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1. INTRODUCTION

1.1. Statement of results. We will work over the field of complex numbers, al-
though our results hold over any uncountable algebraically closed field of charac-
teristic zero. A wariety will be a reduced scheme of finite type, but not necessarily
irreducible. Recall that a property is said to hold at a general point of a variety V'
if it holds for all points in a dense open subset of V. A property is said to hold at a
very general point of V' if it holds at all points in a countable intersection of dense
open subsets of V.

A variety V is said to be rationally connected if two general points of V' can be
joined by a rational curve. In [GHS], it is proved that a one-parameter family of
rationally connected varieties always has a rational section: explicitly, we have the
following theorem.

Theorem 1.1. Let w : X — C' be a proper morphism of complex varieties, with C
a smooth connected curve. If the general fiber of w is rationally connected, then w
has a section.

The goal of this paper is to state and prove a converse to this statement (cf.
Theorem 1.3 below).

We should first of all discuss what we mean by this, inasmuch as the literal
converse of Theorem 1.1 is clearly false. To this end, let’s focus on the question:
under what circumstances does a family 7 : X — B of varieties have the property
that its restriction to a general curve C' C B has a section?

This is certainly the case if the family 7 : X — B has a global rational section.
It is also the case by Theorem 1.1 if the general fiber of 7 is rationally connected,
and by extension it is the case if X contains a subvariety Z C X dominating B
and whose fiber over a general point of B is rationally connected. (We can think
of the case where the family 7 : X — B has a global rational section as a special
case of this, a single point being a rationally connected variety!) In this paper, we
will prove that in fact these are the only circumstances under which it may occur.
To make this claim precise, we start by making the following definition.

Definition 1.2. Let 7w : X — B be an arbitrary morphism of complex varieties. By
a pseudosection of m we will mean a subvariety Z C X such that the restriction
7|z : Z — B is dominant with rationally connected general fiber.
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Our main result is the following.

Theorem 1.3. Let B be any irreducible variety. For every positive integer d there
exists a bounded family Hy of maps h : C — B from smooth irreducible curves to
B such that for any proper morphism 7w : X — B of relative dimension d or less, if
h:C — B is a map parametrized by a very general point of Hq, the pullback

7T01XC:X><BC—>C

has a section if and only if m has a pseudosection.

If B is normal and quasi-projective, we can take Hq to be the family of smooth
one-dimensional linear sections of B under a sufficiently positive projective embed-
ding.

What we are saying here, in other words, is that if we have any family of varieties
m : X — B satisfying the condition that every one-parameter subfamily has a
section, it does so by virtue of the fact that X contains a family of rationally
connected varieties.

As a corollary of this, we will at the end of the paper settle a question left hanging
in [GHS]: whether or not the statement of Theorem 1.1 holds for the larger class of
O-acyclic varieties—that is, varieties X with H*(X,Ox) = 0 for all > 0. In fact,
it was suggested by Serre in a letter to Grothendieck ([GS], p. 152) that this might
be the case (though Serre immediately adds that it is “sans doute trop optimiste”).
In Section 5, we show this does not hold: specifically, by applying Theorem 1.3 to
the universal family over a parameter space of Enriques surfaces with a particular
polarization, we will deduce the following result.

Corollary 1.4. There exists a one-parameter family X — C of Enriques surfaces
with no rational section.

While this method produces the existence of a family of Enriques surface over
a complex curve with no section, it does not provide an answer to the following
natural questions.
e What are the possible base curves for such families? (For example is there
a pencil of Enriques surfaces with no section?)
e Can such a family be defined over a number field?
e Are there local obstructions to the existence of sections?

A recent result of Guillaume Lafon [L] clarifies the situation greatly. He con-
structs Enriques surfaces over Q(¢) that do not have rational points over C((¢)).

We remark, however, that the Enriques surfaces we produce have points every-
where locally, so the existence of local obstructions is not the only reason that
Enriques surfaces over function fields can fail to have rational points.

Acknowledgments: The authors are grateful to the referee. His thorough
remarks improved the mathematical content and clarity of this paper.

