
CUBIC FOURFOLDS AND SPACES OF RATIONAL CURVES

A.J DE JONG AND JASON STARR

Abstract. For a general nonsingular cubic fourfold X ⊂ P5 and e ≥ 5 an odd
integer, we show that the space Me parametrizing rational curves of degree e
on X is non-uniruled. For e ≥ 6 an even integer, we prove that the generic
fiber dimension of the maximally rationally connected fibration of Me is at
most one, i.e. passing through a very general point of Me there is at most

one rational curve. For e < 5 the spaces Me are fairly well understood and we
review what is known.

1. Introduction
intro

Let k be an algebraically closed field of characteristic 0; unless stated otherwise all
schemes will be considered to be of finite type over k. Let X be a nonsingular cubic
fourfold in P5

k. For each integer e ≥ 1 denote by Me the variety which parametrizes
smooth, geometrically connected curves in X of degree e and arithmetic genus 0,
i.e. Me is the scheme of rational curves of degree e in X. In Section 2 we’ll discuss
different constructions of this space and how they are related. For the moment all
that matters is that Me is an irreducible variety of dimension 3e + 1, a nontrivial
fact discussed in Section 2 as well. The question we consider in this paper is the
birational geometry ofMe, specifically the Kodaira dimension ofMe and, in case the
Kodaira dimension is negative, the dimension of the general fiber of the maximally
rationally connected fibration of Me (c.f. [18]). This question was originally raised
by Joe Harris with regard to the rationality/irrationality of cubic fourfolds. It is a
pleasure to acknowledge useful conversations with Joe Harris.

Let Me be a desingularization of a compactification of Me. We rephrase the ques-
tion on the dimension of the fibers of the MRC fibration as follows: Given a
very general point p ⊂ Me, what is the maximal dimension of a closed subvari-
ety Z ⊂ Me which contains p and which is rationally connected? Equivalently,
if Me → Q is the MRC fibration in the sense of [18, Def. IV.5.3], what is the
difference dim(Me)− dim(Q)? For example, if this number is zero then for a very
general point p ∈ Me there is no nonconstant morphism P1 → Me whose image
contains p, i.e. Me is not uniruled. We note that the invariant dimZ is a birational
invariant of Me (in other words it does not matter which choice of desingularized
compactification we take).

Discussions with Joe Harris have shown that for small values of e these maximal
dimensions can be tabulated as follows:

e 1 2 3 4
dimMe 4 7 10 13
dimZ 0 3 2 3

Date: February 3, 2003.
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We pause to explain this table: The case of lines is well known, namely M1 is a
4-dimensional hyperKähler manifold [3, Prop. 1]. In the case of conics, the family
of all conics which are residual to a fixed line forms a 3 dimensional rationally
connected family Z. In the case of cubic rational curves, one notes that a general
cubic rational curve lies on a unique cubic surface and moves in a 2-dimensional
linear system on it, so Z has dimension at least 2. A general quartic rational curve
lies on a unique cubic threefold, and moves in a 3-dimensional rationally connected
family on it (c.f. [11, Theorem 8.2]), so Z has dimension at least 3. This gives a
lower bound for the numbers in the bottom row of the diagram, which is easily seen
to be the actual dimension of Z when e = 1 or 2. For e = 3 and e = 4, we have
not verified these numbers give the actual dimensions, but we would be surprised
if they turn out to be larger. We mention a conjecture of Ana-Maria Castravet
that for e = 4 the actual dimension of Z is precisely 3 and the target of the MRC
fibration of M4 is birational to the relative intermediate Jacobian of the family of
hyperplane sections of X – in other words, this conjecture says that the relative
intermediate Jacobian of the family of hyperplane sections of X is not uniruled.

Theorem 1.1. Let X ⊂ P5 be a very general cubic fourfold. For every odd degreeA
e ≥ 5, the variety Me is non-uniruled. For every even degree e ≥ 6 the variety Me

has dim(Z) ≤ 1.

Actually the method of this paper gives something a little better than Theorem 1.1
as we now explain.

Theorem 1.2. Let X ⊂ P5 a smooth cubic hypersurface, and let Me be a non-B
singular projective model of Me. There is a canonical section ωe ∈ H0(Me,Ω2

Me
)

with the following property:
(a) In case e is odd, e ≥ 5. If X is general, and p a general point of Me, then ωe

induces a nondegenerate pairing on Tp(Me).
(b) In case e is even, e ≥ 6. If X is general, and p ∈ Me a general point, then
the linear transformation Tp(Me) → T∨p (Me) induced by ωe has a 1-dimensional
kernel.

B.5
Corollary 1.3. If e is odd and at least 5, then the Kodaira dimension κ(Me) ≥ 0
for X general.

The corollary follows as the form ω
(3e+1)/2
e is a nonzero section of the canonical line

bundle.

In Section 2 we recall the different moduli spaces and how they are related. In
Section 4 we give a general method to produce ωe on the Kontsevich moduli stack
Me of stable maps for any e ≥ 1. By Lemma 3.5 this gives a corresponding 2-form
ωe on Me. In Section 5 we describe how to compute the associated alternating
pairing on Zariski tangent spaces of Me. In Section 6 we show that this pairing
is nondegenerate for a general point of M5. The case e = 5 is particularly nice as
almost no explicit calculations are necessary. In Section 7 we prove the nondegen-
eracy for general odd degree e ≥ 5. In Section 8 we prove the kernel of the pairing
is 1 dimensional in the even degree e ≥ 6 case. In Section 9 we give a sketch that
M6 is also not uniruled and pose some questions about the spaces Me.

Finally, Theorem 1.2 implies Theorem 1.1 thanks to the following lemma.
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C
Lemma 1.4. Suppose that M is a smooth, projective scheme, ω is a 2-form on
M , and at a general point p ∈ Me the rank of the 2-form ω is r. Then dim(Z) ≤
dim(M) − r, i.e., the codimension of the maximal rationally connected subvariety
Z passing through a very general point of M is at least r.

Proof. By [18, Theorem IV.5.8] , if dim(Z) = d > 1, then for a very general point
p ∈M there is a morphism g : P1 →M whose image passes through p and such that
g∗TM contains a locally free subsheaf E ⊂ g∗TM with E an ample locally free sheaf
of rank d and whose cokernel is a trivial locally free sheaf of rank n−d (actually this
result is in the proof of [18, Theorem IV.5.8], not in the statement). But we also
have the sheaf map induced by ω: g∗TM → g∗ΩM . Since g∗TM is semi-positive,
the sheaf g∗ΩM is seminegative. As there is no nonzero map from an ample locally
free sheaf to a seminegative locally free sheaf, we conclude that E is contained in
the kernel of the sheaf map. So d ≤ dim(M)− r.

�

2. Discussion of moduli spaces moduli

In this section we discuss three related functors, each of which gives a compactifica-
tion of the space of smooth rational curves. The spaces representing these functors
are birational, and since we are studying birational properties of these spaces the
distinction between them is not crucial to the rest of the paper. But we find it use-
ful to pause, compare these three spaces, and point out what is and is not known
about them.

Let X ⊂ PN be a quasi-projective scheme and let Me denote the scheme which
parametrizes families of smooth, proper, geometrically connected curves C ⊂ X of
arithmetic genus 0 and degree e. Even before we try to compactify Me, there are
already several versions of Me and we concentrate on two of these Mh

e and M c
e .

Here Mh
e is an open subscheme of the Hilbert scheme Hilbet+1(X) as defined in [10].

And M c
e is an open subvariety of the Chow variety Chow1,e(X) defined in [18, Def.

I.3.20]. Please note that there is not universal acceptance of the definition of the
Chow variety (e.g. there is also the definition in [2]), but we find Kollár’s definition
best suited to our needs. In particular, we have the following comparison between
Mh

e and M c
e .

HilbChow
Lemma 2.1. There exists a fundamental class morphism FC :

(
Mh

e

)sn → M c
e

where
(
Mh

e

)sn is the semi-normalization of Mh
e as defined in [18, Def. I.7.2.1].

The morphism FC is an isomorphism. Therefore the inverse (FC)−1 : M c
e → Mh

e

is the semi-normalization of Mh
e , and in particular it is bijective on points.

Proof. This follows from [18, Thm. 6.3] and the semi-normal analogue of Zariski’s
main theorem. �

It can happen that Mh
e is not semi-normal so that M c

e and Mh
e are not isomorphic,

for example whenever Mh
e is non-reduced. A simple example of this is given by any

pair (X,L) where L ⊂ P3 is a line and X ⊂ P3 is a smooth hypersurface of degree
d ≥ 4 which contains L. In this case there is a unique connected component of Mh

1

whose reduced scheme consists just of the point [L] ∈Mh
1 , but Mh

1 is non-reduced.
3



For the special case that X ⊂ Pn is a smooth cubic hypersurface, which is the case
of interest in this paper, we suspect that Mh

e is always semi-normal.
ques-1

Question 2.2. If X ⊂ Pn is a smooth cubic hypersurface, is Mh
e semi-normal? Is

Mh
e normal?

There are some partial answers. For n arbitrary and e = 1, Mh
1 is smooth by [5,

Thm. 7.8]. For n = 3 and e arbitrary, Mh
e is an open subset of a projective space

and so it is smooth. For n = 4 and e = 2, 3, Mh
e is smooth by [12, Lemma 3.2,

Lemma 4.6]. For n = 4 and e arbitrary, then Mh
e is an irreducible, reduced, local

complete intersection scheme by [13]. So, by Serre’s criterion, to prove that Mh
e is

normal it remains to prove that Mh
e is nonsingular in codimension one. We do not

know whether this is true.

In the general case of a projective scheme X ⊂ PN , we denote by M
h

e the closure of
Mh

e in Hilbet+1(X) and we denote by M
c

e the closure of M c
e in Chow1,e(X). These

are the first two compactifications of Me which we consider.

The Chow variety and the Hilbert scheme have been studied by algebraic geometers
since they were introduced. Many results have been proved, and very readable
accounts exist [18, 19]. For instance, it follows from [18, Thm. I.6.3] that the
morphism FC extends to a morphism FC : (M

h

e )sn → M
c

e. But both M
c

e and M
h

e

have certain drawbacks. For example the morphism (FC)−1 does not extend to a
regular morphism M

c

e → M
h

e (this fails even in the case X = PN ). Moreover, the
closed subsets M

h

e ⊂ Hilbet+1(X) and M
c

e ⊂ Chow1,e(X) are usually not connected
components. Because of this, it is difficult to carry out an infinitesimal analysis of
M

h

e and M
c

e as in [18, Section I.2].

In the case of a projective scheme X ⊂ PN over a field k of characteristic 0, there is
a third compactification of Me which is very useful: the Kontsevich moduli space of
stable maps. A prestable map to X of genus g with r marked points and degree e
(over a field k) is a triple (C, (p1, . . . , pr), f) where C is a geometrically connected,
reduced, at-worst-nodal curve of arithmetic genus g, where p1, . . . , pr is an ordered
set of k-rational points in the nonsingular locus of C, and where f : C → X is a
morphism of k-schemes such that the degree of f∗O(1) is e. The triple is called a
stable map if there are no infinitesimal automorphisms of the triple. There is a good
notion of families of stable maps and morphisms between stable maps, and there is
a proper Deligne-Mumford stack over k, Mg,n(X, e) parametrizing stable maps of
genus g with r marked points and degree e. The coarse moduli space Mg,n(X, e)
of the stack Mg,n(X, e) is a projective k-scheme. The reader is referred to [4, 8]
for details.

In particular, when X ⊂ P4 is a smooth cubic hypersurface, we will denote by Me

the Kontsevich moduli space of stable maps of genus zero with no marked points
and of degree e.

HilbKv
Lemma 2.3. The scheme Mh

e is isomorphic to an open substack of Me.

Proof. This follows from the definitions of Me and Mh
e . �
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Also there is an analogue of the morphism FC, i.e. a 1-morphism FC :
(
Me

)sn →
M

c

e. One drawback of Me as compared to M
h

e and M
c

e is that it is a stack rather
than a scheme, which makes some arguments more technical. On the other hand,
the deformation and obstruction theory of Me and the “boundary” are understood
quite well. These are the key components in the proof of the following proposition.

irred
Proposition 2.4 ( [14]). For n ≥ 5 and X ⊂ Pn a general cubic hypersurface, the
stack Me is irreducible and reduced of the expected dimension (n − 2)e + (n − 4)
and has only local complete intersection singularities.

Proof. First of all, we just point out that the proposition is false for n = 3: if
e ≥ 3, then Me will be disconnected. For n = 4, a slight variant of the proposition
is true but the proof involves different methods which are developed in [13] (there
is another irreducible component corresponding to e-fold covers of lines, but the
proposition holds if we replace Me by the complement of this locus). For n ≥ 6,
the proposition follows from [14, Prop. 7.4]. The only remaining case is n = 5
which we now consider.

We prove the proposition by applying [14, Cor. 7.3]. This result reduces the
proposition to proving that the condition B(X, τ1(e), f) of [14, Def. 6.1] holds for
e = 1 and e = 2. And this condition has three parts (1), (2) and (3): constancy of
the fiber dimension of evf , irreducibility of a general fiber of evf , and existence of
a free stable map of degree e.

First we consider e = 1. The condition (3) is quite easy to verify: in characteristic
zero, for every smooth cubic hypersurface X ⊂ Pn (for any n ≥ 4 in fact), and
for every point p ∈ X, there exists a line L ⊂ X containing p. Also, by [6, Prop.
4.14], for every smooth cubic hypersurface X and a general point p ∈ X, every line
L ⊂ X containing p is free, i.e. TX |L is generated by global sections. Choosing
any line L passing through p, we see that condition (3) holds for e = 1. Moreover,
by [18, Cor. II.3.5.4.2], the evaluation morphism evf : M0,1(X, 1) → X is smooth
over p. And the fiber F is canonically a complete intersection of hypersurfaces in
Pn−1 of dimension n− 4. Whenever n ≥ 5, this complete intersection is connected
(by computing H0(F,OF ), for instance). Since F is smooth and connected, it is
irreducible. This proves that condition (2) holds for e = 1. Finally, if X is a general
hypersurface, then by [12, Thm. 2.1], condition (1) holds for e = 1.

Next we consider e = 2. The condition (3) can be checked by considering any double
cover of a free line L ⊂ X. To check condition (1) and (2), observe that there is
an a priori lower bound on the dimension of every irreducible component of every
fiber of evf : M0,1(X, 2) → X, namely the difference of the expected dimension of
M0,1(X, 2) and dim(X), which is 4 (or 2n− 6 for general n ≥ 3). To prove (1), it
suffices to prove that every fiber of evf has dimension exactly 4. And to prove (2),
we need to prove that some fiber is irreducible and reduced of dimension 4.

