CUBIC FOURFOLDS AND SPACES OF RATIONAL CURVES

A.J DE JONG AND JASON STARR

ABSTRACT. For a general nonsingular cubic fourfold X C P® and e > 5 an odd
integer, we show that the space M. parametrizing rational curves of degree e
on X is non-uniruled. For e > 6 an even integer, we prove that the generic
fiber dimension of the maximally rationally connected fibration of M, is at
most one, i.e. passing through a very general point of M. there is at most
one rational curve. For e < 5 the spaces M, are fairly well understood and we
review what is known.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic 0; unless stated otherwise all
schemes will be considered to be of finite type over k. Let X be a nonsingular cubic
fourfold in Pi. For each integer e > 1 denote by M, the variety which parametrizes
smooth, geometrically connected curves in X of degree e and arithmetic genus 0,
i.e. M, is the scheme of rational curves of degree e in X. In Section 2 we’ll discuss
different constructions of this space and how they are related. For the moment all
that matters is that M, is an irreducible variety of dimension 3e + 1, a nontrivial
fact discussed in Section 2 as well. The question we consider in this paper is the
birational geometry of M., specifically the Kodaira dimension of M, and, in case the
Kodaira dimension is negative, the dimension of the general fiber of the maximally
rationally connected fibration of M, (c.f. [18]). This question was originally raised
by Joe Harris with regard to the rationality /irrationality of cubic fourfolds. It is a
pleasure to acknowledge useful conversations with Joe Harris.

Let M, be a desingularization of a compactification of M,. We rephrase the ques-
tion on the dimension of the fibers of the MRC fibration as follows: Given a
very general point p C M,, what is the maximal dimension of a closed subvari-
ety Z C M, which contains p and which is rationally connected? Equivalently,
if M. — @ is the MRC fibration in the sense of [18, Def. IV.5.3], what is the
difference dim(M,.) — dim(Q)? For example, if this number is zero then for a very
general point p € M, there is no nonconstant morphism P' — M, whose image
contains p, i.e. M, is not uniruled. We note that the invariant dim Z is a birational
invariant of M, (in other words it does not matter which choice of desingularized

compactification we take).

Discussions with Joe Harris have shown that for small values of e these maximal
dimensions can be tabulated as follows:
e 1 2 3 4
dimM, 4 7 10 13
dimzZ 0 3 2 3
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We pause to explain this table: The case of lines is well known, namely M; is a
4-dimensional hyperKéhler manifold [3, Prop. 1]. In the case of conics, the family
of all conics which are residual to a fixed line forms a 3 dimensional rationally
connected family Z. In the case of cubic rational curves, one notes that a general
cubic rational curve lies on a unique cubic surface and moves in a 2-dimensional
linear system on it, so Z has dimension at least 2. A general quartic rational curve
lies on a unique cubic threefold, and moves in a 3-dimensional rationally connected
family on it (c.f. [11, Theorem 8.2]), so Z has dimension at least 3. This gives a
lower bound for the numbers in the bottom row of the diagram, which is easily seen
to be the actual dimension of Z when e = 1 or 2. For e = 3 and e = 4, we have
not verified these numbers give the actual dimensions, but we would be surprised
if they turn out to be larger. We mention a conjecture of Ana-Maria Castravet
that for e = 4 the actual dimension of Z is precisely 3 and the target of the MRC
fibration of My is birational to the relative intermediate Jacobian of the family of
hyperplane sections of X — in other words, this conjecture says that the relative
intermediate Jacobian of the family of hyperplane sections of X is not uniruled.

Theorem 1.1. Let X C IP° be a very general cubic fourfold. For every odd degree
e > b5, the variety M, is non-uniruled. For every even degree e > 6 the variety M,
has dim(Z) < 1.

Actually the method of this paper gives something a little better than Theorem 1.1
as we now explain.

Theorem 1.2. Let X C P° a smooth cubic hypersurface, and let M, be a non-
singular projective model of M,. There is a canonical section w, € H°(M., QQM )
with the following property: ’
(a) In case e is odd, e > 5. If X is general, and p a general point of M., then w.
induces a nondegenerate pairing on Tp(M.).

(b) In case e is even, e > 6. If X is general, and p € M. a general point, then
the linear transformation T,(M.) — Ty (M.) induced by w. has a 1-dimensional
kernel.

Corollary 1.3. If e is odd and at least 5, then the Kodaira dimension k(M) > 0
for X general.

The corollary follows as the form wége+1)/ 2 is a nonzero section of the canonical line

bundle.

In Section 2 we recall the different moduli spaces and how they are related. In
Section 4 we give a general method to produce w, on the Kontsevich moduli stack
M, of stable maps for any e > 1. By Lemma 3.5 this gives a corresponding 2-form
we on M,. In Section 5 we describe how to compute the associated alternating
pairing on Zariski tangent spaces of M.. In Section 6 we show that this pairing
is nondegenerate for a general point of M5. The case e = 5 is particularly nice as
almost no explicit calculations are necessary. In Section 7 we prove the nondegen-
eracy for general odd degree e > 5. In Section 8 we prove the kernel of the pairing
is 1 dimensional in the even degree e > 6 case. In Section 9 we give a sketch that
Mg is also not uniruled and pose some questions about the spaces M,.

Finally, Theorem 1.2 implies Theorem 1.1 thanks to the following lemma.
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Lemma 1.4. Suppose that M is a smooth, projective scheme, w is a 2-form on
M, and at a general point p € M, the rank of the 2-form w is r. Then dim(Z) <
dim(M) —r, i.e., the codimension of the maximal rationally connected subvariety
Z passing through a very general point of M is at least 7.

Proof. By [18, Theorem IV.5.8] | if dim(Z) = d > 1, then for a very general point
p € M there is a morphism g : P! — M whose image passes through p and such that
g*Tys contains a locally free subsheaf £ C g*Th with £ an ample locally free sheaf
of rank d and whose cokernel is a trivial locally free sheaf of rank n—d (actually this
result is in the proof of [18, Theorem IV.5.8], not in the statement). But we also
have the sheaf map induced by w: ¢*Ty — ¢*Qps. Since g*Ths is semi-positive,
the sheaf ¢*Q,, is seminegative. As there is no nonzero map from an ample locally
free sheaf to a seminegative locally free sheaf, we conclude that £ is contained in
the kernel of the sheaf map. So d < dim(M) —r.

O

2. DISCUSSION OF MODULI SPACES

In this section we discuss three related functors, each of which gives a compactifica-
tion of the space of smooth rational curves. The spaces representing these functors
are birational, and since we are studying birational properties of these spaces the
distinction between them is not crucial to the rest of the paper. But we find it use-
ful to pause, compare these three spaces, and point out what is and is not known
about them.

Let X C PV be a quasi-projective scheme and let M, denote the scheme which
parametrizes families of smooth, proper, geometrically connected curves C' C X of
arithmetic genus 0 and degree e. Even before we try to compactify M., there are
already several versions of M, and we concentrate on two of these M and M.
Here M is an open subscheme of the Hilbert scheme Hilb® ™ (X) as defined in [10].
And M¢ is an open subvariety of the Chow variety Chow; (X)) defined in [18, Def.
1.3.20]. Please note that there is not universal acceptance of the definition of the
Chow variety (e.g. there is also the definition in [2]), but we find Kolldr’s definition
best suited to our needs. In particular, we have the following comparison between
M and M¢.

Lemma 2.1. There exists a fundamental class morphism FC' : (Mf)sn — M¢

where (M:)Sn is the semi-normalization of M as defined in [18, Def. 1.7.2.1].
The morphism FC is an isomorphism. Therefore the inverse (FC)~1 : M¢ — M}
is the semi-normalization of M, and in particular it is bijective on points.

Proof. This follows from [18, Thm. 6.3] and the semi-normal analogue of Zariski’s
main theorem. O

It can happen that M is not semi-normal so that M¢ and M/ are not isomorphic,

for example whenever M/ is non-reduced. A simple example of this is given by any

pair (X, L) where L C P? is a line and X C IP3 is a smooth hypersurface of degree

d > 4 which contains L. In this case there is a unique connected component of M}

whose reduced scheme consists just of the point [L] € M]*, but M} is non-reduced.
3
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For the special case that X C P™ is a smooth cubic hypersurface, which is the case
of interest in this paper, we suspect that M/ is always semi-normal.

Question 2.2. If X C P" is a smooth cubic hypersurface, is M semi-normal? Is
M!" normal?

There are some partial answers. For n arbitrary and e = 1, M7 is smooth by [5,
Thm. 7.8]. For n = 3 and e arbitrary, M/ is an open subset of a projective space
and so it is smooth. For n = 4 and e = 2,3, M/ is smooth by [12, Lemma 3.2,
Lemma 4.6]. For n = 4 and e arbitrary, then Mf is an irreducible, reduced, local
complete intersection scheme by [13]. So, by Serre’s criterion, to prove that M" is
normal it remains to prove that M/ is nonsingular in codimension one. We do not
know whether this is true.

In the general case of a projective scheme X C PV, we denote by M: the closure of
M" in Hilb* " (X) and we denote by M. the closure of M¢ in Chow; .(X). These
are the first two compactifications of M, which we consider.

The Chow variety and the Hilbert scheme have been studied by algebraic geometers
since they were introduced. Many results have been proved, and very readable
accounts exist [18, 19]. For instance, it follows from [18, Thm. 1.6.3] that the

morphism FC extends to a morphism FC : (M:)S” — M.. But both M, and M:
have certain drawbacks. For example the morphism (FC)™" does not extend to a

. a7 7h . . .
regular morphism M, — M, (this fails even in the case X = PV). Moreover, the

7h . R—
closed subsets M, C Hilb“ ™ (X) and M, C Chow, .(X) are usually not connected
components. Because of this, it is difficult to carry out an infinitesimal analysis of

M: and M, as in [18, Section 1.2].

In the case of a projective scheme X C PV over a field k of characteristic 0, there is
a third compactification of M, which is very useful: the Kontsevich moduli space of
stable maps. A prestable map to X of genus g with » marked points and degree e
(over a field k) is a triple (C, (p1,...,pr), f) where C' is a geometrically connected,
reduced, at-worst-nodal curve of arithmetic genus g, where pq, ..., p, is an ordered
set of k-rational points in the nonsingular locus of C, and where f : C' — X is a
morphism of k-schemes such that the degree of f*O(1) is e. The triple is called a
stable map if there are no infinitesimal automorphisms of the triple. There is a good
notion of families of stable maps and morphisms between stable maps, and there is
a proper Deligne-Mumford stack over k, M, ,,(X,e) parametrizing stable maps of
genus g with » marked points and degree e. The coarse moduli space Mgm(X ,€)
of the stack M, ,(X,e) is a projective k-scheme. The reader is referred to [4, §]
for details.

In particular, when X C P* is a smooth cubic hypersurface, we will denote by M,
the Kontsevich moduli space of stable maps of genus zero with no marked points
and of degree e.

Lemma 2.3. The scheme M is isomorphic to an open substack of M..

Proof. This follows from the definitions of M, and M. O
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Also there is an analogue of the morphism FC, i.e. a 1-morphism FC: (M,)™" —

M. One drawback of M, as compared to MZ and M is that it is a stack rather
than a scheme, which makes some arguments more technical. On the other hand,
the deformation and obstruction theory of M, and the “boundary” are understood
quite well. These are the key components in the proof of the following proposition.

Proposition 2.4 ( [14]). Forn >5 and X CP" a general cubic hypersurface, the
stack M. is irreducible and reduced of the expected dimension (n — 2)e + (n — 4)
and has only local complete intersection singularities.

Proof. First of all, we just point out that the proposition is false for n = 3: if
e > 3, then M, will be disconnected. For n = 4, a slight variant of the proposition
is true but the proof involves different methods which are developed in [13] (there
is another irreducible component corresponding to e-fold covers of lines, but the
proposition holds if we replace M, by the complement of this locus). For n > 6,
the proposition follows from [14, Prop. 7.4]. The only remaining case is n = 5
which we now consider.

We prove the proposition by applying [14, Cor. 7.3]. This result reduces the
proposition to proving that the condition B(X, 7i(e), f) of [14, Def. 6.1] holds for
e =1 and e = 2. And this condition has three parts (1), (2) and (3): constancy of
the fiber dimension of evy, irreducibility of a general fiber of evy, and existence of
a free stable map of degree e.