2. STABLE MAPS AND STABLE SECTIONS

Our proof of Theorem 1.3 involves an induction on the relative dimension of
f + X — B where the base case (fiber dimension zero) is proved by a version of
the Lefschetz hyperplane theorem. In the course of the proof we will need to use
specializations of irreducible curves in B. There are several possible compactifica-
tions of the Chow variety of irreducible curves in B, but the one we will use is the
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Kontsevich space of stable maps. The reader who is unfamiliar with stable maps
is referred to the article [FP]. A stable map to X is a morphism h : C — X for
which C' is a connected, projective curve which has at-worst-nodes as singularities
and such that the morphism A has a finite automorphism group.

There is an equivalence relation on stable maps which is the obvious one, and the
Kontsevich moduli space of stable maps is the corresponding coarse moduli space
of equivalence classes of stable maps.

If X is a quasi-projective variety, we let MQ(X , ) denote the Kontsevich space
of stable maps h : C' — X such that C has arithmetic genus g and such that
the push-forward fundamental class h.[C] equals § € Hy(X,Z). This is a quasi-
projective coarse moduli scheme which is projective if X is projective (cf. [FP]).
We will often not need the decorations, so let M (X) := Uy gM (X, 3) denote the
space of all stable maps to X.

Given a morphism of quasi-projective schemes 7 : X — B, there is an induced
map on Kontsevich spaces, M () : M(X) — M(B). (Technically we must restrict
to those stable maps with g > 1 or with 7,5 # 0, but this will always be the case
for us when we apply M (m).) This map takes the moduli point h : C' — X to the
point o h : ¢ — B, where C is the stabilization of C' relative to the morphism
mo h. It is obtained by contracting those components of C' of genus 0 which are
contracted by moh and meet the rest of C' in fewer than 3 points. If 7 is projective,
then M (r) is projective on each connected component of M (X).

Definition 2.1. Ifh:C — X and h' : C' — X are stable maps, we say that h' is

a submap of h if there is an element i € M(C) such that [h'] = M (h)([i]).

This terminology is suggested by the special case where h’ factors as a composi-
tion of h with a closed embedding i : C’ — C. We use the more general notion for
convenience.

The following definition makes precise what it means for one stable map to be a
submap of a specialization of another stable map.

Definition 2.2. Given a quasi-projective variety X, and two families of stable
maps to X, D and E, we say that D dominates E if a general map parametrized
by E can be realized as a submap of a specialization of maps parametrized by D.
Precisely, for a general point of E parametrizing a stable map h : C — X, we
can find a family of stable maps over Spec(C[[t]]) such that h is a submap of the
map over the special fiber, and the map over the generic fiber is pulled back by a
morphism from Spec (C((t))) to D.

Although the definition here requires only that a general map parametrized by
E be obtainable as a submap of a specialization, it is equivalent to require that
every map parametrized by E arises in this way. To see this, consider the family of
stable maps parametrized by D.

h
CDHD

g

D



4 T. GRABER, J. HARRIS, B. MAZUR, AND J. STARR

Now define MO(C p) to be the open and closed subset of M (Cp) parametrizing
stable maps to fibers of 7p. The condition that E'is dominated by D is equivalent
to the statment that a general point of E maps to a point in M (X) which is in the

closure of M(hp)(V) for some irreducible component V' of MO(C p). However, if a
general point of £ maps to a point in such a closure, then so does every point of
E.

We need a criterion for when a family of stable maps to a projective variety is
dominated by a family of embedded complete intersection curves. We will repeat-
edly make use of the following criterion.

Lemma 2.3. Suppose E is a family of stable maps to a normal, irreducible, pro-
jective variety B such that for a general map h : C — B parametrized by E, there
is an open subset U C B contained in the smooth locus of B and such that:

(1) h=Y(U) is dense in C,

(2) hY(U) contains all the nodes of C, and

(3) the restricted map h=*(U) — U is a closed embedding.

Then E is dominated by the family of one dimensional linear sections of B under
a sufficiently positive projective embedding.