Now assume that X contains no linear P2: this certainly holds for a general cubic
hypersurface in P5. Then every stable map f : C → X of degree 2 which is not a
double cover of a line is an embedded plane conic. And the span of the conic C,
say Λ ⊂ Pn, intersects X in a plane cubic curve C ′ ⊂ Λ. Of course C ⊂ C ′, and
the residual curve is a line L ⊂ X. Conversely, for a general pair of a line L ⊂ X
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and a Λ which contains L, the residual to L in Λ ∩X is a plane conic. Using this,
we see that the set of embedded plane conics in X passing through a general point
p, is isomorphic to an open subset of the space of lines M1. This space is smooth
of dimension 4 when n = 5. So to finish the proof of (1) and (2), it suffices to show
that this set is Zariski dense in ev−1

f (p) for every p ∈ X. In other words, we have
to prove for every p ∈ X, that the subset of ev−1

f (p) consisting of double covers of
lines is not dense in any irreducible component of ev−1

f (p).

When evf : M0,1(X, 1) → X is flat (which holds for generalX as mentioned above),
the space of lines in X containing p has dimension 1 (or n − 4 for general n ≥ 4).
So the space of double covers of lines whose image contains p has dimension 3 (or
n− 2 for general n ≥ 4). Since we have an a priori lower bound of 4 for every fiber
of evf , we conclude that the subset of double covers of lines is not dense in any
irreducible component of evf . This finishes the proof of conditions (1) and (2) for
e = 2 when X ⊂ P5 is a general cubic hypersurface. �

rmk-1
Remark 2.5. We have a few remarks on this proposition.

(1) Even though the proof above only works for a general hypersurface X, we
suspect the proposition holds for every smooth cubic hypersurface X ⊂ Pn.

(2) In fact the argument above proves much more than the proposition, namely
for every stable genus 0 A-graph τ and every flag f of τ , B(X, τ, f) holds.
In particular M(X, τ) is irreducible.

cor-irred
Corollary 2.6. For X ⊂ P5 a general cubic hypersurface, the schemes M c

e and
Mh

e are irreducible and reduced of dimension 3e + 1. They are birational to each
other and to Me.

3. Trace maps and descent for p-forms
trace

In the next section we define linear maps

Hq+1
(
X,Ωp+1

)
→ Hq

(
Mg,r(X, e),Ωp

)
. (1)

In particular, when q = 0 this gives a method for producing p-forms on the Kontse-
vich moduli stack. But for our applications, we actually want a p-form on a desingu-
larization of the coarse moduli space of the stack. To accomplish this, we associate
trace maps to any proper, generically étale morphism of schemes, f : Y → Z, with
Z normal:

Trp
f : f∗(Ω

p
Y ) → (Ωp

Y )∨∨. (2)

We construct these trace maps in greater generality than is strictly needed to prove
the main theorem. In particular we work over a ground field k, but we assume
neither that k is algebraically closed, nor that k is of characteristic 0 (although
there is an assumption on the characteristic stated in the proposition). The results
in this section are well-known, but we could not find a particularly elementary
reference, so we reprove them here.
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trace-et
3.1. Construction for f étale. In this subsection, the ground field k is arbitrary:
it is not necessarily algebraically closed and there is no condition on the character-
istic. First we consider the case when f is finite and étale. Let n denote the degree
of the morphism f , i.e. f∗OY is locally free of rank n. In this case the pullback
morphism on Kähler differentials (df)† : f∗Ω1

Z → Ω1
Y is an isomorphism and for

every p this isomorphism induces an isomorphism

αp : f∗Ωp
Z → Ωp

Y . (3)

Pushing forward, we have canonical isomorphisms

f∗αp : f∗f∗Ω
p
Z → f∗Ω

p
Y . (4)

On the other hand, we have a canonical isomorphism

βp : Ωp
Z ⊗OZ

f∗OY → f∗f
∗Ωp

Z . (5)

Since f is finite and étale, in particular it is finite and flat. Recall the usual trace
morphism f∗OY → OZ is defined by composing the morphism of OZ-algebras
f∗OY → HomOZ

(f∗OY , f∗OY ) with the trace Tr : HomOZ
(f∗OY , f∗OY ) → OZ .

We denote this morphism by Tr0f : f∗OY → OZ . We define the OZ-linear morphism
Trp

f : f∗Ω
p
Y → Ωp

Z to be the unique morphism such that Trp
f ◦ f∗αp ◦ βp equals

n · Id⊗ Tr0f : Ωp
Z ⊗OZ

f∗OY → Ωp
Z ⊗OZ

OZ . (6)

We summarize this construction in the following lemma.
lem-t-e

Lemma 3.1. Let f : Y → Z be a finite étale morphism of k-schemes of degree n.
For each integer p ≥ 0, there exists a unique OZ-linear morphism Trp

f : f∗Ω
p
Y → Ωp

Z

such that Trp
f ◦ f∗αp ◦ βp = n · Id⊗ Tr0f . Moreover, we have

(1) For any open subscheme U ⊂ Z, for any section σ ∈ H0(U,Ωp
Z), and for

any section τ ∈ H0(f−1(U),Ωq
Y ) we have

Trp+q
f f∗ (f∗σ ∧ τ) = σ ∧ Trq

ff∗τ. (7)

(2) For any open subscheme U ⊂ Z and for any section τ ∈ H0(f−1(U),Ωq
Y ),

we have
Trq+1

f f∗ (dτ) = d
(
Trq

ff∗τ
)
. (8)

(3) If g : X → Y is also a finite étale morphism, then for every p we have

Trp
f◦g = Trp

f ◦ f∗Trp
g. (9)

trace-gen
3.2. Construction for f generically étale. In this section we do not assume
that k is algebraically closed. But there is a condition on the characteristic of k
stated in Proposition 3.2 (see also (2) of Remark 3.3). Now we construct Trp

f in
the general case, under the additional assumption that Z is normal and where the
target of Trp

f is now (Ωp
Z)∨∨ rather than Ωp

Z .

Let i : U ↪→ Z be the (dense) open subscheme over which f is finite and étale.
Define j : V ↪→ Y to be the open subscheme V = f−1(U). And define g : V → U
to be the restriction of f . By Lemma 3.1, we have morphisms Trp

g : g∗Ω
p
V → Ωp

U .
Pushing forward by i gives morphisms of quasi-coherent OZ-modules

i∗Trp
g : i∗g∗Ω

p
V → i∗Ω

p
U . (10)
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There is a canonical isomorphism (dj)† : j∗Ωp
Y → Ωp

V . Pushing forward gives an
isomorphism

(i ◦ g)∗(dj)† : (i ◦ g)∗j∗Ωp
Y → i∗g∗Ω

p
V . (11)

Of course (i◦g)∗ = (f ◦j)∗ = f∗ ◦j∗. And there is a canonical morphism γp : Ωp
Y →

j∗j
∗Ωp

Y . Composing all of these gives an OZ-linear morphism:

i∗Trp
g ◦ (i ◦ g)∗(dj)† ◦ f∗γp : f∗Ω

p
Y → i∗Ω

p
U . (12)

Finally, there is a canonical isomorphism i∗(di)† : i∗i∗Ω
p
Z → i∗Ω

p
U . We denote by

εp : f∗Ω
p
Y → i∗i

∗Ωp
Z the unique morphism such that i∗(di)†◦εp equals the morphism

above.

There is a canonical morphism

κp : i∗i∗Ω
p
Z → i∗i

∗ (Ωp
Z)∨∨ . (13)

And there is a injective morphism of OZ-modules,

λp : (Ωp
Z)∨∨ → i∗i

∗ (Ωp
Z)∨∨ . (14)

lem-t-g
Proposition 3.2. Suppose that n! is relatively prime to char(k). Let Z be a normal
k-scheme and let f : Y → Z be a proper, generically étale morphism of degree n.
With notation as above, for each integer p ≥ 0, there exists a unique OZ-linear
morphism Trp

f : f∗Ω
p
Y → (Ωp

Z)∨∨ such that λp ◦ Trp
f = κp ◦ εp.

Proof. This statement is clearly Zariski local on Z. Thus we assume that Z is an
irreducible, normal affine scheme.

Since (Ωp
Z)∨∨ is torsion-free, it is clear that if Trp

f as above exists, then it is unique.
Let g : Ỹ → Y denote the morphism which is the disjoint union over all irreducible
components Yi ⊂ Y dominating Z of the normalization of Yi. Define f̃ : Ỹ → Z to
be f◦g. Notice that f̃ is also proper and generically étale. And Ỹ is a normal scheme
such that every irreducible component of Ỹ dominates Z, and g : g−1(V ) → V is
an isomorphism.

Consider the morphism (dg)† : g∗Ω1
Y → Ω1

Ỹ
. For each p, we can form the pth

exterior power of this map and then take the adjoint to get a morphism

µp : Ωp
Y → g∗Ω

p

Ỹ
. (15)

If we prove that Trp

f̃
exists, then it follows that Trp

f̃
◦ f∗µp satisfies the hypothesis

of Trp
f , so Trp

f exists. Therefore we are reduced to proving that Trp

f̃
exists. So,

without loss of generality, we now assume that Y is normal and every irreducible
component of Y dominates Z.

Define ι : W ↪→ Z to be the maximal open subscheme such that W is smooth, such
that f−1(W ) is smooth, and such that f : f−1(W ) → W is finite. Since Y and Z
are normal and since f is generically finite, it follows that the complement of W in
Z has codimension at least 2. Define T = f−1(W ) and define h : T →W to be the
restriction of f . If we prove that Trp

h exists, then this will be a morphism

Trp
h : ι∗f∗Ω

p
Y → ι∗ (Ωp

Z)∨∨ . (16)
8



The adjoint of this map will be a morphism

f∗Ω
p
Y → ι∗ι

∗ (Ωp
Z)∨∨ . (17)

There is a canonical morphism (Ωp
Z)∨∨ → ι∗ι

∗ (Ωp
Z)∨∨. Since Z is normal, since the

complement of W has codimension 2, and since (Ωp
Z)∨∨ is reflexive, this morphism

is an isomorphism. So the adjoint above is a morphism which satisfies the condition
for Trp

f . Therefore to prove that Trp
f exists, it suffices to prove that Trp

h exists. So,
without loss of generality, we now assume that Z is a connected, smooth, affine
scheme, f : Y → Z is finite, and Y is smooth. In particular, f is flat.

Actually, what the argument in the previous paragraph shows is that to prove that
Trp

h exists, it suffices to prove for each irreducible divisor D ⊂ Z, the image of
κp ◦ εp is contained in the subsheaf which is the image of (Ωp

Z) ⊗OZ
OZ,D. Let us

call this condition (ID).

By the Noether normalization theorem [7, Thm. 13.3], there exists a flat morphism
π : Z → B of relative dimension 1 such that π|D : D → B is dominant. Up to
replacing π by the Stein factorization of π, we may also suppose that π is separably
generated. Since f is finite, flat and generically étale, also π ◦ f : Y → B is flat of
relative dimension 1 and separably generated. By generic smoothness, there exists
a dense open subset Bo ⊂ B such that both π and π ◦ f are smooth over Bo. Since
π|D : D → B is dominant, we can check condition (ID) after localizing over Bo.
So, without loss of generality, we assume that π and π ◦ f are both smooth.

Now choose any closed point z ∈ D. The claim is that the image of κp ◦ εp is in
the image of Ωp

Z ⊗OZ
OZ,z. Since the image of Ωp

Z ⊗OZ
OZ,D is the intersection

over all z ∈ D of the image of Ωp
Z ⊗OZ

OZ,p, to prove the proposition it suffices to
prove the claim. And the claim may be checked after base change to the formal
completion of OZ,z. Thus choose an isomorphism ÔB,π(z)

∼= k[[b1, . . . , bs]], and
choose an isomorphism ÔX,z

∼= k[[b1, . . . , bs]][[t]]. Let f−1(z) = {w1, . . . , wm}. For
each i = 1, . . . ,m, choose an isomorphism ÔY,wi

∼= k[[b1, . . . , bs]][[ui]]. For each
i = 1, . . . ,m, there is an induced integral ring extension

φi : k[[b1, . . . , bs]][[t]] → k[[b1, . . . , bs]][[u]]. (18)

In particular, u satisfies a monic polynomial of the form

uni +
ni−1∑
j=1

νi,ni−j(b1, . . . , bs, t)uni−j + νi,0(b1, . . . , bs, t). (19)

Notice that n1 + · · · + nm = n, the degree of f . So each ni ≤ n. We define a
ÔZ,z-linear morphism(

Trp
f

)
i
: Ωp

Y ⊗OY
ÔY,wi

→ Ωp
Z ⊗OZ

ÔZ,z (20)

by sending any element of the form ρ(b1, . . . , bs, u)dbk1 ∧ · · · ∧ dbkp
to the element

Trφ(ρ)dbk1 ∧ · · · ∧ dbkp , and by sending any element of the form

σ =
ni−1∑
j=0

ρj(b1, . . . , bs, t)uidu ∧ dbk1 ∧ · · · ∧ dbkp−1 (21)
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to the element (
Trp

f

)
i
σ = − 1

ni
ρni−1dνi,0 ∧ dbk1 ∧ · · · ∧ dbkp−1 . (22)

Notice that this is a well-defined morphism because any element has a unique
decomposition into terms of the form above.

For each i = 1, . . . ,m, denote by pri the localization map

pri : Ωp
Y ⊗OZ

ÔZ,z → Ωp
Y ⊗OY

ÔY,wi
. (23)

Then we define
(
Trp

f

)
z

to be

m∑
i=1

(
Trp

f

)
i
◦ pri : Ωp

Y ⊗OZ
ÔZ,z → Ωp

Z ⊗OZ
ÔZ,z. (24)

It is straightforward to compute that
(
Trp

f

)
z

agrees with the base-change of κp ◦ εp
when we base change to the fraction field of ÔZ,z. Since the base change of κp ◦ εp
factors through Ωp

Z ⊗OZ
ÔZ,z, it follows that κp ◦ εp factors through Ωp

Z ⊗OZ
OZ,z,

which was to be proved. This completes the proof of the proposition. �

rmk-t
Remark 3.3. We make a few remarks on Proposition 3.2:

(1) Obviously this is not the most general result in this direction. For instance,
it is clear that the proof also works if Z satisfies Serre’s criterion S2 and f
is étale away from codimension 2.