First we consider e = 1. The condition (3) is quite easy to verify: in characteristic
zero, for every smooth cubic hypersurface X C P (for any n > 4 in fact), and
for every point p € X, there exists a line L C X containing p. Also, by [6, Prop.
4.14], for every smooth cubic hypersurface X and a general point p € X, every line
L C X containing p is free, i.e. Tx|r is generated by global sections. Choosing
any line L passing through p, we see that condition (3) holds for e = 1. Moreover,
by [18, Cor. 11.3.5.4.2], the evaluation morphism ev; : Mg 1(X,1) — X is smooth
over p. And the fiber F' is canonically a complete intersection of hypersurfaces in
P71 of dimension n — 4. Whenever n > 5, this complete intersection is connected
(by computing H°(F,OF), for instance). Since F is smooth and connected, it is
irreducible. This proves that condition (2) holds for e = 1. Finally, if X is a general
hypersurface, then by [12, Thm. 2.1], condition (1) holds for e = 1.

Next we consider e = 2. The condition (3) can be checked by considering any double
cover of a free line L C X. To check condition (1) and (2), observe that there is
an a priori lower bound on the dimension of every irreducible component of every
fiber of evy : Mo 1(X,2) — X, namely the difference of the expected dimension of
Moy 1(X,2) and dim(X), which is 4 (or 2n — 6 for general n > 3). To prove (1), it
suffices to prove that every fiber of evy has dimension exactly 4. And to prove (2),
we need to prove that some fiber is irreducible and reduced of dimension 4.

Now assume that X contains no linear P?: this certainly holds for a general cubic

hypersurface in P°. Then every stable map f : C' — X of degree 2 which is not a

double cover of a line is an embedded plane conic. And the span of the conic C,

say A C P", intersects X in a plane cubic curve C’ C A. Of course C C C’, and

the residual curve is a line L C X. Conversely, for a general pair of a line L C X
5
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and a A which contains L, the residual to L in A N X is a plane conic. Using this,
we see that the set of embedded plane conics in X passing through a general point
p, is isomorphic to an open subset of the space of lines M;. This space is smooth
of dimension 4 when n = 5. So to finish the proof of (1) and (2), it suffices to show
that this set is Zariski dense in ev}l(p) for every p € X. In other words, we have

to prove for every p € X, that the subset of ev;l(p) consisting of double covers of
lines is not dense in any irreducible component of ev;l(p).

When evy : Mo 1(X,1) — X is flat (which holds for general X as mentioned above),
the space of lines in X containing p has dimension 1 (or n — 4 for general n > 4).
So the space of double covers of lines whose image contains p has dimension 3 (or
n — 2 for general n > 4). Since we have an a priori lower bound of 4 for every fiber
of evy, we conclude that the subset of double covers of lines is not dense in any
irreducible component of evy. This finishes the proof of conditions (1) and (2) for
e =2 when X C P® is a general cubic hypersurface.

Remark 2.5. We have a few remarks on this proposition.

(1) Even though the proof above only works for a general hypersurface X, we
suspect the proposition holds for every smooth cubic hypersurface X C P™.

(2) In fact the argument above proves much more than the proposition, namely
for every stable genus 0 A-graph 7 and every flag f of 7, B(X, 7, f) holds.
In particular M (X, 7) is irreducible.

Corollary 2.6. For X C P® a general cubic hypersurface, the schemes M¢ and
M! are irreducible and reduced of dimension 3e + 1. They are birational to each
other and to M,.

3. TRACE MAPS AND DESCENT FOR p-FORMS

In the next section we define linear maps
HO (X, QP — HY (Mg, (X, e),QP). (1)

In particular, when ¢ = 0 this gives a method for producing p-forms on the Kontse-
vich moduli stack. But for our applications, we actually want a p-form on a desingu-
larization of the coarse moduli space of the stack. To accomplish this, we associate
trace maps to any proper, generically étale morphism of schemes, f : Y — Z, with
Z normal:

Teh : f.(QF) — (Q5)"V. (2)

We construct these trace maps in greater generality than is strictly needed to prove
the main theorem. In particular we work over a ground field k, but we assume
neither that k is algebraically closed, nor that & is of characteristic 0 (although
there is an assumption on the characteristic stated in the proposition). The results
in this section are well-known, but we could not find a particularly elementary
reference, so we reprove them here.
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3.1. Construction for f étale. In this subsection, the ground field k is arbitrary:
it is not necessarily algebraically closed and there is no condition on the character-
istic. First we consider the case when f is finite and étale. Let n denote the degree
of the morphism f, i.e. f.Oy is locally free of rank n. In this case the pullback
morphism on Kihler differentials (df)f : f*QL — Qi is an isomorphism and for
every p this isomorphism induces an isomorphism

ap: fFQL — QF. (3)
Pushing forward, we have canonical isomorphisms
feop  fuf QY — £OF (4)
On the other hand, we have a canonical isomorphism
By : 0% @0, [0y — [of*, (5)

Since f is finite and étale, in particular it is finite and flat. Recall the usual trace
morphism f,Oy — Oy is defined by composing the morphism of Oz-algebras
f+Oy — Home, (f«Oy, fOy) with the trace Tr : Homo,(f.Oy, f+Oy) — Oz.
We denote this morphism by Tr?c : fxOy — Oz. We define the Oz-linear morphism
Tr' : £.Q5 — QF to be the unique morphism such that Tr’; o f.ay, 0 3, equals

n-1d® Tt : O ®o, f.0y — Q) ®0, O. (6)

We summarize this construction in the following lemma.

Lemma 3.1. Let f : Y — Z be a finite étale morphism of k-schemes of degree n.
For each integer p > 0, there exists a unique O z-linear morphism Trf, : QY — QY

such that Trlf’ ofiapofy=n-1d® Trg, Moreover, we have

(1) For any open subscheme U C Z, for any section o € H°(U,QY), and for
any section T € HO(f~4(U), QL) we have

TT];[’_qf* (ffonT)=0A W(}f*T. (7)
(2) For any open subscheme U C Z and for any section T € H(f~1(U),Q%),
we have
T4 f, (dr) = d (Tr‘} f*T) . (8)
(3) If g: X —= Y is also a finite étale morphism, then for every p we have
7o, = T o . T (9)

3.2. Construction for f generically étale. In this section we do not assume
that k is algebraically closed. But there is a condition on the characteristic of k
stated in Proposition 3.2 (see also (2) of Remark 3.3). Now we construct ’Hz} in
the general case, under the additional assumption that Z is normal and where the
target of Tr¥, is now (Q2)"" rather than Q2.

Let i : U — Z be the (dense) open subscheme over which f is finite and étale.
Define j : V < Y to be the open subscheme V = f~1(U). And define g : V — U
to be the restriction of f. By Lemma 3.1, we have morphisms Try : g5 — QF.
Pushing forward by 4 gives morphisms of quasi-coherent O z-modules
0T 2 i, 8 — 0,QF. (10)
7
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There is a canonical isomorphism (dj) : j*Q) — QF,. Pushing forward gives an
isomorphism

(10.9)o(d))' : (i 0 9)u" O — 1ngu % (11)
Of course (i0g)x = (foj)x = f«oj«. And there is a canonical morphism v, : Q) —
J+j Q.. Composing all of these gives an Oz-linear morphism:

i Trh o (io 9)+(d) o fuyp : O — 008 (12)
Finally, there is a canonical isomorphism i, (di)' : i,i*Q} — i,9F,. We denote by
ep : [+) — 4,i*QY the unique morphism such that i, (di)Toe, equals the morphism
above.
There is a canonical morphism
Fop 10D — i (Q)Y (13)
And there is a injective morphism of Oz-modules,

Aot ()Y — i (@) (14)

Proposition 3.2. Suppose that n! is relatively prime to char(k). Let Z be a normal
k-scheme and let f :' Y — Z be a proper, generically étale morphism of degree n.
With notation as above, for each integer p > 0, there exists a unique Oz-linear
morphism Tr; : f.Qy — Q)Y such that \, o T = fip 0 €.

Proof. This statement is clearly Zariski local on Z. Thus we assume that Z is an
irreducible, normal affine scheme.

Since (Qg)vv is torsion-free, it is clear that if Trzjc as above exists, then it is unique.
Let g : Y — Y denote the morphism which is the disjoint union over all irreducible
components Y; C Y dominating Z of the normalization of Y;. Define f : Y — Z to
be fog. Notice that f is also proper and generically étale. And Y is a normal scheme

such that every irreducible component of Y dominates Z, and g : g=1(V) — V is
an isomorphism.

Consider the morphism (dg) : ¢*Qi — Q%, For each p, we can form the pth
exterior power of this map and then take the adjoint to get a morphism

pp 2 B — g*Qg. (15)
If we prove that Tr;i exists, then it follows that Tr;i o f«ptp satisfies the hypothesis
of Tr;, so Tr, exists. Therefore we are reduced to proving that ’H? exists. So,
without loss of generality, we now assume that Y is normal and every irreducible

component of Y dominates Z.

Define ¢ : W <— Z to be the maximal open subscheme such that W is smooth, such
that f~1(W) is smooth, and such that f : f~1(W) — W is finite. Since Y and Z
are normal and since f is generically finite, it follows that the complement of W in
Z has codimension at least 2. Define T = f~*(W) and define h : T — W to be the
restriction of f. If we prove that Tr} exists, then this will be a morphism

T £ 08 — o ()Y (16)
8



The adjoint of this map will be a morphism
FO5 — v (2) (17)

There is a canonical morphism (QZ)Vv — Lyl* (Q%)vv. Since Z is normal, since the
complement of W has codimension 2, and since (2%)"" is reflexive, this morphism
is an isomorphism. So the adjoint above is a morphism which satisfies the condition
for Tr¥.. Therefore to prove that Tr’; exists, it suffices to prove that Tr} exists. So,
without loss of generality, we now assume that Z is a connected, smooth, affine
scheme, f:Y — Z is finite, and Y is smooth. In particular, f is flat.

Actually, what the argument in the previous paragraph shows is that to prove that
Tr} exists, it suffices to prove for each irreducible divisor D C Z, the image of
Kp © €p is contained in the subsheaf which is the image of (%) ®o, Oz p. Let us
call this condition (Zp).

By the Noether normalization theorem [7, Thm. 13.3], there exists a flat morphism
7w : Z — B of relative dimension 1 such that 7|p : D — B is dominant. Up to
replacing 7w by the Stein factorization of 7, we may also suppose that 7 is separably
generated. Since f is finite, flat and generically étale, also mo f : Y — B is flat of
relative dimension 1 and separably generated. By generic smoothness, there exists
a dense open subset B C B such that both 7 and 7o f are smooth over B°. Since
7|p : D — B is dominant, we can check condition (Zp) after localizing over B°.
So, without loss of generality, we assume that m and 7 o f are both smooth.

Now choose any closed point z € D. The claim is that the image of s, o €, is in
the image of 0, ®0, Oz... Since the image of Q) ®o, Oz p is the intersection
over all z € D of the image of QY ®0, Oz, to prove the proposition it suffices to
prove the claim. And the claim may be checked after base change to the formal

completion of Oz .. Thus choose an isomorphism O;ﬂ\(z) > k[[b1,...,bs]], and
choose an isomorphism (7;-(\2 = k[[by, ..., bs]][[t]]. Let f=(2) = {w1,...,wy}. For
each i = 1,...,m, choose an isomorphism Oy, = k[[b1,...,bs]][[us]]. For each
i =1,...,m, there is an induced integral ring extension

b1+ Ko, -, bl[EE] — Kllbr, - b [l (18)
In particular, u satisfies a monic polynomial of the form

nifl )

u”i + Z Vi,ni,—j(bla ey bs, t)uniij + Vi,O(bh . 7b37 t) (19)
j=1

Notice that n; 4+ --- 4+ n,, = n, the degree of f. So each n; < n. We define a
Oz, .-linear morphism

(Tr?) : QZ;/ ®oy @; - Q% ®oz 62: (20)

by sending any element of the form p(b, ..., bs, u)dby, A--- A dbg, to the element
Try(p)dbg, A --- Adby,, and by sending any element of the form
n;—1

o= pi(br,....be,thu'du Adbg, A~ Adby,_, (21)
j=0

9
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to the element
1
(Tr’;)i 7=~ Pradvig Aoy, A A, (22)

Notice that this is a well-defined morphism because any element has a unique
decomposition into terms of the form above.

For each ¢ =1,...,m, denote by pr; the localization map
pri : QI;/ ®0Z OZ,z - ngf ®Oy OY,wi- (23)

Then we define (Trfc) to be

[

(Tr’}) opr; : QY ®o, 5; — Q% @0, 62: (24)

i=1

It is straightforward to compute that (Tr’}) agrees with the base-change of k, 0 ¢,
z

when we base change to the fraction field of 5Z\z Since the base change of k, 0 €,

factors through O, ®0, 52\2 , it follows that r, o €, factors through Q7 ®p, Oz .,
which was to be proved. This completes the proof of the proposition. ([l

Remark 3.3. We make a few remarks on Proposition 3.2:

(1) Obviously this is not the most general result in this direction. For instance,
it is clear that the proof also works if Z satisfies Serre’s criterion Se and f
is étale away from codimension 2.