Proof. Let h : C — B be a general element of our family. We embed B in a
projective space and find an integer a such that the ideal of the reduced image curve
h(C) is generated by polynomials of degree a. The sufficiently positive embedding
required is the ath Veronese re-embedding. Now we know that we can realize h(C)
as an intersection of hyperplanes. Since h(C) is a local complete intersection in
a neighborhood of the image of each of the nodes of C, if we choose dim(B) — 1
generic hyperplane sections of B which contain h(C), their intersection will agree
with h(C) in a neighborhood of the image each of these nodes. Moreover, by
Bertini’s Theorem, this intersection will be smooth away from h(C'). We conclude
that the intersection of dim(B) — 1 generic hyperplane sections of B containing
h(C) will be a generically reduced curve C’ which contains h(C) as a subcurve and
such that there exists an open set U’ C U containing the images of all of the nodes
of C such that h=1(U’") — U’ N C’ is an isomorphism.

Now we choose any one parameter family of smooth complete intersections in
B whose flat limit is C’, i.e., a morphism from Spec(C[[t]]) to the Hilbert scheme
of complete intersections in B whose general fiber maps to a smooth complete
intersection and whose special fiber maps to C’. We think of the general fiber as a
stable map and perform stable reduction to the corresponding map Spec(C[[t]]) —
M (B). Denote the special fiber of the stable reduction by h : C — B. Since U'NC’
is already at-worst-nodal, there is an open subset V' C C such that h: V — U'NC’
is an isomorphism. In other words, we have a factorization i : h=1(U’) — C of
h: h=Y(U") — B. Since every point of C'in C — h~(U’) is smooth, we can apply
the valuative criterion of properness to extend this factorization to a morphism
i:C —C. Soh:C — Bisasubmap of h : C — B, which shows that F is
dominated by the family of smooth curves in B which are complete intersections of
d — 1 hyperplanes.

U
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We remark that the lemma above is not the most general result, but to prove a
stronger version would lead us too far astray. We leave it to the interested reader
to prove that in the above lemma it suffices to assume that for the general map
h : C — B parametrized by FE, the preimage of the smooth locus, h_l(Bsmooth), is
a dense open set which contains every node of C.

Although our main concern is to understand sections of a map 7 : X — B over
smooth curves in B, the specialization methods we use force us to consider the more
general notion of stable maps. Similarly, we need to replace the notion of section
over a curve with an object which specializes as we specialize the base curve.

Definition 2.4. Given a morphism m : X — B, and a stable map h : C — B,
we deﬁ@e a stable section of m over [h] to be a stable map h : C' — X such that
M (m)([h]) = [h].

Notice that for a stable section h, the class 7, (h).[C] is just h,[C] and g(C") =
g(C). Since h is a stable map, either g(C) > 1 or h,[C] is nonzero, i.e., the map

M (m) really is defined in a neighborhood of [h].

If C is a smooth connected projective curve in B, then a stable section of 7 over
C is simply a section of m over C' with some trees of m-contracted rational curves
in X attached. The notion is more interesting when C has nodes. In this case,
the existence of a stable section over C' does not guarantee the existence of any
sections over C' whatsoever. For example, a typical stable section h over a curve
C = C1 Uy, where t; € C is glued to to € Cs, would consist of sections hy and
hy of m over C; and Cs separately together with a tree of m-contracted rational
curves in X joining hi(t) to hy(t2) (and some trees of m-contracted rational curves
attached elsewhere). Such rational curves are exactly the sort which are contracted
under the stabilization process associated with M (rr).

The point of this definition is that given a family of curves in the base B spe-
cializing to some stable map h : C' — B (possibly reducible), and given an honest
section over the generic curve in this family, then we cannot conclude the existence
of a section of 7 over h, but we do conclude the existence of a stable section of 7 over
h. In other words, the existence of a stable section is preserved under specializa-
tion. This follows immediately from the properness of the irreducible components
of M(X). Another elementary fact is the following lemma.