(2) The condition on the characteristic of k was to insure that each of the
ramification indices ni at a general point of an irreducible component of
the ramification divisor of f is invertible in k. Clearly the proof works
without the condition that char(k) not divide n! if we know each of the ni

is invertible in k.
(3) For any integer p ≥ 0, there is a generic trace map(

Tr⊗p
f

)
η

: f∗
(
Ω1

Y

)⊗p →
(
Ω1

Z

)⊗p ⊗OZ
K(Z). (25)

The proposition essentially proves that when one considers the direct sum-
mand corresponding to an exterior power, the generic trace map factors
through (Ωp

Z)∨∨. One might hope, more generally, that the generic trace
map factors through the reflexive hull of

(
Ω1

Z

)⊗p. This is the case, for in-
stance, when f : Y → Z is étale away from codimension 2. But typically
this is not the case: Consider f : A1

k → A1
k which pulls back a coordinate

t on the target to u2 where u is a coordinate on the domain. Then the
generic trace of du⊗ du is 1

4tdt⊗ dt.

lem-t-g2
Lemma 3.4. With Trp

f defined as in Proposition 3.2, we have:

(1) For any open subscheme U ⊂ Z, for any section σ ∈ H0(U,Ωp
Z), and for

any section τ ∈ H0(f−1(U),Ωq
Y ) we have

Trp+q
f f∗ (f∗σ ∧ τ) = σ ∧ Trq

ff∗τ. (26)

10



(2) For any open subscheme U ⊂ Z and for any section τ ∈ H0(f−1(U),Ωq
Y ),

we have
Trq+1

f f∗ (dτ) = d
(
Trq

ff∗τ
)
. (27)

(3) If g : X → Y is also a proper, generically étale morphism, and if Y is also
normal, then for every p we have

Trp
f◦g = Trp

f ◦ f∗Trp
g. (28)

3.3. Descent for p-forms on a stack. We apply Proposition 3.2 to prove the
following “descent theorem” for p-forms on a stack. The setup is the following. Let
k be a field (not necessarily of characteristic 0). Let B be a k-scheme, locally of
finite type (the base scheme). Let M be a irreducible, generically reduced Deligne-
Mumford stack over k which is tame (in the sense of [1]) along with a proper
1-morphism M → B. Recall that a stack is tame if for each geometric point, the
stabilizer group of the point has order which is prime to the characteristic of the
residue field of the point. Denote by M the coarse moduli space of M (which exists
by [17]).

It is too much to hope that every global section of Ωp

M is the pullback of a global
section of Ωp

M
. For one thing it can happen that Ωp

M has torsion sections even
though Ωp

M
is torsion-free.

A more serious issue is raised by the following example: Suppose char(k) 6= 2 and
consider A2

k with coordinates x, y. Let Γ be the cyclic group of order 2 and let Γ
act on A2

k by x 7→ −x, y 7→ −y. Let M be the quotient stack [A2
k/Γ]. Then the

2-form dx ∧ dy is Γ-invariant and thus gives rise to a global section of Ω2
M. But

this 2-form is not the pullback of any global section of Ω2
M

. In this case the coarse
moduli space M is a quadric cone in A3, and there does exist a global section of the

reflexive hull
(
Ω2
M

)∨∨
which pulls back to dx ∧ dy. More generally, if the coarse

moduli space is normal one can get a “descent map” of the form

H0(M,Ωp

M) → H0(M, (Ωp

M
)∨∨). (29)

But in terms of using p-forms to get a lower bound on the Kodaira dimension, this

is useless since the sheaf
(
Ωp

M

)∨∨
does not admit pullback maps.

Now suppose that M̃ is a nonsingular k-scheme along with a finite type morphism
M̃ → B, and a rational transformation u : M̃ → M commuting with the maps to
B (e.g. u could be a desingularization of M if it exists). What we really want is a
pullback map from p-forms on M to p-forms on M̃ .

map
Proposition 3.5. For each integer p ≥ 0, consider the maximal torsion-free quo-
tient Ωp

M/〈torsion〉 of Ωp

M. There exists a map of H0(B,OB)-modules

α : H0(M,Ωp

M/〈torsion〉) −→ H0(M̃,Ωp

M̃
) (30)

with the following property: Suppose that V ⊂ M and U ⊂ M̃ are open and that
there is a morphism π : V → U expressing the birational correspondence between
M and M̃ . Then π∗

(
α(η)|U

)
= η|V for any global section η of the torsion-free

quotient of Ωp

M.
11



Proof. Since M̃ is smooth, and since M is proper over B, there exists an open
subset W ⊂ M̃ whose complement has codimension at least 2 and on which u is
regular. Since M̃ is smooth and since the complement of W has codimension 2, the
pullback map

H0(M̃,Ωp

M̃
) → H0(W,Ωp

W ) (31)

is an isomorphism. Therefore it suffices to prove the proposition with W in place
of M̃ . So, without loss of generality, we assume that u : M̃ → M is a regular
morphism.

Now let π : M̃ → M̃ be the normalization of the unique irreducible component of
M̃ ×M M dominating M̃ . There is a pullback morphism

H0(M,Ωp

M) → H0(M̃,Ωp

M̃
). (32)

If there exists a morphism β from H0(M̃,Ωp

M̃
) to H0(M̃,Ωp

M̃
) with the property in

the proposition, then we can compose β with the pullback morphism above to get a
morphism α with the property in the proposition. Therefore it suffices to construct
β. So, without loss of generality, suppose that u : M̃ →M is the identity map.

Now the existence of α with the property in the proposition clearly may be checked
after étale base change on M̃ : the property of the proposition guarantees that such
α will be unique and will satisfy the usual étale descent condition. By [1, Lemma
2.2.3], there exists an étale covering

{
Xi → M̃

}
such that each base change stack

M̃ ×
M̃
Xi → Xi is a finite group quotient [Ui/Γi] where Ui is a scheme which is

finite over Xi and each Γ is a finite group acting on Ui by Xi-morphisms. Since
M is a tame stack, the order of Γ is relatively prime to the characteristic of the
ground field k. Without loss of generality, we now assume that M̃ is a quotient
stack [U/Γ] where U is a scheme along with a finite morphism f : U → M̃ and Γ is
a finite group acting on U by M̃ -morphisms and such that the order of Γ is prime
to the characteristic.

First of all, the ramification index of f at each codimension one component D ⊂ U
of the ramification divisor equals the index of the stabilizer subgroup (in Γ) of a
generic point of U considered as a subgroup of the stabilizer of a generic point of D.
Thus the ramification index divides the order of Γ, and so is relatively prime to the
characteristic of the ground field. Similarly, the degree n of the finite morphism f is
relatively prime to the characteristic (being the index of the stabilizer of a generic
point in all of Γ). Therefore U → M̃ satisfies the hypotheses of Proposition 3.2 (see
(2) of Remark 3.3). So there exists a trace map

Trp
f : f∗Ω

p
U → Ωp

M̃
. (33)

Observe that this map necessarily annihilates f∗ of the torsion subsheaf of Ωp
U , since

Ωp

M̃
is torsion-free. And since f∗ preserves exactness (being a finite morphism), it

follows that Trp
f factors through f∗ of the torsion-free quotient of Ωp

U . Now a global
section η of Ωp

M̃
is precisely a global section η of Ωp

U which is Γ-invariant. We define
α to be the restriction of 1

nTrp
f to the subspace of Γ-invariant global sections of the

torsion-free quotient of Ωp
U (recalling that n is invertible in the ground field).

12



It remains to verify the property of the proposition. Suppose that η is a Γ-invariant
global section of the torsion-free quotient of Ωp

U . Consider Trp
f (η). Since f is

generically étale, it follows by étale descent that there exists a dense open subset
of M̃ over which η equals the pullback of a p-form τ on M̃ . By (1) of Lemma 3.4,
it follows that Trp

f (η) = nτ when restricted to this open set, i.e. α(η) = τ when
restricted to this open set. So f∗α(η) agrees with η over a dense open subset.
Therefore η = f∗α(η).

�

4. Construction of the 2-form form

In this section we use an algebraic analogue of “integrating along fibers” to construct
a 2-form on the space Me associated to a smooth cubic hypersurface X ⊂ P4. To do
this we use the universal curve p : C → Me together with the universal morphism
f : C → X. The cohomology group H1(X,Ω3

X) is 1-dimensional (we review this in
Subsection 5.1 below). Choose once and for all a fixed nonzero element η in this
space. By pulling back via f we obtain f∗η ∈ H1(C,Ω1

C).

Now we will put ourselves in a slightly more general context. Suppose that M is
a finite type Deligne-Mumford stack over k and p : C → M is a representable 1-
morphism of Deligne-Mumford stacks which is proper and flat of relative dimension
1, such that every geometric fiber of p is a reduced, at-worst-nodal curve, i.e.
p : C → M is a semi-stable family of curves. There is a canonical morphism from
the sheaf of relative Kähler differentials to the dualizing sheaf Ω1

p → ωp, which is
an isomorphism on the open substack U ⊂ C which is the smooth locus of p. Using
this isomorphism, we obtain for each i a morphism on U :

φU,i : Ωi+1
C |U →

(
Ωi+1
C /p∗Ωi+1

M

)
|U ∼= p∗Ωi

M ⊗ ωp|U . (34)

Note that this map has the property that for every section α ∈ Ωi
M and β ∈ Ωj

C ,
we have φU,i+j(p∗α ∧ β) = p∗α ∧ φU,j(β).

claim-1
Lemma 4.1. For each i there exists a unique morphism φi : Ωi+1

C → p∗Ωi
M ⊗ ωp

such that φi|U = φU,i and such that for every section α ∈ Ωi
M and β ∈ Ωj

C, we have
φi+j(p∗α ∧ β) = p∗α ∧ φj(β).

Proof. First of all, if such φi exists, then by construction it annihilates p∗Ωi+1

M , i.e.
it factors through the quotient. The quotient has a canonical subsheaf isomorphic
to p∗Ωi

M⊗Ω1
p with an obvious map to p∗Ωi

M⊗ωp. The main issue is to prove that
this map extends to the entire quotient. There is a secondary issue of uniqueness,
but the cokernel of p∗Ωi

M⊗Ω1
p is a sheaf which is torsion on all fibers, whereas the

sheaf p∗Ωi
M⊗ωp is torsion-free on fibers. So it is clear that there is no nonzero map

from the cokernel to p∗Ωi
M ⊗ ωp. Moreover, the extension problem can be phrased

as the vanishing of a section of a sheaf Ext, and this vanishing can be checked after
passing to the completion of the local ring at each geometric closed point of C.

Since we can check the property formally locally, without loss of generality we
assume that M is a scheme. Let z ∈ C be a closed point. Denoting A = ÔM,p(z),
we can find an isomorphism

B = ÔC,z
∼= A[[x, y]]/〈xy − a〉. (35)
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for some element a ∈ A. Now by Remark 4.2, it follows that the base change of
φU,i does extend to a map φi ⊗OC B as required, i.e. the element of the sheaf
Ext vanishes when we base change to B. This proves the existence of φi as in the
lemma. �

In particular, back in the context that X is a smooth cubic threefold and Me is
the stack of genus 0 stable maps of degree e, this gives a map of sheaves

φ2 : Ω3
C −→ p∗(Ω2

Me
)⊗ ωC/Me

. (36)

We compose the maps

H1(C,Ω3
C) → H1(C, p∗Ω2

Me
⊗ ωC/Me

) → H0
(
Me, R

1p∗
(
p∗Ω2

Me
⊗ ωC/Me

))
. (37)

The image of f∗η under this map is an element in the last group which is equal to
H0(Me,Ω2

Me
⊗R1p∗ωC/Me

). Finally, we apply the trace map

R1p∗ωC/Me
→ OMe

.

The result is the 2-form ωe which we will study.
algebra

Remark 4.2. Let A be a ring and let B = A[x, y]/(xy − a) for some a ∈ A.
Consider the canonical exact sequence

0 → Ω1
A ⊗B → Ω1

B → Ω1
B/A → 0.

Exactness on the left follows as B is a complete intersection flat over A whose
cotangent complex LB/A is quasi-isomorphic to Ω1

B/A. Moreover, the relative dual-
izing sheaf is the determinant of LB/A (which is perfect of amplitude [−1, 0]). So,
the relative dualizing module ωB/A is free with generator

θ =
dx ∧ dy
xy − a

.

and there is a canonical B-module homomorphism

Ω1
B/A −→ ωB/A

which is determined by the rules dx 7→ xθ and dy 7→ −yθ. From this we will define
maps

Ωi
B → Ωi−1

A ⊗A ωB/A.

Namely, any element in Ωi
B can be written as a B-linear combination of forms of

the type η, η ∧ dx, η ∧ dy and η ∧ dx ∧ dy, where η is in Ωj
A, with j = i, i− 1, or

i− 2. We claim there exists a map as above such that

η 7→ 0, η ∧ dx 7→ η ⊗ xθ, η ∧ dy 7→ −η ⊗ yθ, η ∧ dx ∧ dy 7→ −η ∧ da⊗ θ.

The reader easily verifies that this is well defined (the main concern being that
forms of the type η ∧ (ydx+ xdy − da) and η ∧ (ydx+ xdy − da) ∧ dx get mapped
to zero).

any
Remark 4.3. Note that the same construction gives maps Hb+1(X,Ωa+1) →
Hb(M,Ωa) for any variety X (not necessarily proper or smooth), and any Kont-
sevich moduli space of maps into X (not necessarily genus 0). Actually, there is
a corresponding “integration along fibers” map on de Rham cohomology and on
Betti-cohomology (in case the ground field is C), and presumably on any reasonable
cohomology theory. This is nothing new, but since we have to compute explicitly
the corresponding pairing below, we thought we should explain.
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5. Explicit description of the 2-form compute

In the last section we gave a general argument which associates to a variety X and a
Kontsevich moduli space of maps M into X certain linear maps Hb+1(X,Ωa+1

X ) →
Hb(M,Ωa

M). The case we are interested in is b = 0, so that elements of the target
are actually sections of the sheaf Ωq

M. In particular, we can consider the fiber of
such a section at a geometric point z ∈ M, and try to describe this section (with
respect to a basis of the Zariski tangent sheaf) in terms of the local geometry of
the parametrized curve Cz ⊂ X, i.e. we can try to make the construction of the
last section explicit. In this section we will make this very explicit in the special
case of genus 0 maps to the smooth locus of a cubic threefold.