(2) The condition on the characteristic of k£ was to insure that each of the
ramification indices n; at a general point of an irreducible component of
the ramification divisor of f is invertible in k. Clearly the proof works
without the condition that char(k) not divide n! if we know each of the n;
is invertible in k.

(3) For any integer p > 0, there is a generic trace map

(T57) £ £ (@) = (2) @0, K(2). (25)

The proposition essentially proves that when one considers the direct sum-
mand corresponding to an exterior power, the generic trace map factors
through (Q%)vv. One might hope, more generally, that the generic trace

map factors through the reflexive hull of (le)®p. This is the case, for in-
stance, when f : Y — Z is étale away from codimension 2. But typically
this is not the case: Consider f : A}C — A}, which pulls back a coordinate
t on the target to u? where u is a coordinate on the domain. Then the
generic trace of du ® du is ﬁdt ® dt.

Lemma 3.4. With Trfc defined as in Proposition 3.2, we have:

(1) For any open subscheme U C Z, for any section o € H°(U,QY), and for
any section T € HO(f~4(U), Q%) we have

Trfqu* (ffonT)=0A Tr;{f*T. (26)

10



(2) For any open subscheme U C Z and for any section T € H(f~1(U),Q%),
we have

Tr?c+1f* (dr)=d (Tr‘jcf*r) : (27)
(3) If g: X — Y is also a proper, generically étale morphism, and if Y is also
normal, then for every p we have

T, = T o f. T, (28)

fog

3.3. Descent for p-forms on a stack. We apply Proposition 3.2 to prove the
following “descent theorem” for p-forms on a stack. The setup is the following. Let
k be a field (not necessarily of characteristic 0). Let B be a k-scheme, locally of
finite type (the base scheme). Let M be a irreducible, generically reduced Deligne-
Mumford stack over k which is tame (in the sense of [1]) along with a proper
1-morphism M — B. Recall that a stack is tame if for each geometric point, the
stabilizer group of the point has order which is prime to the characteristic of the
residue field of the point. Denote by M the coarse moduli space of M (which exists

by [17]).

It is too much to hope that every global section of Qpﬂ is the pullback of a global
section of Qpﬁ. For one thing it can happen that Qpﬂ has torsion sections even
though Q_ is torsion-free.

A more serious issue is raised by the following example: Suppose char(k) # 2 and
consider Ai with coordinates x,y. Let I' be the cyclic group of order 2 and let "
act on A? by x — —x,y — —y. Let M be the quotient stack [A?/T]. Then the
2-form dx A dy is I'-invariant and thus gives rise to a global section of Qzﬁ But
this 2-form is not the pullback of any global section of Q?V—[ In this case the coarse
moduli space M is a quadric cone in A%, and there does exist a global section of the
reflexive hull (QQH) Y which pulls back to dx A dy. More generally, if the coarse

moduli space is normal one can get a “descent map” of the form
H (M, Qb) — HO(M, (95)"Y). (29)
But in terms of using p-forms to get a lower bound on the Kodaira dimension, this

vV
is useless since the sheaf (Qpﬁ) does not admit pullback maps.

Now suppose that Misa nonsingular k-scheme along with a finite type morphism
M — B , and a rational transformation w : M— M commuting with the maps to
B (e.g. u could be a desingularization of M if it exists). What we really want is a
pullback map from p-forms on M to p-forms on M.

Proposition 3.5. For each integer p > 0, consider the maximal torsion-free quo-
tient Q%/(torsion) of me. There exists a map of HY(B, Og)-modules

o s HO(M, Qb /(torsion)) — H°(M, Q%) (30)

with the following property: Suppose that V.C M and U C M are open and that
there is ar morphism 7 : V. — U expressing the birational correspondence between
M and M. Then 7 (a(n)|v) = nlv for any global section 1 of the torsion-free
; P
quotient of Qm-
11
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Proof. Since E is smooth, and since M is proper over B, there exists an open
subset W C M whose complement has codimension at least 2 and on which u is
regular. Since M is smooth and since the complement of W has codimension 2, the
pullback map

HO(M, Q%) — HO(W, Q%) (31)

is an isomorphism. Therefore it suffices to prove the proposition with W in place
of M. So, without loss of generality, we assume that u : M — M is a regular
morphism.

Now let 7 : M — M be the normalization of the unique irreducible component of
M x5; M dominating M. There is a pullback morphism

HO(M,8_) — H(M, Q). (32)

If there exists a morphism 3 from H°(M, sz’a) to HO(M, QEM) with the property in
the proposition, then we can compose 3 with the pullback morphism above to get a
morphism « with the property in the proposition. Therefore it suffices to construct
(. So, without loss of generality, suppose that u : M — M is the identity map.

Now the existence of a with the property in the proposition clearly may be checked
after étale base change on M: the property of the proposition guarantees that such
a will be unique and will satisfy the usual étale descent condition. By [1, Lemma

2.2.3], there exists an étale covering {Xi —M } such that each base change stack

/Y/lv X7 Xy — X is a finite group quotient [U;/T;] where U; is a scheme which is
finite over X; and each I' is a finite group acting on U; by X;-morphisms. Since
M is a tame stack, the order of T' is relatively prime to the characteristic of the
ground field k. Without loss of generality, we now assume that M is a quotient
stack [U/T] where U is a scheme along with a finite morphism f : U — M and T is
a finite group acting on U by M. -morphisms and such that the order of I' is prime
to the characteristic.

First of all, the ramification index of f at each codimension one component D C U
of the ramification divisor equals the index of the stabilizer subgroup (in I') of a
generic point of U considered as a subgroup of the stabilizer of a generic point of D.
Thus the ramification index divides the order of I', and so is relatively prime to the
characteristic of the ground field. Similarly, the degree n of the finite morphism f is
relatively prime to the characteristic (being the index of the stabilizer of a generic
point in all of T"). Therefore U — M satisfies the hypotheses of Proposition 3.2 (see
(2) of Remark 3.3). So there exists a trace map

D . '4 '4
T £.OF — QP (33)

Observe that this map necessarily annihilates f, of the torsion subsheaf of Q2f;, since
Q’J’V[ is torsion-free. And since f. preserves exactness (being a finite morphism), it
follows that ’IY’JZ factors through f, of the torsion-free quotient of Q2f,. Now a global
section 7 of Qi’a is precisely a global section 1 of QF, which is I'-invariant. We define
a to be the restriction of %Tr? to the subspace of I'-invariant global sections of the

torsion-free quotient of QF, (recalling that n is invertible in the ground field).
12



It remains to verify the property of the proposition. Suppose that 7 is a [-invariant
global section of the torsion-free quotient of QF,. Consider Tr?(n). Since f is
generically étale, it follows by étale descent that there exists a dense open subset
of M over which 1 equals the pullback of a p-form 7 on M. By (1) of Lemma 3.4,
it follows that Tr%(n) = n7 when restricted to this open set, i.e. a(n) = 7 when
restricted to this open set. So f*a(n) agrees with n over a dense open subset.
Therefore n = f*a(n).

O

4. CONSTRUCTION OF THE 2-FORM

In this section we use an algebraic analogue of “integrating along fibers” to construct
a 2-form on the space M, associated to a smooth cubic hypersurface X C P4. To do
this we use the universal curve p : C — M, together with the universal morphism
f:C — X. The cohomology group H'(X,Q3%) is 1-dimensional (we review this in
Subsection 5.1 below). Choose once and for all a fixed nonzero element 7 in this
space. By pulling back via f we obtain f*n e H'(C,Q}).

Now we will put ourselves in a slightly more general context. Suppose that M is
a finite type Deligne-Mumford stack over k and p : C — M is a representable 1-
morphism of Deligne-Mumford stacks which is proper and flat of relative dimension
1, such that every geometric fiber of p is a reduced, at-worst-nodal curve, i.e.
p:C — M is a semi-stable family of curves. There is a canonical morphism from
the sheaf of relative Kahler differentials to the dualizing sheaf Qzl, — wp, which is
an isomorphism on the open substack U C C which is the smooth locus of p. Using
this isomorphism, we obtain for each ¢ a morphism on U:

(bU,i: ij+1|U — (QZCJrl/p*Q%l) |U = p*Qim®wp|U. (34)

Note that this map has the property that for every section o € Qzﬂ and 3 € Qé,
we have ¢y i (p*a A B) = p*a A oy ;(5).

Lemma 4.1. For each i there exists a unique morphism ¢; : Q?‘l — p*Qiﬂ ® wp

such that ¢;|u = ¢u,; and such that for every section o € Qlﬁ and @ € Qé, we have
Gitj(p A B) =p a A ¢;(B).

Proof. First of all, if such ¢, exists, then by construction it annihilates p*Q! ie.
it factors through the quotient. The quotient has a canonical subsheaf isomorphic
to p* Qiﬂ@) Q) with an obvious map to p* Qiﬁ@)wp. The main issue is to prove that
this map extends to the entire quotient. There is a secondary issue of uniqueness,
but the cokernel of p* Qiﬂ(@ (2117 is a sheaf which is torsion on all fibers, whereas the
sheaf p*Qiﬁ(@wp is torsion-free on fibers. So it is clear that there is no nonzero map
from the cokernel to p*Qiﬂ ® wp. Moreover, the extension problem can be phrased
as the vanishing of a section of a sheaf Ext, and this vanishing can be checked after
passing to the completion of the local ring at each geometric closed point of C.

Since we can check the property formally locally, without loss of generality we

assume that M is a scheme. Let z € C be a closed point. Denoting A = O ()
we can find an isomorphism

B =0c,. = Allz,y))/(xy — a). (35)
13
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for some element a € A. Now by Remark 4.2, it follows that the base change of
ou,i does extend to a map ¢; ®p. B as required, i.e. the element of the sheaf
Ext vanishes when we base change to B. This proves the existence of ¢; as in the
lemma. (]

In particular, back in the context that X is a smooth cubic threefold and M, is
the stack of genus 0 stable maps of degree e, this gives a map of sheaves

P2+ QU — P (V) @ we - (36)
We compose the maps
H'(C,0%) — H'(C.p* Q% ®we/zr,) — H° (Me, R'p.(p"0%; ® wcme)). (37)

The image of f*n under this map is an element in the last group which is equal to
H°(M.,, QQﬂe ® Rlp*WC/ﬂe)~ Finally, we apply the trace map

Rlp*wc/ﬂe — Oﬂe'
The result is the 2-form w, which we will study.

Remark 4.2. Let A be a ring and let B = Alz,y]/(zy — a) for some a € A.
Consider the canonical exact sequence
O—>Q}4®B—>QlB—>Q}B/A—>O.
Exactness on the left follows as B is a complete intersection flat over A whose
cotangent complex Lp /4 is quasi-isomorphic to Q}B, /A Moreover, the relative dual-
izing sheaf is the determinant of L, 4 (which is perfect of amplitude [—1,0]). So,
the relative dualizing module wp /4 is free with generator
dexAd
g— Y
Ty —a

and there is a canonical B-module homomorphism
leg JA T WB/A

which is determined by the rules dz +— 260 and dy — —y6. From this we will define
maps ‘ _

Qp - Q7 ®awp)a.
Namely, any element in Q% can be written as a B-linear combination of forms of
the type 1, n Adz, n Ady and n A dz A dy, where 7 is in Q,, with j =i, i — 1, or
i — 2. We claim there exists a map as above such that

n—0, nAdzr—n®z0, nAdy— —n®yl, nAdeAdy— —nAda®b.

The reader easily verifies that this is well defined (the main concern being that
forms of the type n A (ydz + xdy — da) and n A (yda + zdy — da) A dz get mapped
to zero).

Remark 4.3. Note that the same construction gives maps H’*1(X,Q*!) —
HY(M, Q%) for any variety X (not necessarily proper or smooth), and any Kont-
sevich moduli space of maps into X (not necessarily genus 0). Actually, there is
a corresponding “integration along fibers” map on de Rham cohomology and on
Betti-cohomology (in case the ground field is C), and presumably on any reasonable
cohomology theory. This is nothing new, but since we have to compute explicitly
the corresponding pairing below, we thought we should explain.

14



5. EXPLICIT DESCRIPTION OF THE 2-FORM

In the last section we gave a general argument which associates to a variety X and a
Kontsevich moduli space of maps M into X certain linear maps H*™!(X, Q_(?l) —
H®(M,Q%,). The case we are interested in is b = 0, so that elements of the target
are actually sections of the sheaf Qz\/[. In particular, we can consider the fiber of
such a section at a geometric point z € M, and try to describe this section (with
respect to a basis of the Zariski tangent sheaf) in terms of the local geometry of
the parametrized curve C, C X, i.e. we can try to make the construction of the
last section ezplicit. In this section we will make this very explicit in the special
case of genus 0 maps to the smooth locus of a cubic threefold.

