, H0(C,ψ)†, and r†.

We reserve injectivity of δ for last, since this is the most difficult to verify.

Injectivity of w ◦
∧
dζ. It turns out this is precisely Item (iv) in the definition of

V . By hypothesis, there exists p ∈ Cm such that fU is unramified at p. Consider
the sheaf homomorphism

dfU : NCm/CU
→ NCm/X

and take its (n− 3)rd exterior powers

∧
dfU :

n−3∧
NCm/CU

→
n−3∧

NCm/X .

Both sheaves are locally free, Cm is integral, and the sheaf homomorphism is injec-
tive at p by hypothesis. Therefore the sheaf homomorphism is injective. Thus the
map of global sections

H0(C,
∧
dfU ) : H0(C,

n−3∧
NCm/CU

)→ H0(C,

n−3∧
NCm/X)

is also injective. Because Cm is a fiber of CU → U ,

NCm/CU
= TmM ⊗k OCm

.

Therefore we have canonical isomorphisms

H0(C,

n−3∧
NCm/CU

) =

n−3∧
TmM, H0(C,

∧
dfU ) = w ◦

∧
dζ.

Because H0(C,
∧
dfU ) is injective, w ◦

∧
dζ is injective.

Injectivity of H0(C,ψ)† and s†. Because ψ is an isomorphism, so is H0(C,ψ),
and thus also H0(C,ψ)†. Similarly, the Serre duality map s is an isomorphism, and
thus also s† is an isomorphism.

Injectivity of r†. This is equivalent to proving surjectivity of r. Recall r is the
restriction map

r : H0(X,ΩnPn(2X)|X)→ H0(C,ΩnPn(2X)|C).

Now ΩPn(2X) is isomorphic to OPn(−n− 1)⊗OPn(2n) ∼= OPn(n− 1). Therefore r
is the same as the restriction map

H0(X,OX(n− 1))→ H0(C,OX (n− 1)|C).

The hypothesis that C is (n − 1)-normal precisely says this restriction map is
surjective.
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Injectivity of δ. Associated to the short exact sequence in Equation 9, there is
an exact sequence of cohomology

H0(C,

n−2∧
NC/Pn⊗N∨

X/Pn |C)→ H0(C,

n−3∧
NC/X)

δ
−→ H1(C,

n−2∧
NC/X ⊗N

∨
X/Pn |C).

(11)

Claim 3.4. h0(C,
∧n−2

NC/Pn ⊗N∨
X/Pn |C) = 0; in particular δ is injective.

Proof of Claim 3.4. We reduce the original claim to a second claim that is similar.
The second claim will follow from the hypotheses on g and on the curve C.

To begin with there is an isomorphism

n−2∧
NC/Pn

∼= N∨
C/Pn ⊗

n−1∧
NC/Pn .

Adjunction for the embedding of C in P
n gives an isomorphism

n−1∧
NC/Pn

∼= ωC ⊗ (ΩnPn)∨|C ∼= ωC ⊗OPn(n+ 1)|C .

Together with the isomorphism N∨
X/Pn

∼= OPN (−n)|X this gives

NC/Pn ⊗N∨
X/Pn |C ∼= ωC ⊗OPn(1)|C ⊗N

∨
C/Pn .

In other words NC/Pn ⊗N∨
X/PN |C is obtained by twisting the vector bundle N∨

C/Pn

by the line bundle ωC ⊗OPn(1)|C .
The vector bundle N∨

C/Pn is a subsheaf of ΩPn |C ,

0 −−−−→ N∨
C/Pn −−−−→ ΩPn |C −−−−→ ΩC −−−−→ 0.

Thus the twist ωC ⊗ OPn(1)|C ⊗ N∨
C/Pn is a subsheaf of ωC ⊗ OPn(1)|C ⊗ ΩPn |C .

And so it goes with global sections

H0(C, ωC ⊗N
∨
C/Pn ⊗OPn(1)|C) ⊂ H0(C, ωC ⊗ ΩPn(1)|C).

Thus Claim 3.4 follows from the following.

Claim 3.5. h0(C, ωC ⊗ ΩPn(1)|C) = 0.

Proof of Claim 3.5. The proof will ultimately boil down to injectivity of a certain
multiplication map v. This injectivity follows from the hypotheses that g = 0 or
g = 1, that C is embedded and smooth, and that C is nondegenerate if g = 1.

There is an exact sequence on Pn.

0→ ΩPn(1)→ H0(Pn,OPn(1))⊗k OPn → OPn(1)→ 0.

Pulling back and twisting with ωC gives an isomorphism of H0(C, ωC ⊗ ΩPn(1)|C)
with the kernel of a multiplication map v,

H0(C, ωC ⊗ ΩPn(1)|C) ∼= Ker(v),

v : H0(Pn,OPn(1))⊗k H
0(C, ωC)→ H0(C, ωC ⊗OPn(1)|C).

Thus it suffices to prove v is injective.
By hypothesis g = 0 or g = 1. If g = 0 then already h0(C, ωC) = 0 and thus

Domain(v) = 0. Thus v is injective if g = 0.
If g = 1 then ωC ∼= OC . Thus v is simply the restriction map

H0(Pn,OPn(1))→ H0(C,OPn(1)|C).
16



By hypothesis C is nondegenerate, i.e., the restriction map is injective. Thus again
v is injective if g = 1. This proves Claim 3.5 and thus also Claim 3.4, both when
g = 0 and when g = 1. �

Proof of Theorem 1.5. This follows from Theorem 3.1 by an argument similar to
the one in the proof of Theorem 1.3. �
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