GRC
5.1. Explicit description of H1(X,Ω3

X). First we recall a very small part of the
Griffiths residue calculus [9, Section 8]. Let X ⊂ Pn be a hypersurface of degree d,
and let U ⊂ X be the smooth locus. We have the cotangent sequence:

0 −−−−→ OU (−d) −−−−→ Ω1
Pn |U −−−−→ Ω1

U −−−−→ 0 (38)

Taking the exterior power of this sequence, and twisting by OX(d)|U , we have an
exact sequence:

0 −−−−→ Ωn−2
U −−−−→ Ωn−1

Pn |U ⊗OU (d) −−−−→ Ωn
Pn |U ⊗OU (2d) −−−−→ 0

(39)
One can also get this by taking the dual of the first exact sequence and twisting by
Ωn

Pn |U ⊗ OU (d). At any rate, the connecting homomorphism in cohomology gives
a map

H0(Pn,Ωn
Pn ⊗OPn(2d)) → H1(U,Ωn−2

U ). (40)
In the special case of a cubic fourfold, we get an exact sequence: eqn-2

0 −−−−→ Ω3
U −−−−→ Ω4

P5 |U ⊗OU (3) −−−−→ Ω5
P5 |U ⊗OU (6) −−−−→ 0. (41)

Of course we have Ω5
P5 ⊗ OP5(2 · 3) ∼= OP5 . Notice that if U = X, this map

is surjective. We choose some nonzero element in H0(P5,Ω5
P5 ⊗ OP5(6)), and we

define η to be the image of this element in H1(U,Ω3
U ).

exp
5.2. The explicit description. Let f : C → X be a point of Me. Assume that
P1 = C is smooth and that f is a regular embedding into the smooth locus U ⊂ X.
Consider the sequence of vector bundles over C given by the normal bundle NC/X

of C in X mapping to the normal bundle NC/P5 of C in P5: eqn-1

0 −−−−→ NC/X −−−−→ NC/P5 −−−−→ f∗NX/P5 −−−−→ 0. (42)

Of course NX/P5 ∼= OX(3), so that f∗NX/P5 ∼= OP1(3e) where we use the notation
OP1(a) to indicate any invertible sheaf of degree a on P1 = C. In particular, observe
that

∧3
NC/X = OP1(3e−2) and that

∧4
NC/P5 = OP1(6e−2). The Zariski tangent

space T[f ](Me), which is the same thing as the dual vector space of the fiber Ω1
Me
|[f ],

is given by the space of global sections H0(C,NC/X) (c.f. [18, Theorem I.2.8]). So
the fiber Ω2

Me
|[f ] is just the vector space dual of

∧2
H0(C,NC/X). And the 2-form

ωe gives a procedure to associate to any two sections of NC/X a complex number.

Next consider the exact sequence eqn-3

0 −→
∧3

NC/X⊗OP1(−3e) −→
∧3

NC/P5⊗OP1(−3e) −→
∧2

NC/X −→ 0. (43)
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This sequence is obtained from Equation 42 by taking exterior powers and twisting
by OP1(−3e). In any case, the sheaf on the left is OP1(−2) by what was said above.
Choose an isomorphism H1(C,OP1(−2)) = C, and let

δ : H0(C,
∧2

NC/X) → H1(C,
∧3

NC/X ⊗OP1(−3)) = H1 (C,O(−2)) = C

be the boundary map on cohomology coming from the exact sequence above. This
is another procedure which associates to any two sections of NC/X a complex num-
ber. In the following theorem we prove that the two procedures agree. The best
argument for this is the usual: What else could it be? The actual proof is even
more annoying.

Theorem 5.1. Up to a nonzero scalar factor the pairing associated to ωe on
T[f ](Me) = H0

(
C,NC/X

)
is equal to the pairing (s1, s2) 7→ δ(s1 ∧ s2).

Proof. Observe that the construction of Section 4 is compatible with arbitrary base
change of the stack M. To prove the theorem, we will base change to a certain
Artin local ring Z = SpecA over which we have the universal first order deformation
of C ⊂ X, say C ⊂ Z ×X. The construction of Section 4 instructs us to restrict
the exact sequence from Equation 41 to C and then push the sequence out by the
map

f∗
(
Ω3

X

)
→ Ω3

C → p∗
(
Ω2

Z

)
⊗ ωC/Z . (44)

Then we are instructed to take cohomology of the resulting sequence to obtain the
2-form ωe. By a diagram chase, we see that the resulting sequence is simply the
“Serre dual” of the sequence from Equation 43 from which the theorem follows.

First we compute the universal first order deformation of C ⊂ X. By Serre
duality the vector space V = H1

(
C, I/I2 ⊗ ωC

)
is dual to H0

(
C,NC/X

)
. Here I

is the ideal sheaf of C in X. Consider the local Artin ring A = k ⊕ V , where V is
an ideal of square zero. Set Z = SpecA. Over Z we have the universal first order
deformation C → Z of C. Let s1, . . . , sA be an ordered basis for H0

(
C,NC/X

)
and

let t1, . . . , tA in V be the dual ordered basis. We think of the elements s1, . . . , sA

as OC-linear maps I/I2 → OC . Affine locally on X at a point of C suppose that I
is generated by g1, g2, g3. Then the ideal of C is locally generated by the equations

g̃j := gj +
A∑

i=1

ti · si(fj), j = 1, 2, 3 (45)

g̃j ∈ OX [t1, . . . , tA]/〈titi′ , tigj , gjgj′ |i, i′ = 1, . . . , A, j, j′ = 1, 2, 3〉. (46)

Denote by p : C → Z and f̃ : C → X the two projections.
To prove the theorem, we will compute the 2-form on Z obtained from the

construction of Section 4 applied to (p : C → Z, f̃ : C → X). This is not as crazy as
it sounds, namely Ω2

A/k ⊗A k = ∧2V so this computation will provide us with the
information we want.

To compute f̃∗η, we form the pullback by f̃∗ of the exact sequence from Equa-
tion 41. Considered as an element of the Yoneda-Ext group Ext1C(OC ,Ω3

C), the
element f̃∗η is simply the push out of this exact sequence by the canonical map
f̃∗

(
Ω3

X

)
→ Ω3

C . According to Section 4, we now take the f∗η under the map

Ext1C(OC ,Ω3
C) → Ext1C(OC , p∗

(
Ω2

Z

)
⊗ ωC/Z) (47)

16



In terms of Yoneda-Ext, this means that we take an additional push our of our
exact sequence by Ω3

C → p∗
(
Ω2

Z

)
⊗ ωC/Z . So, in terms of Yoneda-Ext, our exact

sequence is obtained as the push out of the pullback of Equation 41 by the map
f̃∗Ω3

X → p∗
(
Ω2

Z

)
⊗ ωC/Z .

Of course we really only need to have this exact sequence on the closed fiber, so we
restrict the push out exact sequence to the closed fiber. In particular, we have that
the restriction to the closed fiber of p∗

(
Ω2

Z

)
⊗ ωC/Z is just

∧2
V ⊗k Ω1

C . Next we
give an explicit local description of the map

ψ : Ω3
X |C →

2∧
V ⊗k Ω1

C . (48)

Let t be a regular function on X which restricts to a local coordinate on C. We
can write any local 3-form on X as an OX -linear combination of the forms εjj′ =
dfj ∧dfj′ ∧dt, 1 ≤ j < j′ ≤ 3 and the form df1∧df2∧df3, so it suffices to evaluate
ψ on these 3-forms. The result is

ψ(ηjj′) =
A∑

i,i′=1

si(fj)si′(fj′)ti ∧ ti′ ⊗ dt, 1 ≤ j < j′ ≤ 3, (49)

ψ(df1 ∧ df2 ∧ df3) = 0. (50)

Of course there is more “global” way of thinking about ψ. The exact sequence eqn-4

0 −−−−→ I/I2 −−−−→ Ω1
X |C −−−−→ Ω1

C −−−−→ 0, (51)

determines a canonical map α : Ω3
X |C →

∧2
I/I2 ⊗OC

Ω1
C . And there is a

map of OC-modules β : I/I2 → V ⊗k OC defined as the transpose of the map
H0

(
C,NC/X

)
⊗k OC → NC/X . The global description of ψ is as the composition

of α with
∧2

β ⊗ IdΩ1
C
.

Just as the exact sequence in Equation 51 induces the map α, also the exact se-
quence eqn-5

0 −−−−→ Ĩ/Ĩ2 −−−−→ Ω1
P5 |C −−−−→ Ω1

C −−−−→ 0. (52)

induces a map α′ : Ω4
P5 |C →

∧3
Ĩ/Ĩ2 ⊗ Ω1

C where Ĩ is the ideal sheaf of C in
P5. By adjunction, we have isomorphisms Ω5

P5 |C ⊗ OC(3e) ∼= Ω4
X |C and Ω4

X |C ∼=∧3
I/I2 ⊗ Ω1

C . Combining these adjunction isomorphisms gives an isomorphism

α′′ : Ω5
P5 |C ⊗OC(6e) →

3∧
I/I2 ⊗OC(3e)⊗ Ω1

C . (53)

Of course both terms in this map are isomorphic to OC . Choosing such isomor-
phisms, α′′ is just an isomorphism of OC to itself.

We leave it to the reader to verify that the following diagram commutes: eqn-6

0 −−−−→ Ω3
X |C −−−−→ Ω4

P5 |C(3e) −−−−→ OC −−−−→ 0

α

y α′

y α′′

y
0 −−−−→

∧2
I/I2 ⊗ Ω1

C −−−−→
∧3

Ĩ/Ĩ2(3e)⊗ Ω1
C −−−−→ OC −−−−→ 0.

(54)

The top exact sequence is just the restriction to C of Equation 41, and the bottom
exact sequence is the dual of Equation 43 tensored with Ω1

C . More canonically,
the last term in the top sequence is Ω5

P5 |C(6e) and the last term in the bottom
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sequence is
∧3

I/I2(3e) ⊗ Ω1
C . But we choose isomorphisms of these sheaves with

OC as described in the last paragraph.

The conclusion is that the extension of OC by ∧2V ⊗k Ω1
C obtained from f̃∗η is

precisely the Serre dual exact sequence of Equation 43 used to define the coboundary
map δ. Hence the coboundary map on cohomology H0(C,OC) → H1(C,

∧2
I/I2⊗

Ω1
C) is the dual of δ. This equality implies the result of Theorem 5.1. �

6. Proof of Theorem 1.2: degree five case

The strategy of the proof of Theorem 1.2 is the following. Form the P55 parametriz-
ing all cubic hypersurfaces in P5, and let Ue → P55 be the parameter space for
pairs ([X], [C]) where C ⊂ X is a smooth curve of degree e such that X is smooth
along C and such that H1(C,NC/X) is zero (i.e. C ⊂ X is unobstructed). This
last condition guarantees that Ue → P55 is a smooth morphism. Also recall from
Proposition 2.4 that the general fiber of Ue → P55 is irreducible. In particular, Ue

is also irreducible.

We can perform a relative version of the construction of Section 4 to obtain a 2-
form ωe as a section of Ω2

Ue/P55 whose restriction to any fiber is the 2-form of the
fiber. The rank of ωe on fibers is lower semicontinuous on Ue, so to prove that the
rank of ωe is as expected for a general pair ([X], [C]), it suffices to find a single pair
([X], [C]) ∈ Ue where the rank of ωe is as expected.

Suppose that we have an exact sequence of the form

0 −→ O(a1)⊕O(a2)⊕O(a3) −→ NC/P5 −→ O(3e) −→ 0

with a1 + a2 + a3 = 3e− 2. In other words NC/X =
⊕
O(ai). The extension class

of this sequence is an element ψ of H1(P1,O(a1 − 3e)⊕O(a2 − 3e)⊕O(a3 − 3e)).
If we write P1 = Proj (S), where S = C[X0, X1], then we have, using Serre duality,
that ψ = ψ1 ⊕ ψ2 ⊕ ψ3 with ψi ∈ Hom (S3e−ai−2,C). If we write elements of
H0(C,NC/X) in the form (g1, g2, g3) where each gi ∈ H0(C,O(ai)), then the reader
verifies readily that in this case the pairing takes the following form〈 g1

g2
g3

 ,

 h1

h2

h3

〉
= ψ3(g1h2 − g2h1) + ψ2(g1h3 − g3h1) + ψ1(g2h3 − g3h2).

In order to compute the pairing for a given curve we have to find the linear func-
tionals ψ1, ψ2, ψ3 above. For large e this reduces to a rather involved computation
which is straightforward, but tedious. We will present this computation later, but
first we show that in the special case e = 5 there is an elegant solution (which
hopefully will motivate the reader to “trudge through” the computations of the
next two sections).

Theorem 6.1. Suppose that f : C → X is a general quintic rational curve on a
general cubic fourfold X. Then NC/X = O(4) ⊕ O(4) ⊕ O(5) and the extension
class ψ of the sequence 0 → NC/X → NC/P5 → O(15) → 0 is a general point of the
space Hom (S9 ⊕ S9 ⊕ S8,C).

Proof. To prove this we argue as follows. Fix a rational normal curve C ⊂ P5 of
degree 5. It is easy to see that its normal bundle NC/P5 is O(7)⊕4. Thus any (not
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necessarily nonsingular) cubic fourfoldX containing C determines a homomorphism
of OC-modules

ϕX : O(7)⊕4 → O(15).

Note that ϕX = 0 if and only if X is singular along C, which happens if and if the
defining equation of X is a section of I2(3). We leave it to the reader to compute
the following dimensions:

dimH0(P5, I(3)) = 40, dimH0(P5, I2(3)) = 4, dim Hom C(O(7)4,O(15)) = 36.

Thus the rule X 7→ ϕX is onto. Hence we can obtain the general exact sequence of
the form 0 → Ker (α) → O(7)4 − α → O(15) → 0 as the normal bundle sequence
for general (nonsingular) X. The theorem follows. �

To finish we choose ψi as follows:

ψ1(
∑9

i=0
aiX

9−i
0 Xi

1) =
∑9

i=0
νiai, ψ1(

∑9

i=0
aiX

9−i
0 Xi

1) =
∑9

i=0
µiai,

and

ψ1(
∑8

i=0
aiX

8−i
0 Xi

1) =
∑8

i=0
λiai.