5.1. Explicit description of H'(X,0%). First we recall a very small part of the
Griffiths residue calculus [9, Section 8]. Let X C P™ be a hypersurface of degree d,
and let U C X be the smooth locus. We have the cotangent sequence:

0 —— Op(—d) —— QL.|v Qb 0 (38)

Taking the exterior power of this sequence, and twisting by Ox(d)|y, we have an
exact sequence:

0 —— Q2 —— Q7 y @ Op(d) —— Qv ® Op(2d) —— 0
(39)
One can also get this by taking the dual of the first exact sequence and twisting by

QF.|uv ® Oy(d). At any rate, the connecting homomorphism in cohomology gives
a map
HO(P™, QF. @ Opn(2d)) — HY(U,Q2). (40)
In the special case of a cubic fourfold, we get an exact sequence:
0 Q3 Qpslu ® Op(3) —— Qs|lu @ Oy (6) —— 0. (41)

Of course we have Q5;, @ Ops(2 - 3) = Ops. Notice that if U = X, this map
is surjective. We choose some nonzero element in H°(P%, Q3; @ Ops (6)), and we
define 7 to be the image of this element in H' (U, Q).

5.2. The explicit description. Let f : C' — X be a point of M,. Assume that
P! = C is smooth and that f is a regular embedding into the smooth locus U C X.
Consider the sequence of vector bundles over C' given by the normal bundle N¢g,x
of C'in X mapping to the normal bundle N¢ /ps of C in P5:

0 —— NC/X E— Nc/]ps E— f*NX/]ps — 0. (42)

Of course Nx/ps = Ox (3), so that f*Nx/ps = Op1(3e) where we use the notation
Op1 (@) to indicate any invertible sheaf of degree a on P* = C'. In particular, observe
that A®> No/x = Opi (3¢—2) and that A* No/ps = Ops (6e—2). The Zariski tangent
space Tis(M.), which is the same thing as the dual vector space of the fiber Q}Me Gk
is given by the space of global sections H%(C, Ne¢yx) (c.f. [18, Theorem 1.2.8]). So
the fiber Q3 |( is just the vector space dual of N> HO(C, N¢)x). And the 2-form
we gives a procedure to associate to any two sections of Ng/x a complex number.

Next consider the exact sequence

3 3 2
0— /\ Neyx ®Op1(—3e) — /\ Neps ®Op1(—3e) — /\ Nejx — 0. (43)
15
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This sequence is obtained from Equation 42 by taking exterior powers and twisting
by Op1(—3e). In any case, the sheaf on the left is Op1 (—2) by what was said above.
Choose an isomorphism H!(C, Op:(—2)) = C, and let

5+ HO(C, \ Noyx) — HYNC, N\ Neyx ® Opi (=3)) = HY (C,0(~2)) = C

be the boundary map on cohomology coming from the exact sequence above. This
is another procedure which associates to any two sections of N¢,x a complex num-
ber. In the following theorem we prove that the two procedures agree. The best
argument for this is the usual: What else could it be? The actual proof is even
more annoying.

Theorem 5.1. Up to a nonzero scalar factor the pairing associated to we on
Tip(Me) = H° (C’, NC/X) is equal to the pairing (s1, s2) — d(s1 A $2).

Proof. Observe that the construction of Section 4 is compatible with arbitrary base
change of the stack M. To prove the theorem, we will base change to a certain
Artin local ring Z = SpecA over which we have the universal first order deformation
of C C X, say C C Z x X. The construction of Section 4 instructs us to restrict
the exact sequence from Equation 41 to C and then push the sequence out by the
map
(%) — Q2 — p* (9%) @ weyz (44)
Then we are instructed to take cohomology of the resulting sequence to obtain the
2-form w.. By a diagram chase, we see that the resulting sequence is simply the
“Serre dual” of the sequence from Equation 43 from which the theorem follows.
First we compute the universal first order deformation of C C X. By Serre
duality the vector space V. = H' (C,1/I* ® wc) is dual to H® (C, N¢,x). Here I
is the ideal sheaf of C' in X. Consider the local Artin ring A = k@ V', where V is
an ideal of square zero. Set Z = Spec A. Over Z we have the universal first order
deformation C — Z of C. Let s1,...,54 be an ordered basis for H° (C’7 NC/X) and
let t1,...,t4 in V be the dual ordered basis. We think of the elements s1,...,s4
as O¢-linear maps I/1? — O¢. Affine locally on X at a point of C suppose that I
is generated by g1, g2, g3s. Then the ideal of C is locally generated by the equations

A
Gi=gi+ Y ti-si(fy), =123 (45)

1=1
gj € OX[tla cee 7tA]/<titi/7tigjagjgj/|ivi/ = 17 e 7Aaj7j/ = 15273> (46)

Denote by p: C — Z and f: C — X the two projections.

To prove the theorem, we will compute the 2-form on Z obtained from the
construction of Section 4 applied to (p: C — Z, f: C — X). This is not as crazy as
it sounds, namely Qi/k ®a k = A%V so this computation will provide us with the
information we want.

To compute f*n, we form the pullback by f* of the exact sequence from Equa-
tion 41. Considered as an element of the Yoneda-Ext group Exté(@c,ﬂg), the

element f*n is simply the push out of this exact sequence by the canonical map
f* (Qg() — Q. According to Section 4, we now take the f*n under the map

Ext¢(Oc, Q) — Extt(Oc,p™ (%) ® we)z) (47)
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In terms of Yoneda-Ext, this means that we take an additional push our of our
exact sequence by Qé — p* (QQZ) ® weyz- So, in terms of Yoneda-Ext, our exact
sequence is obtained as the push out of the pullback of Equation 41 by the map

f*Qg( — pj< (QQZ) ®wc/z.

Of course we really only need to have this exact sequence on the closed fiber, so we
restrict the push out exact sequence to the closed fiber. In particular, we have that
the restriction to the closed fiber of p* (%) ® w7 is just A’V @ QL. Next we
give an explicit local description of the map

2
v Qle — A\ V e Q. (48)

Let ¢ be a regular function on X which restricts to a local coordinate on C. We
can write any local 3-form on X as an Ox-linear combination of the forms €;;; =
dfjndfy Adt, 1 < j < j' <3 and the form dfi Adfa Adfs, so it suffices to evaluate
1 on these 3-forms. The result is
A
(i) = Y silfi)su(f)ti Ao @dt, 1< <j' <3, (49)

i,i'=1

Y(dfi Adfa Ndfs) = 0. (50)

Of course there is more “global” way of thinking about 1. The exact sequence

0 1)1 Qe QL 0, (51)

determines a canonical map a : Q%|c — A’I/I2 @0, QL. And there is a
map of Oc-modules 3 : I/I? — V ®; O¢ defined as the transpose of the map
HO (C, NC/X) ®k Oc — Ngyx. The global description of ¢ is as the composition
of a with A* 8 ® Idgy .

Just as the exact sequence in Equation 51 induces the map «, also the exact se-
quence

0 I/1? Qps | QL 0. (52)
induces a map o : Q%|c — A*I/I? ® QL where I is the ideal sheaf of C in
P5. By adjunction, we have isomorphisms Q3;|c ® Oc(3e) & Q%|c and Q% |c

/\3 I/1? ® Q. Combining these adjunction isomorphisms gives an isomorphism
3
o Qslc ® Oc(6e) — N\ I/I? ® Oc(3e) @ Q. (53)
Of course both terms in this map are isomorphic to O¢. Choosing such isomor-

phisms, o’ is just an isomorphism of O¢ to itself.

We leave it to the reader to verify that the following diagram commutes:

0 —— Qe ——  Qpsle(3e) Oc 0
al a'l a”J{ (54)
0 —— AN I/IP@QL —— N’ I/I12(3¢) @ QL Oc 0.

The top exact sequence is just the restriction to C' of Equation 41, and the bottom

exact sequence is the dual of Equation 43 tensored with Q. More canonically,

the last term in the top sequence is Q3;|c(6e) and the last term in the bottom
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sequence is \° I/12(3¢) ® QL. But we choose isomorphisms of these sheaves with
Oc¢ as described in the last paragraph.

The conclusion is that the extension of Oc by A?V ®; Qf obtained from f*r] is
precisely the Serre dual exact sequence of Equation 43 used to define the coboundary
map 6. Hence the coboundary map on cohomology H°(C,O¢) — H(C, /\2 I/I’®
Q) is the dual of §. This equality implies the result of Theorem 5.1. (]

6. PROOF OF THEOREM 1.2: DEGREE FIVE CASE

The strategy of the proof of Theorem 1.2 is the following. Form the P5° parametriz-
ing all cubic hypersurfaces in P?, and let U, — P?® be the parameter space for
pairs ([X], [C]) where C' C X is a smooth curve of degree e such that X is smooth
along C and such that H'(C, N¢/x) is zero (ie. C C X is unobstructed). This
last condition guarantees that U, — P%° is a smooth morphism. Also recall from
Proposition 2.4 that the general fiber of U, — P?° is irreducible. In particular, U,
is also irreducible.

We can perform a relative version of the construction of Section 4 to obtain a 2-
form w, as a section of Q?Je /pss whose restriction to any fiber is the 2-form of the
fiber. The rank of w,. on fibers is lower semicontinuous on U., so to prove that the
rank of w, is as expected for a general pair ([X], [C]), it suffices to find a single pair
([X],1C]) € U, where the rank of w, is as expected.

Suppose that we have an exact sequence of the form
0 — O(a1) ® O(az) ®© O(az) — Ngyps — O(3e) — 0

with a; + az + a3 = 3e — 2. In other words N¢,x = @ O(a;). The extension class
of this sequence is an element 9 of H*(P!,O(a; — 3e) ® O(az — 3¢) ® O(as — 3¢)).
If we write P! = Proj (S), where S = C[Xj, X;], then we have, using Serre duality,
that ¢ = 11 ® o & 3 with ¢; € Hom (S3¢—q,—2,C). If we write elements of
HO(C, N¢yx) in the form (g1, g2, g3) where each g; € H°(C, O(a;)), then the reader
verifies readily that in this case the pairing takes the following form

a1 hi
< g2 |, | he > = Y3(g1ha — gah1) + Y2(g1hs — gshi1) + ¥1(g2hs — gshs).
g3 h3

In order to compute the pairing for a given curve we have to find the linear func-
tionals 1, 19, 13 above. For large e this reduces to a rather involved computation
which is straightforward, but tedious. We will present this computation later, but
first we show that in the special case e = 5 there is an elegant solution (which
hopefully will motivate the reader to “trudge through” the computations of the
next two sections).

Theorem 6.1. Suppose that f : C — X is a general quintic rational curve on a
general cubic fourfold X. Then No/x = O(4) © O(4) @ O(5) and the extension
class 1 of the sequence 0 — N¢yx — Neyps — O(15) — 0 is a general point of the
space Hom (Sg & Sy & Sg, C).

Proof. To prove this we argue as follows. Fix a rational normal curve C' C P% of
degree 5. It is easy to see that its normal bundle N¢/ps is O(7)®%. Thus any (not
18



necessarily nonsingular) cubic fourfold X containing C' determines a homomorphism
of Oc-modules

ox 1 O(N)® = O(15).

Note that ¢x = 0 if and only if X is singular along C, which happens if and if the
defining equation of X is a section of I%(3). We leave it to the reader to compute
the following dimensions:

dim H°(P°,I(3)) = 40, dim H°(P®,I%(3)) =4, dimHom ¢(O(7)* O(15)) = 36.