Here we choose νi, µi and λi general. The matrix of the pairing with respect to the
obvious basis of H0(P1,O(4)⊕O(4)⊕O(5)). Here is the result:

0 0 0 0 0 λ0 λ1 λ2 λ3 λ4 µ0 µ1 µ2 µ3 µ4 µ5

0 0 0 0 0 λ1 λ2 λ3 λ4 λ5 µ1 µ2 µ3 µ4 µ5 µ6

0 0 0 0 0 λ2 λ3 λ4 λ5 λ6 µ2 µ3 µ4 µ5 µ6 µ7

0 0 0 0 0 λ3 λ4 λ5 λ6 λ7 µ3 µ4 µ5 µ6 µ7 µ8

0 0 0 0 0 λ4 λ5 λ6 λ7 λ8 µ4 µ5 µ6 µ7 µ8 µ9

−λ0 −λ1 −λ2 −λ3 −λ4 0 0 0 0 0 ν0 ν1 ν2 ν3 ν4 ν5
−λ1 −λ2 −λ3 −λ4 −λ5 0 0 0 0 0 ν1 ν2 ν3 ν4 ν5 ν6
−λ2 −λ3 −λ4 −λ5 −λ6 0 0 0 0 0 ν2 ν3 ν4 ν5 ν6 ν7
−λ3 −λ4 −λ5 −λ6 −λ7 0 0 0 0 0 ν3 ν4 ν5 ν6 ν7 ν8
−λ4 −λ5 −λ6 −λ7 −λ8 0 0 0 0 0 ν4 ν5 ν6 ν7 ν8 ν9
−µ0 −µ1 −µ2 −µ3 −µ4 −ν0 −ν1 −ν2 −ν3 −ν4 0 0 0 0 0 0
−µ1 −µ2 −µ3 −µ4 −µ5 −ν1 −ν2 −ν3 −ν4 −ν5 0 0 0 0 0 0
−µ2 −µ3 −µ4 −µ5 −µ6 −ν2 −ν3 −ν4 −ν5 −ν6 0 0 0 0 0 0
−µ3 −µ4 −µ5 −µ6 −µ7 −ν3 −ν4 −ν5 −ν6 −ν7 0 0 0 0 0 0
−µ4 −µ5 −µ6 −µ7 −µ8 −ν4 −ν5 −ν6 −ν7 −ν8 0 0 0 0 0 0
−µ5 −µ6 −µ7 −µ8 −µ9 −ν5 −ν6 −ν7 −ν8 −ν9 0 0 0 0 0 0

Finally, to end the proof of Theorem 1.2 in the case e = 5, we show that the
determinant of this matrix is nonzero. This we achieve by specializing as follows
λ0 = 1, λ1 = 2, λ2 = −1, λ3 = 1, λ4 = 1, λ5 = 1, λ6 = −1, λ7 = −4, λ8 = 2, µ0 =
1, µ1 = 2, µ2 = −1, µ3 = 2, µ4 = 5, µ5 = −1, µ6 = 13, µ7 = −1, µ8 = 1, µ9 = 1, ν0 =
1, ν1 = 2, ν2 = 3, ν3 = 5, ν4 = 4, ν5 = −5, ν6 = −6, ν7 = −7, ν8 = −5, ν9 = 1 and
computing the determinant. The result of the computation is 445717799641 which
is not zero as desired.
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7. Proof of Theorem 1.2: the odd degree case odd

In the previous section we saw an elegant proof of Theorem 1.2 in the case that
e = 5. What made the proof so short and non-computational is that in this case the
extension class ψ can be chosen to be general by our parameter count. The analo-
gous parameter count breaks down as the degree e becomes larger – the dimension
of the relevant Ext space grows faster than the dimension of the space Ue. Instead
we shall work with a specific pair ([X], [C]) ∈ Ue where we can prove that the rank
of ωe is as expected and where H1(C,NC/X) is zero. We warn the reader now that
X will not be smooth! But X will be smooth on an open set which contains C,
and this is all that matters.

odd-1

7.1. Computation of NC/P5 . Write e = 2r + 1 where r ≥ 2. We begin by speci-
fying C and computing NC/P5 . As in the last section, choose homogeneous coordi-
nates X0, X1 on P1. Choose homogeneous coordinates Y0, Y1, Y2, Y3, Y4, Y5 on P5.
Consider the map f : P1 → P5 given by

f([X0 : X1]) = [X2r+1
0 : X2r

0 X1 : Xr+1
0 Xr

1 : Xr
0X

r+1
1 : X0X

2r
1 : X2r+1

1 ].

This is a monomial embedding of P1 which is as “balanced” as possible. To compute
the normal bundle of C in P5, we use the Euler sequences for TP1 and TP5 . There
is a map between these Euler sequences induced by f and the important term is

d̃f : OP1(1)⊕2 → f∗
(
OP5(1)⊕6

)
= OP1(2r + 1)⊕6

which is given by the matrix

d̃f =



(2r + 1)X2r
0 0

2rX2r−1
0 X1 X2r

0

(r + 1)Xr
0X

r
1 rXr+1

0 Xr−1
1

rXr−1
0 Xr+1

1 (r + 1)Xr
0X

r
1

X2r
1 2rX0X

2r−1
1

0 (2r + 1)X2r
1

 (55)

First of all observe that this matrix does have rank 2 at every point. This proves that
f separates tangent vectors; injectivity of f follows from the fact that [Y0 : Y1] and
[Y1 : Y2] are local inverses of f . Moreover the normal bundle of C in P5 is just the
cokernel of d̃f . To compute this, consider the sheaf morphism T : OP1(2r+ 1)⊕6 →
OP1(3r + 1)⊕4 given by the matrix

(r − 1)Xr
1 −rX0X

r−1
1 Xr

0 0 0 0
0 Xr

1 −rXr−1
0 X1 (r − 1)Xr

0 0 0
0 0 (r − 1)Xr

1 −rX0X
r−1
1 Xr

0 0
0 0 0 Xr

1 −rXr−1
0 X1 (r − 1)Xr

0


(56)

It is straightforward to verify that T ◦ d̃f is zero and that T has rank 4 everywhere.
Thus T gives an isomorphism of NC/P5 with OP1(3r + 1)⊕4, and we shall take this
isomorphism to be an identification of locally free sheaves.
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odd-2

7.2. Computation of NC/X . Next we specify X and compute the normal bundle
NC/X . Observe that the quadric equations Qa = Y1Y4−Y0Y5 and Qb = Y2Y3−Y0Y5

both vanish on the image of f . Let La and Lb be any linear homogeneous polyno-
mials in Y0, . . . , Y5 which are linearly independent and consider the homogeneous
cubic polynomial F = LaQa + LbQb (later we will specialize to the case that La

and Lb are general linear homogeneous polynomials in Y0 and Y5 alone). For our
purposes it is convenient to make a “change of variables” and define M = La + Lb

and N = La +rLb (here we are using that r 6= 1 to see that La and Lb are uniquely
determined by M and N). Consider X = {[Y0 : · · · : Y5] ∈ P5|F (Y0, . . . , Y5) = 0}.
Let us point out to the reader that X will be singular along the common zero locus
of La, Lb, Qa and Qb – which will typically be a geometrically connected degree 4
curve of arithmetic genus 1.

To determine whether X is smooth along the image of f , we need to compute the
pullback by f of the “gradient vector” [ ∂F

∂Yi
]i=0,...,5. If we define L̃a = f∗La, L̃b =

f∗Lb, M̃ = f∗M and Ñ = f∗N considered as sections of H0(P1, f∗OP5(1)) =
H0(P1,OP1(5)), then the pullback of the gradient vector of F is the sheaf morphism
U : OP1(2r + 1)⊕6 → OP1(6r + 3) given by[
−X2r+1

1 (L̃a + L̃b) X0X
2r
1 L̃a Xr

0X
r+1
1 L̃b Xr+1

0 X1L̃b X2r
0 X1L̃a −X2r+1

0 (L̃a + L̃b)
]
.

(57)
One readily verifies that if L̃a and L̃b have no common zeroes and if L̃a + L̃b is
nonzero at the points [1 : 0] and [0 : 1], then this matrix is everywhere nonzero, i.e.
X is smooth along C. From now on we assume this is the case; in other words, M̃
and Ñ are linearly independent and M̃ is not zero at the points [0 : 1] and [1 : 0].
The matrix U factors as U = S ◦T where S : OP1(3r+1)⊕6 → OP1(6r+3) is given
by the matrix

S =
−1
r − 1

[
Xr+1

1 M̃ X0X
r
1 Ñ Xr

0X1Ñ Xr+1
0 M̃

]
. (58)

The normal bundle of C in X, NC/X is just the kernel of the sheaf morphism S.
To describe this map, we write out{

M = c0Y0 + c1Y1 + c2Y2 + c3Y3 + c4Y4 + c5Y5,
N = d0Y0 + d1Y1 + d2Y2 + d3Y3 + d4Y4 + d5Y5

(59)

Then we have{
M̃ = c0X

2r+1
0 + c1X

2r
0 X1 + c2X

r+1
0 Xr

1 + c3X
r
0X

r+1
1 + c4X0X

2r
1 + c5X

2r+1
1 ,

Ñ = d0X
2r+1
0 + d1X

2r
0 X1 + d2X

r+1
0 Xr

1 + d3X
r
0X

r+1
1 + d4X0X

2r
1 + d5X

2r+1
1

(60)
We make the definitions

n = d4X
2
0X

r
1 + d5X0X

r+1
1 ,

n′ = d0X
r+1
0 X1 + d1X

r
0X

2
1 + d2X0X

r+1
1 + d3X

r+2
1 ,

m = c4X0X
r+1
1 + c5X

r+2
1 ,

m′ = c0X
r+2
0 + c1X

r+1
0 X1 + c2X

2
0X

r
1 + c3X0X

r+1
1

(61)

In other words, X0X1N = Xr+1
1 n + Xr+1

0 n′ and M = Xr−1
1 m + Xr−1

0 m′. Then
consider the sheaf morphism R : OP1(2r)⊕OP1(2r+2)⊕OP1(2r−1) → OP1(3r+1)⊕4
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given by

R =


Xr+1

0 0 n
0 Xr−1

0 −m
0 −Xr−1

1 −m′

−Xr+1
1 0 n′

 (62)

One readily verifies that S ◦ R is zero. The matrix R has rank three generically,
namely, it has rank three at [0 : 1] and [1 : 0] by our hypothesis that M̃ is non-
vanishing at those points. By degree considerations, it follows that R has rank 3
everywhere and gives an isomorphism of OP1(2r)⊕OP1(2r+ 2)⊕OP1(2r− 1) with
the kernel of S, i.e. NC/X . Observe, in particular, that H1(P1, NC/X) is trivial, so
([X], [C]) is a point of Ue. We illustrate the situation with the following diagram:

O(1)2

d̃f

y
O(2r + 1)6 =−−−−→ O(2r + 1)6

T

y U

y
O(2r)⊕O(2r + 2)⊕O(2r − 1) R−−−−→ O(3r + 1)4 S−−−−→ O(6r + 3)

odd-3
7.3. Initial description of the pairing. In this subsection we begin to de-
scribe the skew-symmetric bilinear pairing on H0(C,NC/X) induced by ωe. We
will complete the description in the next subsection. Let’s introduce a little no-
tation. We will usually refer to elements in H0(P1, NC/X) by (g1, g2, g3) and
also g1e1 + g2e2 + g3e3 where ei is the ith column of the matrix R and where
g1 ∈ H0(P1,OP1(2r)), g2 ∈ H0(P1,OP1(2r + 2)) and g3 ∈ H0(P1,OP1(2r − 1)).

Now by Theorem 5.1, to compute the bilinear pairing ωe on H0(P1, NC/X) it is
equivalent (up to a nonzero scaling) to compute the boundary map

δ : H0(P1,
∧2

NC/X) → H1(P1,OP1(−2)).

Notice that the next term in the long exact sequence of cohomology isH1(P1,OP1(3r))⊕4,
which is trivial. Therefore the connecting homomorphism is the cokernel of the map
on global sections

R† : H0(P1,OP1(3r))⊕4 → H0(P1,
∧2

NC/X) = H0(P1,O(4r+1)⊕O(4r−1)⊕O(4r+2))

determined by the sheaf morphism R† : OP1(3r)⊕4 →
∧2

NC/X which is adjoint to
R. (The adjoint R† = diag(1,−1, 1) ◦ Rt, where Rt is the transpose of R.) If we
use as “ordered basis” for

∧2
NC/X the elements e2 ∧ e3, e1 ∧ e3 and e1 ∧ e2, then

the matrix of R† is simply Xr+1
0 0 0 −Xr+1

1

0 −Xr−1
0 Xr−1

1 0
n −m −m′ n′

 (63)

So, in other words, the pairing ωe is just given by

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)] = (g1h2 − g2h1)e1 ∧ e2

+(g1h3 − g3h1)e1 ∧ e3 + (g2h3 − g3h2)e2 ∧ e3 mod Im(R†).
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7.4. The image of the map R†. In order to have an explicit formula for the
pairing [·, ·] above, we need to determine the image of R†. We begin by determining
the intersection of H0(P1,OP1(4r + 2))e1 ∧ e2 with the image of R†. First of all, a
global section of OP1(3r)⊕4 is mapped under R† into H0(P1,OP1(4r+ 2))e1 ∧ e2 iff
it is of the form

v =


Xr+1

1 p
−Xr−1

1 q
−Xr−1

0 q
Xr+1

0 p

 (64)

for some p ∈ H0(P1,OP1(2r − 1)) and q ∈ H0(P1,OP1(2r + 1)). And the image of
this element is just

R†(v) = (X0X1Ñp+ M̃q)e1 ∧ e2. (65)

At this point we make our last simplification. We will assume that c1 = c2 = c3 =
c4 = 0 and d1 = d2 = d3 = d4 = 0, in other words La and Lb are both linear
combinations of Y0 and Y5 which are linearly independent and such that c0, c5, d0

and d5 are all nonzero. Now consider just those q such that q = X0X1q
′ for some

q′ ∈ H0(P1,OP1(2r − 1)). Then we have that R†(v) is simply X0X1(Ñp + M̃q′).
Since M̃ and Ñ are linearly independent elements in the span of X2r+1

0 and X2r+1
1 ,

as we allow p and q′ to vary the expression R†(v) varies over the whole linear span
of

X4r+1
0 X1, . . . , X

2r+2
0 X2r

1 , X2r
0 X2r+2

1 , . . . , X0X
4r+1
1 .

Notice that X4r+2
0 , X2r+1

0 X2r+1
1 and X4r+2

1 are missing. But taking q = X2r+1
0 and

q = X2r+1
1 does give us c0X4r+2

0 + c5X
2r+1
0 X2r+1

1 and c0X
2r+1
0 X2r+1

1 + c5X
4r+2
1 .

Thus we have that intersection of H0(P1,OP1(4r+ 2))e1 ∧ e2 with the image of R†

is precisely the subspace with basis

c0X
4r+2
0 + c5X

2r+1
0 X2r+1

1 , X4r+1
0 X1, X

4r
0 X2

1 , . . . , X
2r+2
0 X2r

1 , X2r
0 X2r+2

1 , . . .

X0X
4r+1
1 , c0X

2r+1
0 X2r+1

1 + c5X
4r+2
1 .

Now we introduce some more notation. For each pair of nonnegative integers (i, j),
let αi,j : H0(P1,OP1(i+ j)) → C be the linear functional such that for any homo-
geneous polynomial g of degree d we have

g(X0, X1) =
∑

i+j=d

αi,j(g)Xi
0X

j
1 , (66)

i.e. αi,j(g) is just the coefficient ofXi
0X

j
1 in g. Then the linear functional c25α4r+2,0−

c0c5α2r+1,2r+1 + c20α0,4r+2 is a nonzero linear functional on H0(P1,OP1(4r + 2))
whose kernel is precisely the intersection with the image of R†.