Thus the rule X — @x is onto. Hence we can obtain the general exact sequence of
the form 0 — Ker (o) — O(7)* — a — O(15) — 0 as the normal bundle sequence
for general (nonsingular) X. The theorem follows. ]

To finish we choose ; as follows:

¢1(Zj:0 a; Xy ' X{) = Zj:o via;, %(ijo a; Xy X)) = Zj:o pia;,
and

wl(ZTZO CLng_in) = Zj:O )\zaz

Here we choose v;, p; and A; general. The matrix of the pairing with respect to the
obvious basis of HO(P!,0(4) & O(4) ® O(5)). Here is the result:

Ao A1 A2 A3 A4 Mo M1 M2 U3
A2 A3 A A5 pr po p3 g

cooco
cocoo
cocoo
cooco
2

0 0 0 0 0 A A AXe Ar Ag pa ps He My
X0 —A1 X —A3 =)\ 0
N U S V)
—Xo —A3 =X =X —Xg 0
A3 =M =5 —X¢ —A7 0
M =5 =g —A7 —)Xg 0
—Ho —p1 —H2 —H3 —pa —Vo —vi —va —vz —vg 0
—p1 —pe —M3 —p4 —ps —v1 —vy —v3 —vg —vs 0
—po —p3 —ps4 —ps —pe —Vo —v3 —ly —vs —Ug O
—p3  —i4 —H5 —pe —p7 —v3 —vg —vs —vg —vr 0
—Ha —ps —fe —H7 —ps —va —Vs —vg —vr —vsg 0
—Ws —He —H7 —Hs —H9 —V5 —Vg —lr —vs —lg 0

Finally, to end the proof of Theorem 1.2 in the case e = 5, we show that the
determinant of this matrix is nonzero. This we achieve by specializing as follows
)\0 = 1,)\1 = 2,)\2 = —17)\3 = 1,)\4 = 17>\5 = 17)\6 = —1,)\7 = _47>\8 = 27M0 =
1’/1/1 = 2)“2 = _17/1/3 = 27“4 = 57/’65 = _17,U/G = 13)”7 = _17/1/8 = 1a,U/9 =Ly =
1,1/1 = 2,1/2 = 3,V3 = 5,V4 = 471/5 = —5,1/6 = —671/7 = —7,1/8 = —5,1/9 =1 and
computing the determinant. The result of the computation is 445717799641 which
is not zero as desired.
19



odd-1

7. PROOF OF THEOREM 1.2: THE ODD DEGREE CASE

In the previous section we saw an elegant proof of Theorem 1.2 in the case that
e = 5. What made the proof so short and non-computational is that in this case the
extension class i can be chosen to be general by our parameter count. The analo-
gous parameter count breaks down as the degree e becomes larger — the dimension
of the relevant Ext space grows faster than the dimension of the space U,. Instead
we shall work with a specific pair ([X],[C]) € U, where we can prove that the rank
of w, is as expected and where H!(C, N¢ /x) is zero. We warn the reader now that
X will not be smooth! But X will be smooth on an open set which contains C,
and this is all that matters.

7.1. Computation of N¢/ps. Write e = 2r + 1 where r > 2. We begin by speci-
fying C' and computing N¢/ps. As in the last section, choose homogeneous coordi-
nates Xg, X7 on P'. Choose homogeneous coordinates Yy, Y7, Y, Ys, Yy, Y5 on P2,
Consider the map f : P! — P5 given by

F([Xo: Xq]) = (X2 X2 Xy - XPHEXT - X X7 Xo X3 X3+,

This is a monomial embedding of P! which is as “balanced” as possible. To compute
the normal bundle of C' in P?, we use the Euler sequences for Tp1 and Tps. There
is a map between these Euler sequences induced by f and the important term is

df : Op1(1)®2 — f* (Ops (1)%6) = Opa (2 4 1)%°
which is given by the matrix

(2r +1)X2" 0
2r X3 Xy xg
(r+1D)X5X7  rXiT X!

G= oxz X ()X (55)
xzr 2r Xo X7t
0 (2r + )X

First of all observe that this matrix does have rank 2 at every point. This proves that
f separates tangent vectors; injectivity of f follows from the fact that [Y; : ¥7] and
[V : Ya] are local inverses of f. Moreover the normal bundle of C in P? is just the
cokernel of (5‘ . To compute this, consider the sheaf morphism 7" : Op1 (2r +1)®6 —
Op1 (37 + 1)®4 given by the matrix

(r—1)X7 —rXoX;™! Xy 0 0 0
0 X7 —r XXy (r—1)Xg 0 0
0 0 (r—1)X7 —rXeX[ ! Xy 0
0 0 0 X7 —r Xy Xy (r—1)X]
(56)

It is straightforward to verify that T o de is zero and that T has rank 4 everywhere.
Thus T gives an isomorphism of N¢/ps with Op1 (3r + 1)®4 and we shall take this
isomorphism to be an identification of locally free sheaves.
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7.2. Computation of N¢,x. Next we specify X and compute the normal bundle
N¢/x. Observe that the quadric equations @, = Y1Yy—YoY5 and Qp = YoY3-Y(Y5
both vanish on the image of f. Let L, and L; be any linear homogeneous polyno-
mials in Yy, ..., Y5 which are linearly independent and consider the homogeneous
cubic polynomial F' = L,Q, + L,Qp (later we will specialize to the case that L,
and L, are general linear homogeneous polynomials in Yy and Y5 alone). For our
purposes it is convenient to make a “change of variables” and define M = L, + L,
and N = L, +rL; (here we are using that r # 1 to see that L, and L, are uniquely
determined by M and N). Consider X = {[Yy : --- : Y5] € P?|F(Yy,...,Ys) = 0}.
Let us point out to the reader that X will be singular along the common zero locus
of Ly, Ly, Q, and @y — which will typically be a geometrically connected degree 4
curve of arithmetic genus 1.

To determine whether X is smooth along the image of f, we need to compute the

pullback by f of the “gradient vector” [%]i=0,...,5- If we define L, = f*L,, E) =

f*Ly,M = f*M and N = f*N considered as sections of HO(P!, f*Ops(1)) =
HO(P!, Op1(5)), then the pullback of the gradient vector of F is the sheaf morphism
U: Op1(2r +1)%5 — Op1 (61 + 3) given by

| -XFHUIa+ L) XoXPLe XpXTUL, X§UXaD, XPXaLe —XE(ILa+ L) |

(57)

One readily verifies that if ]~La and Eb have no common zeroes and if ]~La + Eb is

nonzero at the points [1 : 0] and [0 : 1], then this matrix is everywhere nonzero, i.e.

X is smooth along C'. From now on we assume this is the case; in other words, M

and N are lincarly independent and M is not zero at the points [0 : 1] and [1 : 0].

The matrix U factors as U = SoT where S : Op1 (3r +1)®6 — Op1 (61 + 3) is given
by the matrix

-1

r—1

S = | XPMA XoX[N XgX, N Xp T | (58)

The normal bundle of C'in X, Ng/x is just the kernel of the sheaf morphism S.
To describe this map, we write out

{ M = coYy + c1Y1 + c2Ya + c3Y3 + ¢4 Yy + 5V,

N = doYo + diYs + dsYa + dgYs + daYa + dsYs (59)
Then we have

M = coXg™ ! + 1 X3 X1 + X0 XT + es X5 X[ + caXo X+ e X771,
N =do X3 + di X2 X1 + do X3 XT + ds X XTH + da Xo XP + ds X771

(60)
We make the definitions
n=dy XX +ds Xo X,
n' =doXgT Xy + di X§XE + doXo X +ds X7, (1)

m = C4X(]X{+1 + C5X;+2,
m' = coX§T? + X5 Xy + o XZXT +esXo X[

In other words, XoX; N = X[ ™'n + X[ ™'n’ and M = X{"'m + X;"'m/. Then
consider the sheaf morphism R : Op:1 (2r)&O0p: (2r+2)®O0p1 (2r—1) — Op1 (3r+1)%4
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given by

Xt 0 n
_ 0 Xt o-m
R - 0 _X{—l _m/ (62)
_X{+1 0 n

One readily verifies that S o R is zero. The matrix R has rank three generically,
namely, it has rank three at [0 : 1] and [1 : 0] by our hypothesis that M is non-
vanishing at those points. By degree considerations, it follows that R has rank 3
everywhere and gives an isomorphism of Op1 (2r) @ Op1(2r + 2) & Op1 (2r — 1) with
the kernel of S, i.e. Neo/x. Observe, in particular, that H'(P', N¢,x) is trivial, so
([X],[C)) is a point of U,. We illustrate the situation with the following diagram:

O(1)

0@ & 02r+2)a0@2r —1) —2— 0@Br+1)* —2— 0(6r +3)
odd-3
7.3. Initial description of the pairing. In this subsection we begin to de-
scribe the skew-symmetric bilinear pairing on H(C, N¢yx) induced by w.. We
will complete the description in the next subsection. Let’s introduce a little no-
tation. We will usually refer to elements in H°(P', N¢/x) by (g1,92,93) and
also g1e; + goes + gsesz where e; is the ith column of the matrix R and where
g1 € HO(PY, Op1(2r)), g2 € HO(PY, Op1 (21 + 2)) and g3 € HY (P!, Op1 (21 — 1)).

Now by Theorem 5.1, to compute the bilinear pairing we on H°(P!, N¢/x) it is
equivalent (up to a nonzero scaling) to compute the boundary map
2
§: H(P', \" Ngyx) — H'(P', Opi (—2)).

Notice that the next term in the long exact sequence of cohomology is H* (P!, Op:1 (3r))94,
which is trivial. Therefore the connecting homomorphism is the cokernel of the map
on global sections

2
R': HO(P', Op1 (3r))®* — HO(P', /\" Neyx) = HO(P', O(4r+1)@0(4r—1)@0 (4r+2))

determined by the sheaf morphism R : Op: (3r)%* — /\2 N¢/x which is adjoint to
R. (The adjoint R' = diag(1,—1,1) o R, where R? is the transpose of R.) If we
use as “ordered basis” for /\2 Ncyx the elements e; A es, e; A ez and e; A ey, then
the matrix of R is simply

Xt 0 0o —-x;t
0o —x;7t x7t 0 (63)
n -m —m/’ n'

So, in other words, the pairing w, is just given by
[(g1e1 + g2e2 + g3es), (hie1 + hoes + hses)] = (g1he — g2h1)e1 A ey

+(g1hs — gahi1)er Aes + (g2hs — gsha)es A ez mod Im(RT).
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7.4. The image of the map R'. In order to have an explicit formula for the
pairing [-, -] above, we need to determine the image of Rf. We begin by determining
the intersection of H°(P!, Op: (4r + 2))e; A ep with the image of Rf. First of all, a
global section of Op:1 (3r)®4 is mapped under Rf into HO (P!, Op: (47 4 2))e; A ey iff
it is of the form

X{+ 1p
-X{ g
X g
Xy
for some p € HO(P!, Op1(2r — 1)) and ¢ € HO(P!, Op1 (27 + 1)). And the image of
this element is just

v =

(64)

RT(’U) = (X()le\?p + Mq)el N es. (65)

At this point we make our last simplification. We will assume that ¢; = ¢ = ¢3 =
cg = 0 and di = dy = d3 = dgs = 0, in other words L, and L; are both linear
combinations of Y and Y5 which are linearly independent and such that ¢, cs, dg
and ds are all nonzero. Now consider just those ¢ such that ¢ = X¢X1¢' for some
¢ € H°(P', Op1(2r — 1)). Then we have that Rf(v) is simply XoX;(Np + M¢).
Since M and N are linearly independent elements in the span of Xg”'l and X 12T+1,
as we allow p and ¢’ to vary the expression Rf(v) varies over the whole linear span
o XXy, XSTPEXE XX XX

Notice that X;™ 2, X2 T X271 and X{"*2 are missing. But taking ¢ = X2"** and
q = X7 does give us co Xy "% + es XgTT X and co XTI X 4o X2
Thus we have that intersection of H(P!, Op:1 (47 + 2))e; A ey with the image of R
is precisely the subspace with basis

4r+2 2r+1 v 2r+1 ydr+l dr 2 2r42 12 2r 3 2r+2
coXo P+ e XX X X, XX XS XX
4r+1 2r4+1 y2r+1 4r+2
XoXlT ,C()XOT XlT —i—C5,X'17 .

Now we introduce some more notation. For each pair of nonnegative integers (4, j),

let a; j : HO(P', Op1(i + j)) — C be the linear functional such that for any homo-
geneous polynomial g of degree d we have

9(Xo0, X1) = > ai(9)X4XT, (66)
itj=d

i.e. a; (g)isjust the coefficient of XéX{ in g. Then the linear functional c§a4r+2707
COC502r+1 2041 + C3Q0 4742 1S a nonzero linear functional on HO(P!, Op: (4r + 2))

whose kernel is precisely the intersection with the image of RY.
Also, we can use the first two rows of R to represent every element in H°(PP!, /\2 Neyx)
as being congruent to some element in H°(P!, Op: (47 +2))e; Aep modulo the image
of RT. Carrying this out we see that, up to a nonzero scalar, the pairing [-,-] is

uniquely determined to be
[(g1€1 + g2€2 + gses), (hier + haeg + haes)] =
(CBuart2,0 = C0C502r41,2r42 + G0, 4r+2) (g1ha — g2h1) +
0005(050137”,“1 - Coar71,3r)(91h3 - gshl) +
cocs(dsazry,r — dootr 3r41)(g2hs — gzhe).
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7.5. Diagonalizing the pairing. The antisymmetric bilinear map [-,-] gives a
linear transformation @, : H°(P', N¢/x) — H°(P', N¢/x)¥ and we want to deter-
mine the kernel of this linear transformation. To do this, first we will “diagonalize”
the pair (H°(P*, N¢/x), [-,+]), i.e. we will find a direct sum decomposition

r—2

H(P',N¢yx) =P E:i © Er 1 © B,

i=0
such that for each i # j, E; and E; are mutually orthogonal subspaces with respect
to [-,:]. To show that [-,-] has trivial kernel, it suffices then to show that the
restriction of the pairing to each space F; has trivial kernel. And this we will do by
computing the determinant of the matrix of [, -] with respect to a suitable basis.

For i =0,...,r — 2, consider the subspace E; C H°(P', N¢/x) generated by

Vil = X6+1+iX1T717iel
Vio = Xg—inr-l-?-Hez
Vi3 = XgT_l_iX{eg
Via = X8X12r_1_i83
Vi,5 = X6'+2+in_ie2
VZ‘,6 = Xg_l_iX{-i_l-Hel

For i = r — 1 consider the subspace E,_; C H°(P', N/ x) generated by

Vi1l = X3req
Vye—_12 = XgH_Qez
vicis = X3 Xje,
Veoia = X§X[tles
vicis = XgT'XTe;
vic1e = XoX{ e,
Ve—17 = X7 ey
Vr_1,8 = Xire

Finally, for ¢ = r we consider the subspace E, C H°(P!, N/ x) generated by

Vel = Xy XTe
o r+1 yvr+1
veo = Xi X[ ey

First of all, observe that each of these generating sets is simply a sub-basis of the
standard monomial basis of H(P!, N¢,x) which is

HO(P', Op1(2r))e; @ HY (P, Op1 (2r + 2))ex @ HO (P!, Op1 (2r — 1))es.

It is very easy to check that every monomial basis vector is in precisely one of the
subspaces F;, and thus these spaces give a direct sum decomposition of H(P*, N /X))
Just as a consistency check, observe that for i = 0,...,r — 2 we have dim(E;) = 6,
dim(E,_1) = 8 and dim(E,) = 2. So the total dimension is 6(r —1)+8+2 = 6r+4
which is (2r + 1) + (2r + 3) + 2r, i.e.

dimH®(P!, Op1 (2r))e; + dimH® (P!, Op: (21 + 2))es + dimHO (P!, Op1 (2r — 1))es.

Checking that the spaces E; are pairwise orthogonal with respect to [-, ] is straight-

forward, but tedious. One way to think of it is to consider the graph whose

vertices are the standard monomial basis vectors of H O(IP’I,NC/ x), and where
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there is an edge between two such basis vectors iff the pairing is nonzero for this
pair. Thus there is never an edge between gie; and hie;, nor between gses and
hoes, nor between gzes and hses. There is an edge between gie; and hges iff
grhe = X61T+2,X02T+1X12TJr1 or Xf’“”. There is an edge between gie; and hses
iff g1hs = X§"X77! or X57'X{". And there is an edge between goes and hzes
iff gohs = XSTHX{" or XJX ™! In particular, it is easy to see that the valence
of X2"e; , X?"ey, X{X| ‘ez and X ' XTes is three, the valence of XjXJe; and
X5 tlx 1 *le, is one, and every other vertex has valence two. Moreover, there is an
obvious symmetry in the graph obtained by permuting the variables X, and X;.
Using this, it is straightforward to take each of the vectors v;; and compute that
the maximal connected subgraph containing this vertex gives the generating set for
E; (this is an exercise left to the reader). Thus the E; are pairwise orthogonal.

7.6. Computing the determinants. In this last subsection, we compute the
determinant of w, restricted to each of the direct summands. We show that each
determinant is nonzero, which proves that the pairing is non-degenerate. For ¢ =

0,...,7 — 2, we can form the matrix of &, : E; — E,” with respect to the ordered
basis v;1,...,v;¢ and the dual ordered basis of EY. This is straightforward to
compute and turns out to be:
0 CoCs —C()Cg 0 0 0
—CoCs 0 0 CoCst 0 0
2
o CoCx 0 0 0 Coc5d5 0
Al - 0 —CQC5d0 0 0 0 —6305 (67)
0 0 *6065d5 0 0 —CpCs
0 0 0 0865 CoCs 0

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(4;) =
c3c3(cods — csdp) and thus the determinant is Det(A;) = c5¢l(cods — e5dp)?. Since
we are assuming that cg,cs are nonzero and that (cg,cs) is linearly independent
from (dp, ds), this determinant is nonzero.

For ¢ = r — 1, we can form the matrix of @, : E,._1 — FEY_; with respect to
the ordered basis v,_1.1,...,v,—18 and the dual ordered basis of EY ;. This is
straightforward to compute and turns out to be:

i 0 —cg 0 —cy cg 0 CoCs 0 0]
Cg 0 0 0 — CoCsx d5 0 0 0
0 0 0 —CpCs d5 0 0 0 —CpCs
A Co Cg 0 CpoCs d5 0 0 0 —CpCs do 0
r-1 = 0 CoC5d5 0 0 0 —Coc5d0 0 —0365
—CoCs 0 0 0 cocsdg 0 0 0
0 0 0 COC5dQ 0 0 0 6(2)
i 0 0 coCs 0 c305 0 —cg 0
(68)

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(A4,_1) =
c3c3(cods — csdp)? and thus the determinant is Det(A,_1) = c§cf(cods — c5do)?.
Since we are assuming that ¢, ¢5 are nonzero and that (co, ¢s) is linearly indepen-
dent from (do, ds), this determinant is nonzero.

For i = r, we can form the matrix of &, : E, — E) with respect to the ordered basis
Vr1, V2 and the dual ordered basis of EY. This is straightforward to compute and
25
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turns out to be:
Ar _ |: 0 CoCs ] (69)

—CpCs 0

Visibly the Pfaffian of this matrix is cocs and the determinant is cc2. Since we are
assuming that cg, cs5 are nonzero, this determinant is nonzero.

Since each of the determinants above are nonzero w, has maximal rank on each of
these subspaces. Since the subspaces are pairwise orthogonal, we conclude that @,
has maximal rank on all of H°(P!, N¢/x), i.e. the kernel of & is zero. This proves
Theorem 1.2 in case e = 27 + 1 is an odd integer with e > 5.

8. PROOF OF THEOREM 1.2: THE EVEN DEGREE CASE

In the last section we saw the proof of Theorem 1.2 in the odd degree case. In
this section we shall prove Theorem 1.2 in the even degree case. The proof will be
exactly analogous to the last case and, if anything, simpler than that case. As in
the last section, for each even degree e > 6, we shall find a specific pair ([X], [C])
where C' C P® is an embedded rational curve of degree e and where X C P? is a
cubic hypersurface containing C' and such that C' is disjoint from the singular locus
of X. For our special pair, we will prove that the rank of w. is as expected and
HY(C, N¢,x) will be zero.

8.1. Computation of N¢ /ps. Write e = 2r where 7 > 3 is some integer. We begin
by specifying C' and computing N¢/ps. Choose homogeneous coordinates Xo, X1
on P! and as before choose homogeneous coordinates Yy, Y7, Y, Ys, Yy, Vs on P2,
Consider the map f : P! — P5 given by

F([Xo: Xq]) = [X&: X2 X, - XgP X7 Xp Xt X Xt X3,
This is a monomial embedding of P! which is as “balanced” as possible. To compute
the normal bundle of C in P°, we use the Euler sequences for Tp1 and Tps. There
is a map between these Euler sequences induced by f and the important term is

df = Op1 (1)92 — f* (Ops(1)2%) = Op1 (2r)2°
which is given by the matrix
2r Xyt 0
(2r — 1)X5" 72X, x5t
2| XX DXty

df = (r—D)X;2XTH (e )X)TIXT (70)
Xt (2r — 1) X X272
0 2r Xt

To see that f is an embedding, notice that [Yp : Y1] and [Yy : Y5] give local inverses
of f. Moreover the normal bundle of C' in P® is just the cokernel of gl} . To com-
pute this, consider the sheaf morphism 7" : Op:1 (2r)®6 — Op1(3r — 1) @ Op:1 (3r) &
Op1(3r) @ Op1 (3r — 1) given by the matrix

(r—2)X77" —(r—1)XeX! x5! 0 0
0 2XT —rX)72XE (r—2)X3 0
0 0 (r—2)X)1" —rX3X;? 2X7
0 0 0 X! —(r—1)X;72X,

(71)
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It is straightforward to verify that T o @c is zero and that T has rank 4 everywhere.
Thus T gives an isomorphism of N¢/ps with Op1 (3r — 1) © Op1(3r) @ Op1 (3r) ©
Op1(3r — 1), and we shall take this isomorphism to be an identification of locally
free sheaves.
even-2

8.2. Computation of N¢,x. Next we specify X and compute the normal bundle
Ncyx. Observe that the quadric equations Q, = Y1Yy — YoY5 and Q) = Y23 —
YoY5 both vanish on the image of f. Let L, and L; be any linear homogeneous
polynomials in Yp,...,Ys and consider the homogeneous cubic polynomial F' =
LoQa + LpQyp (later we will specialize to the case that L, and L, are general linear
homogeneous polynomials in Yy and Y5 alone). For our purposes it is convenine to
make the “change of variables” M = L, + L, and N = L, + (r — 1)L;. Consider
X ={[Yo: - :Y;] € P5|F(Yp,...,Ys) = 0}. Let us point out to the reader that
X will be singular along the common zero locus of L., Ly, Q, and Qp — which will
typically be a geometrically connected degree 4 curve of arithmetic genus 1.

To determine whether X is smooth along the image of f, we need to compute the

pullback by f of the “gradient vector” [g—g]izo,wg). If we define L, = f*Lg, Ly =

f*Lb,M = f*M and N = f*N considered as sections of HO(P!, f*Ops(1)) =
HO(P!, Op1(5)), then the pullback of the gradient vector of F is the sheaf morphism
U : Op1(2r)®5 — Op:1 (61) given by

| —XP Lo+ L) XoXP'L, XpUUXTRL, XpUXTTUD, XPUUNGL, X3 (Ta+ L) |-
(72)
One readily verifies that if L, and L; have no common zeroes and if L, + Lj is
nonzero at the points [1 : 0] and [0 : 1], then this matrix is everywhere nonzero,
i.e. X is smooth along C. Moreover this matrix factors as U = S o T where
S: Ngyps — Op1(6r) is given by the matrix
S = ﬁ | 2XPUM XoX[TIN O XpTUGN 2xgtOT | (1)
The normal bundle of C'in X, N¢/x is just the kernel of the sheaf morphism S.
To describe this map, we write out

{ M = coYp + 1 Y1 + Yo + c3Ys + caYy + c5Y5,

4
N = doYo + d1 Yy + doYs + dsYs + ds Y, + dsYs (74)
Then we have

M = X2 + 1 X0 Xy + X0 X + e X0 X 4+ eaXo X7+ e XP
N =do X3+ di X3 ' X1 + do X{HXT 2+ da X3 X + da Xo X7+ ds XFT

(75)
We make the definitions
n=dzXoX] +ds X2X] ' +ds X0 X7,
n' = do X5 X1+ di X5 X? + do Xo XT, (76)

m = 204X0X{+1 + 205)({+27
m' = 2co X5 + 201 XX + 202 X3 X + 203 X0 X

In other words, XoX;N = X]*'n + X/ 0/ and oM = X[ >m + X, 7?m/. Then
consider the sheaf morphism R : Op1 (21 — 2) @ Op1 (2 +2) @ Op1 (2r —2) — Neyps
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given by

X5t 0 n
_ 0 X772 —m
R - 0 _X{’72 _m/ (77)
_Xi"-‘rl 0 n'

One readily verifies that SoR is zero and R has rank three generically (in particular
is has rank three at [0 : 1] and [1 : 0] by our hypothesis that M is nonvanishing at
those points). By degree considerations, it follows that R has rank 3 everywhere
and gives an isomorphism of Op1(2r — 2) @ Op1 (2r) @ Op1(2r — 2) with the kernel
of S, i.e. Noyx. Observe, in particular, that H'(P', N¢,x) is trivial so ([X], [C])

is in U,.
even-3
8.3. Initial description of the pairing. In this subsection we begin to de-
scribe the skew-symmetric bilinear pairing on H(C, N¢/x) induced by w.. We
will complete the description in the next section. Let’s introduce a little no-
tation. We will usually refer to elements in HO(]P’l,NC/X) by (g1,92,93) and
also g1e; + goes + gses where e; is the ith column of the matrix R and where
g1 € HO(PI, Op1 (27‘ - 2)),92 € HO(H‘M, Op1 (27“ + 2)) and g3 € ]{O(IEM7 Op1 (21 — 2))
Now by Theorem 5.1, to compute the bilinear pairing w, on HO(]P’l,NC/X) it is
equivalent (up to a nonzero scaling) to compute the boundary map
2
§: H'(P', \ Neyx) — H' (P!, Op1 (-2)).
Notice that the next term in the long exact sequence of cohomology is H*! (P!, Op: (3r—
1)®2 @ HY(P!, Op1 (3r — 2))®2, which is trivial. Therefore the connecting homo-
morphism is the cokernel of the map on global sections
RT . HO(P!, Op1(3r — 1) @ Op1 (31 — 2) @ Op1 (31 — 2)) @ Op1 (31 — 1))
2
— H'(P', \" Neyx)
determined by the sheaf morphism R : Nps ® /\3 Nejx — /\2 N¢yx which is
adjoint to R. If we use as “ordered basis” for /\2 N¢/x the elements ez Aes, e Ae
and e; A ey, then the matrix of R is simply
Xt 0 0 —Xx7t!