Also, we can use the first two rows ofR† to represent every element inH0(P1,
∧2

NC/X)
as being congruent to some element in H0(P1,OP1(4r+2))e1∧e2 modulo the image
of R†. Carrying this out we see that, up to a nonzero scalar, the pairing [·, ·] is
uniquely determined to be

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)] =
(c25α4r+2,0 − c0c5α2r+1,2r+2 + c20α0,4r+2)(g1h2 − g2h1) +

c0c5(c5α3r,r−1 − c0αr−1,3r)(g1h3 − g3h1) +
c0c5(d5α3r+1,r − d0αr,3r+1)(g2h3 − g3h2).
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7.5. Diagonalizing the pairing. The antisymmetric bilinear map [·, ·] gives a
linear transformation ω̃e : H0(P1, NC/X) → H0(P1, NC/X)∨ and we want to deter-
mine the kernel of this linear transformation. To do this, first we will “diagonalize”
the pair (H0(P1, NC/X), [·, ·]), i.e. we will find a direct sum decomposition

H0(P1, NC/X) =
r−2⊕
i=0

Ei ⊕ Er−1 ⊕ Er

such that for each i 6= j, Ei and Ej are mutually orthogonal subspaces with respect
to [·, ·]. To show that [·, ·] has trivial kernel, it suffices then to show that the
restriction of the pairing to each space Ei has trivial kernel. And this we will do by
computing the determinant of the matrix of [·, ·] with respect to a suitable basis.

For i = 0, . . . , r − 2, consider the subspace Ei ⊂ H0(P1, NC/X) generated by

vi,1 = Xr+1+i
0 Xr−1−i

1 e1

vi,2 = Xr−i
0 Xr+2+i

1 e2

vi,3 = X2r−1−i
0 Xi

1e3

vi,4 = Xi
0X

2r−1−i
1 e3

vi,5 = Xr+2+i
0 Xr−i

1 e2

vi,6 = Xr−1−i
0 Xr+1+i

1 e1

For i = r − 1 consider the subspace Er−1 ⊂ H0(P1, NC/X) generated by

vr−1,1 = X2r
0 e1

vr−1,2 = X2r+2
0 e2

vr−1,3 = X2r+1
0 X1e2

vr−1,4 = Xr
0X

r+1
1 e3

vr−1,5 = Xr+1
0 Xr

1e3

vr−1,6 = X0X
2r+1
1 e2

vr−1,7 = X2r+2
1 e2

vr−1,8 = X2r
1 e1

Finally, for i = r we consider the subspace Er ⊂ H0(P1, NC/X) generated by{
vr,1 = Xr

0X
r
1e1

vr,2 = Xr+1
0 Xr+1

1 e2

First of all, observe that each of these generating sets is simply a sub-basis of the
standard monomial basis of H0(P1, NC/X) which is

H0(P1,OP1(2r))e1 ⊕H0(P1,OP1(2r + 2))e2 ⊕H0(P1,OP1(2r − 1))e3.

It is very easy to check that every monomial basis vector is in precisely one of the
subspaces Ei, and thus these spaces give a direct sum decomposition ofH0(P1, NC/X).
Just as a consistency check, observe that for i = 0, . . . , r − 2 we have dim(Ei) = 6,
dim(Er−1) = 8 and dim(Er) = 2. So the total dimension is 6(r−1)+8+2 = 6r+4
which is (2r + 1) + (2r + 3) + 2r, i.e.

dimH0(P1,OP1(2r))e1 + dimH0(P1,OP1(2r + 2))e2 + dimH0(P1,OP1(2r − 1))e3.

Checking that the spaces Ei are pairwise orthogonal with respect to [·, ·] is straight-
forward, but tedious. One way to think of it is to consider the graph whose
vertices are the standard monomial basis vectors of H0(P1, NC/X), and where
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there is an edge between two such basis vectors iff the pairing is nonzero for this
pair. Thus there is never an edge between g1e1 and h1e1, nor between g2e2 and
h2e2, nor between g3e3 and h3e3. There is an edge between g1e1 and h2e2 iff
g1h2 = X4r+2

0 , X2r+1
0 X2r+1

1 or X4r+2
1 . There is an edge between g1e1 and h3e3

iff g1h3 = X3r
0 Xr−1

1 or Xr−1
0 X3r

1 . And there is an edge between g2e2 and h3e3

iff g2h3 = X3r+1
0 Xr

1 or Xr
0X

3r+1
1 . In particular, it is easy to see that the valence

of X2r
0 e1 , X2r

1 e1, Xr
0X

r−1
1 e3 and Xr−1

0 Xr
1e3 is three, the valence of Xr

0X
r
1e1 and

Xr+1
0 Xr+1

1 e2 is one, and every other vertex has valence two. Moreover, there is an
obvious symmetry in the graph obtained by permuting the variables X0 and X1.
Using this, it is straightforward to take each of the vectors vi,1 and compute that
the maximal connected subgraph containing this vertex gives the generating set for
Ei (this is an exercise left to the reader). Thus the Ei are pairwise orthogonal.

odd-6
7.6. Computing the determinants. In this last subsection, we compute the
determinant of ω̃e restricted to each of the direct summands. We show that each
determinant is nonzero, which proves that the pairing is non-degenerate. For i =

0, . . . , r − 2, we can form the matrix of ω̃e : Ei → E∨i with respect to the ordered
basis vi,1, . . . ,vi,6 and the dual ordered basis of E∨i . This is straightforward to
compute and turns out to be:

Ai =


0 c0c5 −c0c25 0 0 0

−c0c5 0 0 c0c5d0 0 0
c0c

2
5 0 0 0 c0c5d5 0
0 −c0c5d0 0 0 0 −c20c5
0 0 −c0c5d5 0 0 −c0c5
0 0 0 c20c5 c0c5 0

 (67)

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(Ai) =
c30c

3
5(c0d5 − c5d0) and thus the determinant is Det(Ai) = c60c

6
5(c0d5 − c5d0)2. Since

we are assuming that c0, c5 are nonzero and that (c0, c5) is linearly independent
from (d0, d5), this determinant is nonzero.

For i = r − 1, we can form the matrix of ω̃e : Er−1 → E∨r−1 with respect to
the ordered basis vr−1,1, . . . ,vr−1,8 and the dual ordered basis of E∨r−1. This is
straightforward to compute and turns out to be:

Ar−1 =



0 −c25 0 −c0c25 0 c0c5 0 0
c25 0 0 0 −c0c5d5 0 0 0
0 0 0 −c0c5d5 0 0 0 −c0c5

c0c
2
5 0 c0c5d5 0 0 0 −c0c5d0 0
0 c0c5d5 0 0 0 −c0c5d0 0 −c20c5

−c0c5 0 0 0 c0c5d0 0 0 0
0 0 0 c0c5d0 0 0 0 c20
0 0 c0c5 0 c20c5 0 −c20 0


(68)

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(Ar−1) =
c30c

3
5(c0d5 − c5d0)2 and thus the determinant is Det(Ar−1) = c60c

6
5(c0d5 − c5d0)4.

Since we are assuming that c0, c5 are nonzero and that (c0, c5) is linearly indepen-
dent from (d0, d5), this determinant is nonzero.

For i = r, we can form the matrix of ω̃e : Er → E∨r with respect to the ordered basis
vr,1,vr,2 and the dual ordered basis of E∨r . This is straightforward to compute and
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turns out to be:

Ar =
[

0 c0c5
−c0c5 0

]
(69)

Visibly the Pfaffian of this matrix is c0c5 and the determinant is c20c
2
5. Since we are

assuming that c0, c5 are nonzero, this determinant is nonzero.

Since each of the determinants above are nonzero ω̃e has maximal rank on each of
these subspaces. Since the subspaces are pairwise orthogonal, we conclude that ω̃e

has maximal rank on all of H0(P1, NC/X), i.e. the kernel of ω̃e is zero. This proves
Theorem 1.2 in case e = 2r + 1 is an odd integer with e ≥ 5.

8. Proof of Theorem 1.2: the even degree caseeven

In the last section we saw the proof of Theorem 1.2 in the odd degree case. In
this section we shall prove Theorem 1.2 in the even degree case. The proof will be
exactly analogous to the last case and, if anything, simpler than that case. As in
the last section, for each even degree e ≥ 6, we shall find a specific pair ([X], [C])
where C ⊂ P5 is an embedded rational curve of degree e and where X ⊂ P5 is a
cubic hypersurface containing C and such that C is disjoint from the singular locus
of X. For our special pair, we will prove that the rank of ωe is as expected and
H1(C,NC/X) will be zero.

even-1
8.1. Computation of NC/P5 . Write e = 2r where r ≥ 3 is some integer. We begin
by specifying C and computing NC/P5 . Choose homogeneous coordinates X0, X1

on P1 and as before choose homogeneous coordinates Y0, Y1, Y2, Y3, Y4, Y5 on P5.
Consider the map f : P1 → P5 given by

f([X0 : X1]) = [X2r
0 : X2r−1

0 X1 : Xr+1
0 Xr−1

1 : Xr−1
0 Xr+1

1 : X0X
2r−1
1 : X2r

1 ].

This is a monomial embedding of P1 which is as “balanced” as possible. To compute
the normal bundle of C in P5, we use the Euler sequences for TP1 and TP5 . There
is a map between these Euler sequences induced by f and the important term is

d̃f : OP1(1)⊕2 → f∗
(
OP5(1)⊕6

)
= OP1(2r)⊕6

which is given by the matrix

d̃f =



2rX2r−1
0 0

(2r − 1)X2r−2
0 X1 X2r−1

0

(r + 1)Xr
0X

r−1
1 (r − 1)Xr+1

0 Xr−2
1

(r − 1)Xr−2
0 Xr+1

1 (r + 1)Xr−1
0 Xr

1

X2r−1
1 (2r − 1)X0X

2r−2
1

0 2rX2r−1
1

 (70)

To see that f is an embedding, notice that [Y0 : Y1] and [Y4 : Y5] give local inverses
of f . Moreover the normal bundle of C in P5 is just the cokernel of d̃f . To com-
pute this, consider the sheaf morphism T : OP1(2r)⊕6 → OP1(3r − 1)⊕OP1(3r)⊕
OP1(3r)⊕OP1(3r − 1) given by the matrix

(r − 2)Xr−1
1 −(r − 1)X0X

r−1
1 Xr−1

0 0 0 0
0 2Xr

1 −rXr−2
0 X2

1 (r − 2)Xr
0 0 0

0 0 (r − 2)X)1r −rX2
0X

r−2
1 2Xr

0 0
0 0 0 Xr−1

1 −(r − 1)Xr−2
0 X1 (r − 2)Xr−1

0


(71)
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It is straightforward to verify that T ◦ d̃f is zero and that T has rank 4 everywhere.
Thus T gives an isomorphism of NC/P5 with OP1(3r − 1) ⊕ OP1(3r) ⊕ OP1(3r) ⊕
OP1(3r − 1), and we shall take this isomorphism to be an identification of locally
free sheaves.

even-2

8.2. Computation of NC/X . Next we specify X and compute the normal bundle
NC/X . Observe that the quadric equations Qa = Y1Y4 − Y0Y5 and Qb = Y2Y3 −
Y0Y5 both vanish on the image of f . Let La and Lb be any linear homogeneous
polynomials in Y0, . . . , Y5 and consider the homogeneous cubic polynomial F =
LaQa +LbQb (later we will specialize to the case that La and Lb are general linear
homogeneous polynomials in Y0 and Y5 alone). For our purposes it is convenine to
make the “change of variables” M = La + Lb and N = La + (r − 1)Lb. Consider
X = {[Y0 : · · · : Y5] ∈ P5|F (Y0, . . . , Y5) = 0}. Let us point out to the reader that
X will be singular along the common zero locus of La, Lb, Qa and Qb – which will
typically be a geometrically connected degree 4 curve of arithmetic genus 1.

To determine whether X is smooth along the image of f , we need to compute the
pullback by f of the “gradient vector” [ ∂F

∂Yi
]i=0,...,5. If we define L̃a = f∗La, L̃b =

f∗Lb, M̃ = f∗M and Ñ = f∗N considered as sections of H0(P1, f∗OP5(1)) =
H0(P1,OP1(5)), then the pullback of the gradient vector of F is the sheaf morphism
U : OP1(2r)⊕6 → OP1(6r) given by[
−X2r

1 (L̃a + L̃b) X0X
2r−1
1 L̃a Xr−1

0 Xr+1
1 L̃b Xr+1

0 Xr−1
1 L̃b X2r−1

0 X1L̃a −X2r
0 (L̃a + L̃b)

]
.

(72)
One readily verifies that if L̃a and L̃b have no common zeroes and if L̃a + L̃b is
nonzero at the points [1 : 0] and [0 : 1], then this matrix is everywhere nonzero,
i.e. X is smooth along C. Moreover this matrix factors as U = S ◦ T where
S : NC/P5 → OP1(6r) is given by the matrix

S =
−1

2(r − 2)

[
2Xr+1

1 M̃ X0X
r−1
1 Ñ Xr−1

0 X1Ñ 2Xr+1
0 M̃

]
. (73)

The normal bundle of C in X, NC/X is just the kernel of the sheaf morphism S.
To describe this map, we write out{

M = c0Y0 + c1Y1 + c2Y2 + c3Y3 + c4Y4 + c5Y5,
N = d0Y0 + d1Y1 + d2Y2 + d3Y3 + d4Y4 + d5Y5

(74)

Then we have{
M̃ = c0X

2r
0 + c1X

2r−1
0 X1 + c2X

r+1
0 Xr−1

1 + c3X
r−1
0 Xr+1

1 + c4X0X
2r−1
1 + c5X

2r
1 ,

Ñ = d0X
2r
0 + d1X

2r−1
0 X1 + d2X

r+1
0 Xr−2

1 + d3X
r−1
0 Xr+1

1 + d4X0X
2r−1
1 + d5X

2r
1

(75)
We make the definitions

n = d3X0X
r
1 + d4X

2
0X

r−1
1 + d5X0X

r
1 ,

n′ = d0X
r
0X1 + d1X

r−1
0 X2

1 + d2X0X
r
1 ,

m = 2c4X0X
r+1
1 + 2c5Xr+2

1 ,
m′ = 2c0Xr+2

0 + 2c1Xr+1
0 X1 + 2c2X3

0X
r−1
1 + 2c3X0X

r+1
1

(76)

In other words, X0X1Ñ = Xr+1
1 n +Xr+1

0 n′ and 2M̃ = Xr−2
1 m +Xr−2

0 m′. Then
consider the sheaf morphism R : OP1(2r− 2)⊕OP1(2r+ 2)⊕OP1(2r− 2) → NC/P5
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given by

R =


Xr+1

0 0 n
0 Xr−2

0 −m
0 −Xr−2

1 −m′

−Xr+1
1 0 n′

 (77)

One readily verifies that S◦R is zero and R has rank three generically (in particular
is has rank three at [0 : 1] and [1 : 0] by our hypothesis that M̃ is nonvanishing at
those points). By degree considerations, it follows that R has rank 3 everywhere
and gives an isomorphism of OP1(2r − 2)⊕OP1(2r)⊕OP1(2r − 2) with the kernel
of S, i.e. NC/X . Observe, in particular, that H1(P1, NC/X) is trivial so ([X], [C])
is in Ue.

even-3

8.3. Initial description of the pairing. In this subsection we begin to de-
scribe the skew-symmetric bilinear pairing on H0(C,NC/X) induced by ωe. We
will complete the description in the next section. Let’s introduce a little no-
tation. We will usually refer to elements in H0(P1, NC/X) by (g1, g2, g3) and
also g1e1 + g2e2 + g3e3 where ei is the ith column of the matrix R and where
g1 ∈ H0(P1,OP1(2r − 2)), g2 ∈ H0(P1,OP1(2r + 2)) and g3 ∈ H0(P1,OP1(2r − 2)).

Now by Theorem 5.1, to compute the bilinear pairing ωe on H0(P1, NC/X) it is
equivalent (up to a nonzero scaling) to compute the boundary map

δ : H0(P1,
2∧
NC/X) → H1(P1,OP1(−2)).

Notice that the next term in the long exact sequence of cohomology isH1(P1,OP1(3r−
1))⊕2 ⊕ H1(P1,OP1(3r − 2))⊕2, which is trivial. Therefore the connecting homo-
morphism is the cokernel of the map on global sections

R† : H0(P1,OP1(3r − 1)⊕OP1(3r − 2)⊕OP1(3r − 2))⊕OP1(3r − 1))

−→ H0(P1,
∧2

NC/X)

determined by the sheaf morphism R† : N∨
CP5 ⊗

∧3
NC/X →

∧2
NC/X which is

adjoint to R. If we use as “ordered basis” for
∧2

NC/X the elements e2∧e3, e1∧e3

and e1 ∧ e2, then the matrix of R† is simply Xr+1
0 0 0 −Xr+1

1

0 −Xr−2
0 Xr−2

1 0
n −m −m′ n′

 (78)

So, in other words, the pairing ωe is just given by

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)] = (g1h2 − g2h1)e1 ∧ e2

+(g1h3 − g3h1)e1 ∧ e3 + (g2h3 − g3h2)e2 ∧ e3 (moduloR†).
even-4

8.4. The image of the map R†. In order to have an explicit formula for the
pairing [·, ·] above, we need to determine the image of R†. We begin by determining
the intersection of H0(P1,OP1(4r))e1∧e2 with the image of R†. First of all, a global
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section of OP1(3r− 1)⊕OP1(3r− 2)⊕OP1(3r− 2)⊕OP1(3r− 1) is mapped under
R† into H0(P1,OP1(4r))e1 ∧ e2 iff it is of the form

v =


Xr+1

1 p
−Xr−2

1 q
−Xr−2

0 q
Xr+1

0 p

 (79)

for some p ∈ H0(P1,OP1(2r − 2)) and q ∈ H0(P1,OP1(2r)). And the image of this
element is just

R†(v) = (−X0X1Ñp+ 2M̃q)e1 ∧ e2. (80)

At this point we make our last simplification. We will assume that c1 = c2 = c3 =
c4 = 0 and d1 = d2 = d3 = d4 = 0, in other words La and Lb are both linear
combinations of Y0 and Y5 which are linearly independent and such that c0, c5, d0

and d5 are all nonzero. Now consider just those q such that q = X0X1q
′ for some

q′ ∈ H0(P1,OP1(2r − 2)). Then we have that R†(v) is simply X0X1(Ñp + 2M̃q).
Since M̃ and Ñ are linearly independent elements in the span of X2r

0 and X2r
1 , as

we allow p and q′ to vary, R†(v) varies over the whole linear span of

X4r−1
0 X1, . . . , X

2r+1
0 X2r−1

1 , X2r−1
0 X2r+1

1 , . . . , X0X
4r−1
1 .

Notice that X4r
0 , X2r

0 X2r
1 and X4r

1 are missing. But taking q = X2r
0 and q = X2r

1

does give us c0X4r
0 + c5X

2r
0 X2r

1 and c0X
2r
0 X2r

1 + c5X
4r
1 . Thus we have that the

intersection of H0(P1,OP1(4r))e1∧e2 with the image of R† is precisely the subspace
with basis

c0X
4r
0 + c5X

2r
0 X2r

1 , X4r−1
0 X1, X

4r−2
0 X2

1 , . . . , X
2r+1
0 X2r−1

1 , X2r−1
0 X2r+1

1 , . . .

X0X
4r−1
1 , c0X

2r
0 X2r

1 + c5X
4r
1 .

Now we introduce some more notation. For each pair of nonnegative integers (i, j),
let αi,j : H0(P1,OP1(i+ j)) → C be the linear functional such that for any homo-
geneous polynomial g of degree d we have

g(X0, X1) =
∑

i+j=d

αi,j(g)Xi
0X

j
1 , (81)

i.e. αi,j(g) is just the coefficient of Xi
0X

j
1 in g. Then the linear functional c25α4r,0−

c0c5α2r,2r + c20α0,4r is a nonzero linear functional on H0(P1,OP1(4r)) whose kernel
is precisely the intersection with the image of R†.

Also, we can use the first two rows ofR† to represent every element inH0(P1,
∧2

NC/X)
as being congruent to some element in H0(P1,OP1(4r))e1 ∧ e2 modulo the image
of R†. Carrying this out we see that, up to a nonzero scalar, the pairing [·, ·] is
uniquely determined to be

[(g1e1 + g2e2 + g3e3), (h1e1 + h2e2 + h3e3)] =
(c25α4r,0 − c0c5α2r,2r + c20α0,4r)(g1h2 − g2h1) +

2c0c5(c5α3r−2,r−2 − c0αr−2,3r−2)(g1h3 − g3h1) +
c0c5(d5α3r,r − d0αr,3r)(g2h3 − g3h2).
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even-5
8.5. Diagonalizing the pairing. The antisymmetric bilinear map [·, ·] gives a
linear transformation ω̃e : H0(P1, NC/X) → H0(P1, NC/X)∨ and we want to deter-
mine the kernel of this linear transformation. To do this, first we will “diagonalize”
the pair (H0(P1, NC/X), [·, ·]), i.e. we will find a direct sum decomposition

H0(P1, NC/X) =
r−3⊕
i=0

Ei ⊕ Er−2 ⊕ Er−1 ⊕ Er

such that for each i 6= j, Ei and Ej are mutually orthogonal subspaces with respect
to [·, ·]. We will see that there is a vector w in Er in the kernel of ω̃e. On the quotient
vector space H0(P1, NC/X)/C {w}, we have an induced alternating bilinear form
[·, ·]′ and an induced direct sum decomposition

⊕r
i=0E

′
i by pairwise orthogonal

subspaces. To show that [·, ·]′ has trivial kernel, it suffices then to show that the
restriction of the form to each space E′i has trivial kernel. And this we will do by
computing the determinant of the matrix of [·, ·]′ with respect to a suitable basis.

For i = 0, . . . , r − 3, consider the subspace Ei ⊂ H0(P1, NC/X) generated by

vi,1 = Xr+i
0 Xr−2−i

1 e1

vi,2 = Xr−i
0 Xr+2+i

1 e2

vi,3 = X2r−2−i
0 Xi

1e3

vi,4 = Xi
0X

2r−2−i
1 e3

vi,5 = Xr+2+i
0 Xr−i

1 e2

vi,6 = Xr−2−i
0 Xr+i

1 e1

For i = r − 2, consider the subspace Er−2 ⊂ H0(P1, NC/X) generated by

vr−2,1 = X2r−2
0 e1

vr−2,2 = X2r+2
0 e2

vr−2,3 = Xr
0X

r−2
1 e3

vr−2,4 = X2
0X

2r
1 e2

vr−2,5 = X2r
0 X2

1e2

vr−2,6 = Xr−2
0 Xr

1e3

vr−2,7 = X2r+2
1 e2

vr−2,8 = X2r−2
1 e1

For i = r − 1, consider the subspace Er−1 ⊂ H0(P1, NC/X) generated by{
vr−1,1 = Xr−1

0 Xr−1
1 e1

vr−1,2 = Xr+1
0 Xr+1

1 e2

For i = r, consider the subspace Er ⊂ H0(P1, NC/X) generated by
vr,1 = X2r+1

0 X1e2

vr,2 = Xr−1
0 Xr−1

1 e3

vr,3 = X0X
2r+1
1 e2

First of all, observe that each of these generating sets is simply a subbasis of the
standard monomial basis of H0(P1, NC/X) which is

H0(P1,OP1(2r − 2))e1 ⊕H0(P1,OP1(2r + 2))e2 ⊕H0(P1,OP1(2r − 2))e3.

It is very easy to check that every monomial basis vector is in precisely one of the
subspaces Ei, and thus these spaces give a direct sum decomposition ofH0(P1, NC/X).
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Just as a consistency check, observe that for i = 0, . . . , r − 3 we have dim(Ei) = 6,
dim(Er−2) = 8, dim(Er−1) = 2, and dim(Er) = 3. So the total dimension is
6(r − 2) + 8 + 2 + 3 = 6r + 1 which is (2r − 1) + (2r + 3) + (2r − 1), i.e.

dimH0(P1,OP1(2r−2))e1 +dimH0(P1,OP1(2r+2))e2 +dimH0(P1,OP1(2r−2))e3.

Checking that the spaces Ei are pairwise orthogonal with respect to [·, ·] is straight-
forward, but tedious. One way to think of it is to consider the graph whose
vertices are the standard monomial basis vectors of H0(P1, NC/X), and where
there is an edge between two such basis vectors iff the pairing is nonzero for
this pair. Thus there is never an edge between g1e1 and h1e1, nor between g2e2

and h2e2, nor between g3e3 and h3e3. There is an edge between g1e1 and h2e2

iff g1h2 = X4r
0 , X2r

0 X2r
1 or X4r

1 . There is an edge between g1e1 and h3e3 iff
g1h3 = X3r−2

0 Xr−2
1 or Xr−2

0 X3r−2
1 . And there is an edge between g2e2 and

h3e3 iff g2h3 = X3r
0 Xr

1 ro Xr
0X

3r
1 . In particular, it is easy to see that the va-

lence of X2r−2
0 e1, X2r−2

1 e1, Xr
0X

r−2
1 e3 and Xr−2

0 Xr
1e3 is three, the valence of

Xr−1
0 Xr−1

1 e1, X
r+1
0 Xr+1

1 e2, X
2r+1
0 X1e2 and X0X

2r+2
1 e2 is one, and every other

vertex has valence two. Moreover, there is an obvious symmetry in the graph ob-
tained by permuting the variables X0 and X1. Using this, it is straightforward to
take each of the vectors vi,1 and compute that the maximal connected subgraph
containing this vertex gives the generating set for Ei (this is an exercise left to the
reader). Thus the Ei are pairwise orthogonal.

even-6

8.6. Computing the determinants. In this last subsection, we compute the
matrix and determinant of ω̃e restricted to each of the direct summands. Using
this computation, we identify the kernel of ω̃e. For i = 0, . . . , r − 3, we can form
the matrix of ω̃e : Ei → E∨i with respect to the ordered basis vi,1, . . . ,vi,6 and the
dual ordered basis of E∨i . This is straightforward to compute and turns out to be:

Ai =


0 c0c5 −2c0c25 0 0 0

−c0c5 0 0 c0c5d0 0 0
2c0c25 0 0 0 c0c5d5 0

0 −c0c5d0 0 0 0 −2c20c5
0 0 −c0c5d5 0 0 −c0c5
0 0 0 2c20c5 c0c5 0

 (82)

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(Ai) =
2c30c

3
5(c0d5−c5d0) and thus the determinant is Det(Ai) = 4c60c

6
5(c0d5−c5d0)2. Since

we are assuming that c0, c5 are nonzero and that (c0, c5) is linearly independent from
(d0, d5), this determinant is nonzero.

For i = r − 2, we can form the matrix of ω̃e : Er−2 → E∨r−2 with respect to
the ordered basis vr−2,1, . . . ,vr−2,8 and the dual ordered basis of E∨r−2. This is
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straightforward to compute and turns out to be:

Ar−2 =



0 −c25 −2c0c25 c0c5 0 0 0 0
c25 0 0 0 0 −c0c5d5 0 0

2c0c25 0 0 0 c0c5d5 0 −c0c5d0 0
−c0c5 0 0 0 0 c0c5d0 0 0

0 0 −c0c5d5 0 0 0 0 −c0c5
0 c0c5d5 0 −c0c5d0 0 0 0 −2c20c5
0 0 c0c5d0 0 0 0 0 c20
0 0 0 0 c0c5 2c20c5 −c20 0


(83)

It is straightforward to compute that the Pfaffian of this matrix is Pfaff(Ar−2) =
c30c

3
5(c0d5 − c5d0)2 and thus the determinant is Det(Ar−2) = c60c

6
5(c0d5 − c5d0)4.

Since we are assuming that c0, c5 are nonzero and that (c0, c5) is linearly indepen-
dent from (d0, d5), this determinant is nonzero.

For i = r − 1, we can form the matrix of ω̃e : Er−1 → E∨r−1 with respect to the or-
dered basis vr−1,1,vr−1,2 and the dual ordered basis of E∨r . This is straightforward
to compute and turns out to be:

Ar−1 =
[

0 c0c5
−c0c5 0

]
(84)

Visibly the Pfaffian of this matrix is c0c5 and the determinant is c20c
2
5. Since we are

assuming that c0, c5 are nonzero, this determinant is nonzero.

For i = r, we can form the matrix of ω̃e : Er → E∨r with respect to the ordered
basis vr,1,vr,2,vr,3 and the dual ordered basis of E∨r . This is straightforward to
compute and turns out to be:

Ar =

 0 −c0c5d5 0
c0c5d5 0 −c0c5d0

0 c0c5d0 0

 (85)

This matrix is singular and the kernel contains the vector w = d0vr,1 + d5vr,3, i.e.
(d0X

2r
0 +d5X

2r
1 )X0X1e2. So this vector is in the kernel of ω̃e. Consider the quotient

vector space V ′ = H0(P1, NC/X)/C{w}. There is an induced alternating bilinear
pairing ω̃′e on V ′. Since w′ ∈ Er, there is an induced direct sum decomposition
V ′ =

⊕r
i=0E

′
i by pairwise orthogonal subspaces where for i = 0, . . . , r − 1 the

quotient map Ei → E′i is an isomorphism. And E′r has as basis the images of the
vectors vr,1,vr,2 provided d5 6= 0 and has as basis the images of the vectors vr,2vr,3

provided d0 6= 0.

In case d5 6= 0 we can form the matrix of ω̃′e : E′r → (E′r)
∨ with respect to the

ordered basis v′r,1,v
′
r,2 and the dual ordered basis of (E′r)

∨. This turns out to be:

A′r =
[

0 −c0c5d5

c0c5d5 0

]
(86)

Visibly the Pfaffian of this matrix is c0c5d5 and the determinant is c20c
2
5d

2
5. Since

we are assuming that c0, c5, d5 are nonzero, this determinant is nonzero.