0 X Xx;? 0 (78)

n —-m —m/ n'
So, in other words, the pairing w, is just given by

[(g1€1 + gae2 + g3es), (hie1 + haey + hzes)] = (g1he — gahi)er A ey
+(glh3 — gghl)e1 Nes+ (gghg — gghg)eg N es (moduloRT).
even-4

8.4. The image of the map R'. In order to have an explicit formula for the

pairing [-, -] above, we need to determine the image of Rf. We begin by determining

the intersection of H?(P!, Op1 (47))e; Aey with the image of RT. First of all, a global
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section of Op1(3r — 1) @ Op1 (3r — 2) & Op1 (3r — 2) @ Op1 (3r — 1) is mapped under
R into HO(P!, Op:1 (47))e; A ey iff it is of the form

X
-X{ 7%
—X(’)"_Qq
X(’r)‘+1p

(79)

vV =

for some p € HO(PL, Op: (2r — 2)) and ¢ € HY(P!, Op:1(2r)). And the image of this
element is just

R'(v) = (X0 X1 Np + 2Mq)e; A es. (80)

At this point we make our last simplification. We will assume that ¢; = co = ¢c3 =
cy = 0 and dy = dy = d3 = dy = 0, in other words L, and L; are both linear
combinations of Yy and Y5 which are linearly independent and such that cg, cs5, dy
and ds are all nonzero. Now consider just those ¢ such that ¢ = Xy X:¢  for some
¢ € H°(P', Opi (2r — 2)). Then we have that Rf(v) is simply XoX;(Np + 2Mgq).
Since M and N are linearly independent elements in the span of X3" and X7", as
we allow p and ¢’ to vary, Rf(v) varies over the whole linear span of

4r—1 2r+1 v2r—1 2r—1 v 2r+1 4r—1
D CLEED CHIID CAED GNP ¢ CUENNIND (9. ¢y

Notice that X3, Xg"X?" and X{" are missing. But taking ¢ = X2" and ¢ = X?"
does give us coX§" + s X2" X and coX2"X?" + ¢sX{". Thus we have that the
intersection of HO(P', Op1 (47))e; Aey with the image of R is precisely the subspace
with basis

4r 2r v 2r 4r—1 4r—2 2 2r+1 v 2r—1 2r—1 v2r+1
CoXAT e XX XArolXy XAr-2x2 L XErlx2ol x2rolxerdl
XoX{" ! coX§ XT 4 es Xy

Now we introduce some more notation. For each pair of nonnegative integers (4, j),
let a; ; : HO(PY, Op1(i + j)) — C be the linear functional such that for any homo-
geneous polynomial g of degree d we have

9(Xo, X1) = Z ai j(9) X4 X7, (81)
itj=d

i.e. a;;(g) is just the coefficient of X; X7 in g. Then the linear functional cZay, o —
CoC5Q2r 2y + Cvg 4r is a nonzero linear functional on H°(P!, Op: (4r)) whose kernel
is precisely the intersection with the image of RT.

Also, we can use the first two rows of RT to represent every element in HO(P', A> No /x)
as being congruent to some element in H°(P!, Op:(4r))e; A ez modulo the image
of RT. Carrying this out we see that, up to a nonzero scalar, the pairing [-,-] is
uniquely determined to be

[(g1€1 + g2€2 + gze3), (h1e1 + hoea + hzes)] =
(Eaugr 0 — cocsarar + caan.ar)(grha — gahy)
20005(65a3r72,r72 - Coar72,3r72)(glh3 - g3h1)
h

cocs(dsagr,r — doair 30)(g2hs — gshe).
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8.5. Diagonalizing the pairing. The antisymmetric bilinear map [-,-] gives a
linear transformation @, : H°(P', N¢/x) — H°(P', No/x)¥ and we want to deter-
mine the kernel of this linear transformation. To do this, first we will “diagonalize”

the pair (H°(P*, N¢/x), [-,+]), i.e. we will find a direct sum decomposition
r—3
HOGP)la NC/X) = @Ez @ Er72 53 Erfl ©® Er
i=0

such that for each i # j, E; and E; are mutually orthogonal subspaces with respect
to [-,-]. We will see that there is a vector w in E, in the kernel of @.. On the quotient
vector space H(P', Nc/x)/C{w}, we have an induced alternating bilinear form
[-,-] and an induced direct sum decomposition @;_, E! by pairwise orthogonal
subspaces. To show that [-,:]" has trivial kernel, it suffices then to show that the
restriction of the form to each space E! has trivial kernel. And this we will do by
computing the determinant of the matrix of [, -]’ with respect to a suitable basis.

For i =0,...,r — 3, consider the subspace E; C H°(P', N¢/x) generated by

Vil = X(T),JrinTi?iiel
Vio = nginr+2+ie2
Vi3 = Xgr_2_iX%eg
Via = X8X12T_2_i€‘3
Vi,5 = X6'+2+iXI_i82
Vz‘,ﬁ = Xg_Q_in-i_iel

For i = r — 2, consider the subspace E, o C H°(P!, N¢)x) generated by

Ve_21 = XST’Qel
Vy_22 = X e,
Vi_as = X§X| Zes
Vicoa =  XiX{'er
Vicas = X§"Xieo
Vi_as = Xg 2XJes
Ve_27 = X7 e,
Vi_28 = X7 ey

For i = r — 1, consider the subspace E,_; C H°(P', N¢/x) generated by

Ve_1,1 = Xg_lX{_lel
Vicie = XpTIXTTe,
For i = r, consider the subspace E, C H°(P!, N¢/x) generated by
Vel = Xgr+1X162
Vea = X§T'X7les
Ve3 = X0X12T+162

First of all, observe that each of these generating sets is simply a subbasis of the
standard monomial basis of H(P!, N¢/x) which is

HO(P', Op1 (21 — 2))e; @ HO(PY, Op1 (2 + 2))es @ HY (P, Op1 (21 — 2))es.

It is very easy to check that every monomial basis vector is in precisely one of the

subspaces Fj;, and thus these spaces give a direct sum decomposition of H?(P!, Ng /X)-

30

even-4



Just as a consistency check, observe that for i = 0,...,r — 3 we have dim(E;) = 6,
dim(E,_3) = 8, dim(F,_1) = 2, and dim(E,) = 3. So the total dimension is
6(r—2)+8+2+3=06r+1whichis (2r — 1)+ (2r +3) + (2r — 1), i.e.

dimH° (P!, Op1 (21 — 2))e; +dimH° (P!, Op1 (21 +2))es + dimHO (P!, Op1 (21 — 2))es.

Checking that the spaces E; are pairwise orthogonal with respect to [-, -] is straight-
forward, but tedious. One way to think of it is to consider the graph whose
vertices are the standard monomial basis vectors of H O(IP’17NC/ x), and where
there is an edge between two such basis vectors iff the pairing is nonzero for
this pair. Thus there is never an edge between gie; and hj;ej, nor between gses
and hoes, nor between gses and hses. There is an edge between gie; and hoes
iff g1hy = X§", X3"X? or X}". There is an edge between gie; and hses iff
gihs = XJ"2X77% or XJ72X7""2. And there is an edge between gpe, and
hses iff gohs = XS’TX{ ro Xng’T. In particular, it is easy to see that the va-
lence of X2" %e;, X" ?e;, X;X| %e3 and X[ 2Xjes is three, the valence of
Xg_leT_lel,XSHX{HeQ,XgTHXleg and X0X12T+2e2 is one, and every other
vertex has valence two. Moreover, there is an obvious symmetry in the graph ob-
tained by permuting the variables Xy and X;. Using this, it is straightforward to
take each of the vectors v;; and compute that the maximal connected subgraph
containing this vertex gives the generating set for E; (this is an exercise left to the
reader). Thus the F; are pairwise orthogonal.

8.6. Computing the determinants. In this last subsection, we compute the
matrix and determinant of &, restricted to each of the direct summands. Using
this computation, we identify the kernel of w.. For i = 0,...,r — 3, we can form
the matrix of @, : E; — El\/ with respect to the ordered basis v; 1,...,Vv;¢ and the
dual ordered basis of E. This is straightforward to compute and turns out to be:

0 CoCs —2000?J 0 0 0

—CpCs 0 0 CoCs do 0 0

o 200 Cg 0 0 0 CpCs d5 0
Az - 0 *C()C5d0 0 0 0 720(2)65 (82)

0 0 - CoCs d5 0 0 —CpCs

0 0 0 2c3cs CoCs 0

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(A4;) =
2c3c3(cods — csdp) and thus the determinant is Det(A;) = 4c§cS(cods —csdo)?. Since
we are assuming that g, ¢ are nonzero and that (¢, ¢5) is linearly independent from
(do, ds), this determinant is nonzero.

For i = r — 2, we can form the matrix of &, : E,_o — E)_, with respect to
the ordered basis v,_31,...,v,_2g and the dual ordered basis of EY 5. This is
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straightforward to compute and turns out to be:

0 —cg —2c0c§ CoCs 0 0 0 0
C% 0 0 0 0 - CoCs d5 0 0
2006% 0 0 0 C()C5d5 0 —Coc5d0 0
A —CpCs 0 0 0 0 CoCs do 0 0
T 0 0 —cocsds 0 0 0 0 —cocs
0 CQC5d5 0 —C()C5d0 0 0 0 —20805
0 0 CoCs do 0 0 0 0 0(2)
i 0 0 0 0 CoCs 268 cs —cg 0
(83)

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(A4,_3) =
c3c3(cods — csdp)? and thus the determinant is Det(A,_s) = c§cf(cods — c5do)?.
Since we are assuming that ¢, ¢5 are nonzero and that (co, ¢s5) is linearly indepen-
dent from (dp, ds), this determinant is nonzero.

For i =r — 1, we can form the matrix of @, : E._; — E,’_; with respect to the or-
dered basis v,_1,1, Vy—1,2 and the dual ordered basis of EY. This is straightforward
to compute and turns out to be:

. 0 cocs
Ar—l o [ —CoCs 0 :| (84)

Visibly the Pfaffian of this matrix is cocs and the determinant is c3c2. Since we are
assuming that cg, cs are nonzero, this determinant is nonzero.

For ¢ = r, we can form the matrix of @, : F, — E with respect to the ordered
basis v;.1,Vy.2, V3 and the dual ordered basis of E. This is straightforward to
compute and turns out to be:

0 —CpCs d5 0
Ar = Coc5d5 0 —C()C5d0 (85)
0 CoCs do 0

This matrix is singular and the kernel contains the vector w = dgv,.1 + dsv, 3, i.e.
(doXE"+ds X?") XoX1ez. So this vector is in the kernel of @,. Consider the quotient
vector space V' = H°(P*, N¢/x)/C{w}. There is an induced alternating bilinear
pairing @, on V’. Since w’ € E,, there is an induced direct sum decomposition
V' = @;_, E! by pairwise orthogonal subspaces where for i = 0,...,7 — 1 the
quotient map F; — E! is an isomorphism. And E! has as basis the images of the
vectors v, 1, vy 2 provided ds # 0 and has as basis the images of the vectors v, 2V, 3
provided dy # 0.

In case d5 # 0 we can form the matrix of & : E. — (E.)Y with respect to the

ordered basis v;.;, v/ 5 and the dual ordered basis of (E;)¥. This turns out to be:

0 —C()C5d5

[
AT - CoCs d5 0

(86)
Visibly the Pfaffian of this matrix is cocsds and the determinant is c3c2d?. Since
we are assuming that cg, ¢5, ds are nonzero, this determinant is nonzero.

The other case is that dy # 0. In this case we can form the matrix of &, : E] —
(E;)Y with respect to the ordered basis v, ,,v; 3 and the dual ordered basis of
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(E.)Y. This turns out to be:

0 —CoC5d0

[
AT - CoCs do 0

(87)
Visibly the Pfaffian of this matrix is cocsdy and the determinant is ccZd3. Since
we are assuming that cg, cs, dy are nonzero, this determinant is nonzero. Thus we
conclude in both cases that the form @/, on E! is nondegenerate. Combined with
the computations from above, we conclude that the kernel of @&, is precisely the
span C{(doX2" + dsX?")XoX1e2}. So the kernel of &, is one-dimensional. This
proves Theorem 1.2 in case e = 2r is an even integer with e > 6.