The other case is that d0 6= 0. In this case we can form the matrix of ω̃′e : E′r →
(E′r)

∨ with respect to the ordered basis v′r,2,v
′
r,3 and the dual ordered basis of
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(E′r)
∨. This turns out to be:

A′r =
[

0 −c0c5d0

c0c5d0 0

]
(87)

Visibly the Pfaffian of this matrix is c0c5d0 and the determinant is c20c
2
5d

2
0. Since

we are assuming that c0, c5, d0 are nonzero, this determinant is nonzero. Thus we
conclude in both cases that the form ω̃′e on E′r is nondegenerate. Combined with
the computations from above, we conclude that the kernel of ω̃e is precisely the
span C{(d0X

2r
0 + d5X

2r
1 )X0X1e2}. So the kernel of ω̃e is one-dimensional. This

proves Theorem 1.2 in case e = 2r is an even integer with e ≥ 6.

9. Comments and Questions
concl

Let us mention a few generalizations of Theorem 1.2. The same method and the
same special pair f : P1 → P5 and X ⊂ P5 together with the points [0 : 1], [1 : 0] ∈
P1 can be used to show the following

ptdB
Theorem 9.1. Let X ⊂ P5 a smooth cubic hypersurface, let M0,n(X, e) denote
the Kontsevich moduli space of pointed stable maps to X of arithmetic genus 0 and
degree e, and let Me,n be a nonsingular projective model of the coarse moduli space.
There is a canonical section ωe ∈ H0(Me,n,Ω2

Me,n
) with the following property:

(a) In case n = 1, e is odd, e ≥ 5. If X is general, and p a general point of Me,1,
the restriction of ωe to the tangent space at p of the fiber of the evaluation map
ev : Me,1 → X has a 1-dimensional kernel.
(b) In case n = 1, e is even, e ≥ 6. If X is general, and p a general point of Me,1,
the restriction of ωe to the tangent space at p of the fiber of the evaluation map
ev : Me,1 → X is nondegenerate. Therefore the general fiber of ev has Kodaira
dimension ≥ 0 and, in particular, is non-uniruled.
(c) In case n = 2, e is odd, e ≥ 5. If X is general and p a general point of
Me,2, the restriction of ωe to the tangent space at p of the fiber of the evaluation
map (ev1, ev2) : Me,2 → X × X is nondegenerate. Therefore the general fiber of
(ev1, ev2) has Kodaira dimension ≥ 0 and, in particular, is non-uniruled.
(d) In case n = 2, e is even, e ≥ 6. If X is general and p a general point of Me,2

the restriction of ωe to the tangent space at p of the fiber of the evaluation map
(ev1, ev2) : Me,2 → X ×X has a 1-dimensional kernel.

Proof. We will sketch the proof, but leave most of the details to the reader. The
technique is almost identical to the proof of Theorem 1.2 and is roughly as follows:
For parts (a) and (b), one considers the special pairs ([X], [C]) used in Section 7
and Section 8 respectively, except one also specifies d0, d5 are both nonzero. For the
marked point on C, one uses either f([0 : 1]) (or f([1 : 0])). Then the tangent space
to the fiber of the evaluation map is identified with the sections of H0(P1, NC/X)
which vanish at [0 : 1] (or [1 : 0]). And the form ωe on this subspace is just
the form computed in Section 8 and Section 7. In particular, since the space of
sections vanishing at [0 : 1] is generated by standard monomial basis vectors of
H0(P1, NC/X), our direct sum decomposition into pairwise orthogonal subspaces
yields a direct sum decomposition of the space of sections vanishing at [0 : 1].

In the odd case, one can simply identify the kernel – which is generated by c5v0,2 +
v0,3 + d5v0,6. It is straightforward to check that the form on the quotient space is
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nondegenerate. In the even case, actually the kernel is nontrivial – it is generated by
d0vr,1 +d5vr,3 and vr−2,1 +2c5vr−2,3−d5vr−2,6. However, under a nontrivial first-
order deformation of the pointed curve which doesn’t change the map f : P1 → X,
but only moves the point [0 : 1] on P1, the kernel becomes trivial (this is a simple
deformation theory exercise).

Parts (c) and (d) are the same. In the odd case, the kernel is trivial. In the
even case, the kernel is generated by d0vr,1 + d5vr,3 (no deformation theory is
needed). �

Of course, a natural question at this point is the following.
lastq

Question 9.2. What can we say about the Kodaira dimension/uniruledness when
the form ωe does have a kernel? For example, when e is even e ≥ 6, is Me uniruled?

We are convinced that in these cases Me is non-uniruled, but we don’t have a proof
when e is even and e ≥ 8. However, in the special case e = 6, we can give an answer
based on an ad hoc analysis.

lastp
Proposition 9.3. Let X ⊂ P5 be a general cubic fourfold. Then M6 is non-
uniruled. More precisely, there exists a rational transformation f : M6 → Hilb6t

X

whose general fiber is a genus 1 curve which is a leaf of the distribution Ker(ωe).

We only give a very rough sketch of the proof. First we will give a rapid overview
of the proof that M6 is non-uniruled and then fill in some of the details. The
method of proof is very similar to that used in [14], but instead of using residual
curves in an intersection of X with a cubic scroll, we will use residual curves in
an intersection of X with a quartic scroll. For a general nondegenerate, rational,
degree 6 curve C ⊂ P5, there is a unique quartic scroll Σ ⊂ P5 which contains C.
If X is general, then X contains no quartic scrolls (although special smooth cubic
fourfolds can contain a quartic scroll [15, Section 4.1.3]). The intersection Σ ∩ X
is a degree 12 curve in Σ which is a local complete intersection (in particular it is
Gorenstein) and contains C as a subcurve of degree 6. Using Gorenstein liaison, the
residual curve C ′ to C in Σ is a degree 6 curve of arithmetic genus 1, which will be
a smooth, connected curve for C general. Thus we have a rational transformation
from M6 to the open subset U of the Chow variety/Hilbert scheme parametrizing
degree 6 curves in X of arithmetic genus 1 by [C] 7→ [C ′]. It is not hard to show
that the fiber of this rational transformation containing [C] is actually isomorphic
to Pic2(C ′), i.e. it is a connected, smooth curve of genus 1 (actually it will only be
a dense open subset since we are working on the non-complete variety M6).

Of course on M6 we have the 2-form ω6 constructed in Section 4. Now on U we can
define a 2-form by the same process as in Section 4 corresponding to the family of
degree 6 curves of arithmetic genus 1. On the domain of definition of the rational
transformation M6 → U , we can form the pullback of the 2-form on U ; let us call
this pullback 2-form ω′. Also over a dense open set of M6, the curve Σ ∩ X is a
connected, reduced at-worst-nodal curve and we can again use the technique from
Section 4 to construct a 2-form ω′′ corresponding to this family of curves. The
relation between all these forms is ω6 +ω′ = ω′′ on the open, dense locus where all
three are defined.

34



On the other hand, we have a unirational spaceW ⊂ Hilb(2t+1)(t+1)(P5) parametriz-
ing all smooth, nondegenerate quartic scrolls in Σ ⊂ P5 (in fact this is a homoge-
neous space for PGL6 since any two such scrolls are projectively equivalent). Over
a dense open subset of W we can construct a 2-form as in Section 4 corresponding
to the family of curves whose fiber over [Σ] is Σ ∩ X. And ω′′ is the pullback of
this 2-form by the obvious rational transformation M6 → W . But since W is uni-
rational, it does not support any nonzero 2-form. In other words, ω′′ = 0. So we
have ω6 = −ω′. In particular, the kernel of ω6 coincides with the kernel of ω′. Since
ω′ is a pullback by the rational transformation M6 → U , in particular the tangent
space of the fiber of this rational transformation is contained in ω6. We know the
fiber is one-dimensional. But by Theorem 1.2, we also know that the kernel of ω6 is
one-dimensional. Thus we conclude that the kernel of ω6 at a general point of M6

is precisely the tangent space to the fiber of M6 → U . In other words, the foliation
determined by the kernel of ω6 is algebraically integrable on a dense (Zariski) open
subset of M6, the leaf space is (birationally) an open subset U of the Hilbert scheme
of smooth, degree 6 curves in X of genus 1, and the projection to the leaf space is
(birationally) the rational transformation M6 → U .

From this it follows that U has Kodaira dimension ≥ 0, in particular it is non
uniruled. As we have seen, M6 → U is (birationally) a fibration whose fibers are
smooth curves of genus 1. Since both the target U of M6 → U and the fibers are
non-uniruled, we conclude that M6 is also non-uniruled. Moreover, it seems certain
that one can use [16] to show that M6 has Kodaira dimension ≥ 0.

There are lots of missing details in this argument: Why is the fiber of M6 → U at
[C] isomorphic to Pic2(C ′)? Why does a general nondegenerate, rational degree 6
curve lie on a unique quartic scroll (or any quartic scroll for that matter)? How
does the construction of Section 4 behave with respect to Gorenstein liaison, i.e.
what is the justfication of the identity ω6+ω′ = ω′′? What is the rigorous argument
that ω′′ is zero – to conclude a 2-form on a unirational variety is zero, we must
show that it extends to a regular 2-form on some nonsingular compactification of
that unirational variety and W was not compact?

Let’s briefly deal with these issues in reverse order. First of all, choose any nonsingu-
lar compactification W of W . The association [Σ] 7→ Σ∩X ⊂ X defines a rational
map from W to the coarse moduli space M10,0(X, 12) of the Kontsevich moduli
stack M10,0(X, 12) parametrizing stable maps to X from a connected at-worst-
nodal curve of arithmetic genus 10 and degree 12. By Section 4 and Lemma 3.5,
we can construct a 2-form on M10,0(X, 12) corresponding to the universal family of
stable maps over M10,0(X, 12). The 2-form on W is just the pullback of the 2-form
on M10,0(X, 12). Since W is smooth and M10,0(X, 12) is proper, the rational map
W → M10,0(X, 12) is defined on an open set whose complement has codimension
at least 2. Therefore the pullback of this 2-form extends to a regular 2-form on all
of W , which shows that this 2-form is identically zero since W is unirational.

The Gorenstein liaison property is the following: Suppose B is a scheme, p : C → B
and f : C → X is a flat family of at-worst-nodal curves over B together with a
family of maps to X, and suppose that C1 ⊂ C is a codimension 0 subscheme which
is itself Gorenstein and such that p1 : C1 → B is a flat family of at-worst-nodal
curves over B. It follows from a standard argument (c.f. [12, Corollary 2.7]) that
the residual scheme C2 ⊂ C to C1 ⊂ C is also a flat family of at-worst-nodal curves
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over B. By Section 4, we can form the 2-forms ω, ω1 and ω2 on B corresponding
to C, to C1 and to C2 respectively. The liaison property is that ω1 +ω2 = ω. Going
through the construction in Section 4, this follows easily from the analogous result
for the trace maps Rp∗ωC/B → OB , Rp∗ωC1/B → OB and Rp∗ωC2/B → OB .

Finally, why is it true that every smooth curve C ⊂ P5 of degree 6 which is non-
degenerate lies on a unique quartic scroll Σ, and why is Σ nonsingular? This must
have been known classically, and is undoubtedly already somewhere in the litera-
ture. Since the proof is so easy, we will simply rederive the result here. First of all,
the result is suggested by a parameter count. A quartic scroll Σ ⊂ P5 is the image
of P1×P1 embedded by the complete linear system of OP1(2)⊗OP1(1), so the space
of smooth quartic scrolls in P5 has dimension dim(PGL6) − dim(Aut(P1 × P1)) =
35−6 = 29. The degree 6 rational curves on Σ are simply the images of curves in the
projective linear system of OP1(4)⊗OP1(1), which has dimension 9. So we obtain
a 38-dimensional family of pairs ([Σ], [C]) where Σ ⊂ P5 is a smooth quartic scroll
and C ⊂ Σ is a smooth degree 6 rational curve. On the other hand, the dimension
of the space of all smooth, degree 6 rational curves in P5 is easily computed to be
−KP5 .[C] + (dim(P5) − 3) = (6).(6) + (5 − 3) = 38. For a pair ([Σ], [C]) it is easy
to see that the set of all 4-secant 2-planes to C exactly sweep out the cubic Segré
threefold Y ⊂ P5 associated to Σ, i.e. the Segré threefold swept out by 2-planes
which intersect Σ in a conic curve. The Segré threefold Y is the image of an embed-
ding P2 × P1 → P5 by the complete linear system of OP2(1)⊗OP1(1). The quartic
scroll Σ ⊂ Y is the image under this embedding of a subvariety D × P1 ⊂ P2 × P1

where D ⊂ P2 is a smooth conic. But then the curve C ⊂ Y is the image a curve
in P2 × P1, which we will also call C, such that the projection map π1 : C → P2 is
a 2-to-1 map to the conic D. Thus we can reconstruct D and so also Σ just from
the pair C ⊂ Y . But as Y is the union of all 4-secant 2-planes to C, we can also
reconstruct Y just from C. Therefore we can uniquely reconstruct Σ from C which
shows that there is exactly one quartic scroll Σ giving rise to C. So the map from
our 38-dimensional variety of pairs ([Σ], [C]) to the (open subscheme of the) 38-
dimensional Hilbert scheme parametrizing smooth, nondegenerate, rational degree
6 curves C ⊂ P5 is an injective map and therefore dominates the Hilbert scheme.
So for a general, nondegenerate, rational degree 6 curve C ⊂ P5, we conclude there
is a unique smooth quartic scroll Σ containing C.

Finally, why is the fiber of M6 → U at a point [C] isomorphic to Pic2(C ′) where
C ∪ C ′ = Σ ∩ X? The image is just [C ′], and the fiber over [C ′] is the set of all
rational degree 6 curves such that C is residual to C ′ in an intersection Σ∩X where
Σ is a quartic scroll containing C ′. Although it is a bit tricky to understand quartic
scrolls containing a degree 6 rational curve, it is quite a bit simpler to understand
quartic scrolls containing a degree 6 curve C ′ of arithmetic genus 1. For each scroll
Σ such that C ′ ⊂ Σ, we have that Σ is the image of an embedding of P1×P1 by the
complete linear system of OP1(2) ⊗ OP1(1). The curve C ′ is the image of a curve
in the complete linear system of OP1(2) ⊗ OP1(2). In particular, the pullback for
OP1(1) by the second projection π2 : P1×P1 gives an invertible sheaf which restricts
on C ′ to an element L ∈ Pic2(C ′). Given L, we can uniquely recover Σ as follows:
for each divisor D ⊂ C ′ in the complete linear system form the line span(D) in
P5. Then Σ is the union of the lines span(D) as D varies among all divisors in the
complete linear system of L. This establishes a one-to-one correspondence between
the quartic scrolls in P5 which contain C ′ and the invertible sheaves L ∈ Pic2(C ′).
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