9. COMMENTS AND QUESTIONS

Let us mention a few generalizations of Theorem 1.2. The same method and the
same special pair f : P* — P% and X C P® together with the points [0: 1],[1: 0] €
P! can be used to show the following

Theorem 9.1. Let X C P® a smooth cubic hypersurface, let Mo (X, e) denote
the Kontsevich moduli space of pointed stable maps to X of arithmetic genus 0 and
degree e, and let M ,, be a nonsingular projective model of the coarse moduli space.
There is a canonical section w, € H°(M, p,, Qzﬁ ) with the following property:

(a) In case n =1, e is odd, e > 5. If X is general, and p a general point of M. 1,
the restriction of w. to the tangent space at p of the fiber of the evaluation map
ev: M&l — X has a 1-dimensional kernel.

(b) In case n =1, e is even, e > 6. If X is general, and p a general point of M, 1,
the restriction of w. to the tangent space at p of the fiber of the evaluation map
ev: M.1 — X is nondegenerate. Therefore the general fiber of ev has Kodaira
dimension > 0 and, in particular, is non-uniruled.

(c) In case n = 2, e is odd, e > 5. If X is general and p a general point of

M. 2, the restriction of w. to the tangent space at p of the fiber of the evaluation
map (evy, evs) : Moo — X x X is nondegenerate. Therefore the general fiber of
(ev1, evy) has Kodaira dimension > 0 and, in particular, is non-uniruled.

(d) In case n = 2, e is even, e > 6. If X is general and p a general point of M, o
the restriction of w. to the tangent space at p of the fiber of the evaluation map

(ev1, evg) : Moo — X x X has a 1-dimensional kernel.

Proof. We will sketch the proof, but leave most of the details to the reader. The
technique is almost identical to the proof of Theorem 1.2 and is roughly as follows:
For parts (a) and (b), one considers the special pairs ([X],[C]) used in Section 7
and Section 8 respectively, except one also specifies dy, d5 are both nonzero. For the
marked point on C, one uses either f([0 : 1]) (or f([1:0])). Then the tangent space
to the fiber of the evaluation map is identified with the sections of H°(P!, Neyx)
which vanish at [0 : 1] (or [1 : 0]). And the form w. on this subspace is just
the form computed in Section 8 and Section 7. In particular, since the space of
sections vanishing at [0 : 1] is generated by standard monomial basis vectors of
H°(P', No /x ), our direct sum decomposition into pairwise orthogonal subspaces
yields a direct sum decomposition of the space of sections vanishing at [0 : 1].

In the odd case, one can simply identify the kernel — which is generated by c5vo 2 +
vo,3 + dsvoe. It is straightforward to check that the form on the quotient space is
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nondegenerate. In the even case, actually the kernel is nontrivial — it is generated by
dovy1+dsvy 3 and ve_o 1 4+2¢5V,_2 3 —dsv,_2,6. However, under a nontrivial first-
order deformation of the pointed curve which doesn’t change the map f : P! — X,
but only moves the point [0 : 1] on P!, the kernel becomes trivial (this is a simple
deformation theory exercise).

Parts (c) and (d) are the same. In the odd case, the kernel is trivial. In the

even case, the kernel is generated by dov,1 + d5v,3 (no deformation theory is
needed). O

Of course, a natural question at this point is the following.

Question 9.2. What can we say about the Kodaira dimension/uniruledness when
the form w, does have a kernel? For example, when e is even e > 6, is M, uniruled?

We are convinced that in these cases M, is non-uniruled, but we don’t have a proof
when e is even and e > 8. However, in the special case e = 6, we can give an answer
based on an ad hoc analysis.

Proposition 9.3. Let X C P® be a general cubic fourfold. Then Mg is non-
uniruled. More precisely, there exists a rational transformation f : Mg — Hilbgﬁ
whose general fiber is a genus 1 curve which is a leaf of the distribution Ker(w,).

We only give a very rough sketch of the proof. First we will give a rapid overview
of the proof that Mg is non-uniruled and then fill in some of the details. The
method of proof is very similar to that used in [14], but instead of using residual
curves in an intersection of X with a cubic scroll, we will use residual curves in
an intersection of X with a quartic scroll. For a general nondegenerate, rational,
degree 6 curve C C P, there is a unique quartic scroll ¥ C P which contains C.
If X is general, then X contains no quartic scrolls (although special smooth cubic
fourfolds can contain a quartic scroll [15, Section 4.1.3]). The intersection ¥ N X
is a degree 12 curve in ¥ which is a local complete intersection (in particular it is
Gorenstein) and contains C' as a subcurve of degree 6. Using Gorenstein liaison, the
residual curve C’ to C' in ¥ is a degree 6 curve of arithmetic genus 1, which will be
a smooth, connected curve for C general. Thus we have a rational transformation
from Mg to the open subset U of the Chow variety/Hilbert scheme parametrizing
degree 6 curves in X of arithmetic genus 1 by [C] — [C’]. It is not hard to show
that the fiber of this rational transformation containing [C] is actually isomorphic
to Pic?(C"), i.e. it is a connected, smooth curve of genus 1 (actually it will only be
a dense open subset since we are working on the non-complete variety Mg).

Of course on Mg we have the 2-form wg constructed in Section 4. Now on U we can
define a 2-form by the same process as in Section 4 corresponding to the family of
degree 6 curves of arithmetic genus 1. On the domain of definition of the rational
transformation Mg — U, we can form the pullback of the 2-form on U; let us call
this pullback 2-form w’. Also over a dense open set of Mg, the curve X N X is a
connected, reduced at-worst-nodal curve and we can again use the technique from
Section 4 to construct a 2-form w” corresponding to this family of curves. The
relation between all these forms is wg +w’ = w” on the open, dense locus where all
three are defined.
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On the other hand, we have a unirational space W C Hilb(2 1 (+1) (P5) parametriz-
ing all smooth, nondegenerate quartic scrolls in ¥ C P® (in fact this is a homoge-
neous space for PGLg since any two such scrolls are projectively equivalent). Over
a dense open subset of W we can construct a 2-form as in Section 4 corresponding
to the family of curves whose fiber over [X] is ¥ N X. And w” is the pullback of
this 2-form by the obvious rational transformation Mg — W. But since W is uni-
rational, it does not support any nonzero 2-form. In other words, w” = 0. So we
have wg = —w’. In particular, the kernel of wg coincides with the kernel of w’. Since
w’ is a pullback by the rational transformation Mg — U, in particular the tangent
space of the fiber of this rational transformation is contained in wg. We know the
fiber is one-dimensional. But by Theorem 1.2, we also know that the kernel of wg is
one-dimensional. Thus we conclude that the kernel of wg at a general point of Mg
is precisely the tangent space to the fiber of Mg — U. In other words, the foliation
determined by the kernel of wg is algebraically integrable on a dense (Zariski) open
subset of Mg, the leaf space is (birationally) an open subset U of the Hilbert scheme
of smooth, degree 6 curves in X of genus 1, and the projection to the leaf space is
(birationally) the rational transformation Mg — U.

From this it follows that U has Kodaira dimension > 0, in particular it is non
uniruled. As we have seen, Mg — U is (birationally) a fibration whose fibers are
smooth curves of genus 1. Since both the target U of Mgz — U and the fibers are
non-uniruled, we conclude that Mg is also non-uniruled. Moreover, it seems certain
that one can use [16] to show that Mg has Kodaira dimension > 0.

There are lots of missing details in this argument: Why is the fiber of Mg — U at
[C] isomorphic to Pic*(C")? Why does a general nondegenerate, rational degree 6
curve lie on a unique quartic scroll (or any quartic scroll for that matter)? How
does the construction of Section 4 behave with respect to Gorenstein liaison, i.e.
what is the justfication of the identity we+w’ = w”? What is the rigorous argument
that w’ is zero — to conclude a 2-form on a unirational variety is zero, we must
show that it extends to a regular 2-form on some nonsingular compactification of
that unirational variety and W was not compact?

Let’s briefly deal with these issues in reverse order. First of all, choose any nonsingu-
lar compactification W of W. The association [¥] — 3N X C X defines a rational
map from W to the coarse moduli space M1g,o(X,12) of the Kontsevich moduli
stack Mg,0(X,12) parametrizing stable maps to X from a connected at-worst-
nodal curve of arithmetic genus 10 and degree 12. By Section 4 and Lemma 3.5,
we can construct a 2-form on Mg (X, 12) corresponding to the universal family of
stable maps over mlo,o(X ,12). The 2-form on W is just the pullback of the 2-form
on Mig,0(X,12). Since W is smooth and M1¢(X,12) is proper, the rational map
W — Mlo,o(X ,12) is defined on an open set whose complement has codimension
at least 2. Therefore the pullback of this 2-form extends to a regular 2-form on all
of W, which shows that this 2-form is identically zero since W is unirational.

The Gorenstein liaison property is the following: Suppose B is a scheme, p: C — B

and f : C — X is a flat family of at-worst-nodal curves over B together with a

family of maps to X, and suppose that C; C C is a codimension 0 subscheme which

is itself Gorenstein and such that p; : C; — B is a flat family of at-worst-nodal

curves over B. It follows from a standard argument (c.f. [12, Corollary 2.7]) that

the residual scheme Co C C to C; C C is also a flat family of at-worst-nodal curves
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over B. By Section 4, we can form the 2-forms w, w; and ws on B corresponding
to C, to C; and to Cs respectively. The liaison property is that wi +ws = w. Going
through the construction in Section 4, this follows easily from the analogous result
for the trace maps Rp.wc,p — Op, Rp«we, g — Op and Rp.we,/ g — Op.

Finally, why is it true that every smooth curve C' C P® of degree 6 which is non-
degenerate lies on a unique quartic scroll X, and why is ¥ nonsingular? This must
have been known classically, and is undoubtedly already somewhere in the litera-
ture. Since the proof is so easy, we will simply rederive the result here. First of all,
the result is suggested by a parameter count. A quartic scroll ¥ C P? is the image
of P! x P! embedded by the complete linear system of Op1(2) ® Op1 (1), so the space
of smooth quartic scrolls in P® has dimension dim(PGLg) — dim(Aut(P! x P!)) =
35—6 = 29. The degree 6 rational curves on ¥ are simply the images of curves in the
projective linear system of Op1(4) ® Op1(1), which has dimension 9. So we obtain
a 38-dimensional family of pairs ([X], [C]) where ¥ C P° is a smooth quartic scroll
and C C ¥ is a smooth degree 6 rational curve. On the other hand, the dimension
of the space of all smooth, degree 6 rational curves in P° is easily computed to be
—Kps.[C] + (dim(P5) — 3) = (6).(6) + (5 — 3) = 38. For a pair ([X],[C]) it is easy
to see that the set of all 4-secant 2-planes to C' exactly sweep out the cubic Segré
threefold Y C P? associated to X, i.e. the Segré threefold swept out by 2-planes
which intersect ¥ in a conic curve. The Segré threefold Y is the image of an embed-
ding P2 x P! — P5 by the complete linear system of Op2(1) ® Op1(1). The quartic
scroll ¥ C Y is the image under this embedding of a subvariety D x P! c P? x P!
where D C P2 is a smooth conic. But then the curve C' C Y is the image a curve
in P2 x P!, which we will also call C, such that the projection map m; : C — P2 is
a 2-to-1 map to the conic D. Thus we can reconstruct D and so also ¥ just from
the pair C C Y. But as Y is the union of all 4-secant 2-planes to C, we can also
reconstruct Y just from C. Therefore we can uniquely reconstruct 3 from C' which
shows that there is exactly one quartic scroll ¥ giving rise to C'. So the map from
our 38-dimensional variety of pairs ([X],[C]) to the (open subscheme of the) 38-
dimensional Hilbert scheme parametrizing smooth, nondegenerate, rational degree
6 curves C' C P? is an injective map and therefore dominates the Hilbert scheme.
So for a general, nondegenerate, rational degree 6 curve C' C P?, we conclude there
is a unique smooth quartic scroll ¥ containing C.

Finally, why is the fiber of Mg — U at a point [C] isomorphic to Pic*(C") where
CUC" =3XNX? The image is just [C’], and the fiber over [C'] is the set of all
rational degree 6 curves such that C is residual to C’ in an intersection ¥ N X where
Y is a quartic scroll containing C”. Although it is a bit tricky to understand quartic
scrolls containing a degree 6 rational curve, it is quite a bit simpler to understand
quartic scrolls containing a degree 6 curve C’ of arithmetic genus 1. For each scroll
¥ such that C’ C ¥, we have that ¥ is the image of an embedding of P! x P! by the
complete linear system of Op1(2) ® Op1(1). The curve C’ is the image of a curve
in the complete linear system of Opi(2) ® Op1(2). In particular, the pullback for
Op:1 (1) by the second projection 7o : P! x P! gives an invertible sheaf which restricts
on C' to an element £ € Pic*(C"). Given L, we can uniquely recover X as follows:
for each divisor D C C’ in the complete linear system form the line span(D) in
P5. Then ¥ is the union of the lines span(D) as D varies among all divisors in the
complete linear system of £. This establishes a one-to-one correspondence between
the quartic scrolls in P® which contain C’ and the invertible sheaves £ € Pic*(C").
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