Lemma 2.5. If i/ : C' — B is a submap of h : C — B, then the existence of a
stable section of m : X — B over h implies the existence of a stable section of w
over h'.
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Proof. We have the following commutative diagram:

where the morphisms ¢ and ¢’ are isomorphisms except for possibly contracting
some trees of rational curves. To define a stable section of h’ one can simply
complete the upper left hand corner of this diagram with a curve C” giving a
stable section of ¢ over i. To construct such a C”, note that over each irreducible
component of C the pullback of C' admits a section. To complete this to a stable
section, we simply need to find, for each node of C, a tree of rational curves in C
connecting the image point of one branch of the node to the image point of the
other. Since every fiber of ¢ is either a point or a tree of rational curves, this is
trivial.

U

Taken together, we get the following fundamental lemma.

Lemma 2.6. If D and E are families of stable maps to B, with D dominating E
and if a general map parametrized by D admits a stable section, then so does every
map parametrized by E.

As an application, we can strengthen the easy direction of our main theorem.

Proposition 2.7. If 1 : X — B is a morphism of projective varieties with B
smooth and if m admits a pseudosection, then for any smooth curve C, and for any
morphism h : C' — B, the pullback family Xo — C admits a section.

Proof. Since any map from a smooth curve factors through the normalization of its
image, it suffices to prove this statement for maps birational onto their image (note
that since C' and B are smooth, such maps satisfy the hypotheses of Lemma 2.3.)
Let Z be a pseudosection of w. We already know by Theorem 1.1 that the propo-
sition is true for any smooth curve such that the general fiber of Z over the curve
is rationally connected. In particular it holds for a generic complete intersection
curve in B under any projective embedding. By Lemma 2.3, our map h can be
realized as a submap of a limit of such curves. Then Lemma 2.6 implies that =
admits a stable section over [h]. Since C' is smooth, this implies that X admits a
section over C.

U

3. PROOF OF MAIN THEOREM

In our proof of Theorem 1.3, we begin by assuming that B is normal and that
both X and B are projective. After handling this “special” case, we give the (easy)
argument which reduces the general case to the special case.
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We will prove the theorem by induction on the relative dimension of X over B.
We start with the case of relative dimension zero.

Proposition 3.1. Let B C P™ be an irreducible normal variety and m : X — B a
generically finite proper morphism. Then m admits a rational section if and only if
m admits a section when restricted to a general one-dimensional linear section of
B.

Proof. It suffices to prove this when X is irreducible and 7 is dominant. We are also
free to assume that X is normal and 7 is proper, since the statement depends only
on the birational geometry of X. Let b be the dimension of B, and let G’ denote
the family of codimension b — 1 linear subspaces of P”. A standard application of
Bertini’s Theorem shows that there is a dense open subset Ug of GG, such that for
any linear space L parametrized by Up, the intersection L N B is a smooth, one-
dimensional, irreducible subvariety. Applying a stronger characteristic zero version
of Bertini’s Theorem such as [Har, 111.10.9, Ex I11.11.3] to the morphism from X
to P™ (obtained by composing 7 with the inclusion), we can find a dense open
subset Ux C G such that for any linear space L parametrized by a point of Uy, the
pullback to X of L is a smooth, irreducible, one-dimensional subvariety. Choosing
a subspace L parametrized by a point in Ux N Up we find that the restricted
morphism
7 Y (LN B) — (LN B)

is a finite morphism of smooth proper curves, so it admits a section if and only if
this morphism has degree 1. For a general L, the degree of this morphism agrees
with the degree of 7 and the result follows.

U

We remark that it is also possible to prove this lemma by applying a suitable
version of the Lefschetz hyperplane theorem for fundamental groups such as [Ham,
Thm. 3] or [GM, Thm. 1.2, Part II].

In handling the case of positive relative dimension, one of the main ingredients
needed is the following bend-and-break lemma for sections.

Lemma 3.2. Let m : X — C be a proper morphism with C a smooth connected
curve. Let p € X be an arbitrary point. If there is a positive dimensional family of
sections of m passing through p, then there is a rational curve in X passing through
p which is contracted by 7.

Proof. This lemma is a version of Mori’s Bend-and-Break Lemma from [Mo] which
in turn relies on the Rigidity Lemma [Mu, p. 43].

Let ¢ = m(p). Suppose we have a one-parameter family of sections passing
through p. This gives us a rational map f : D x C' --+ X over C whose restriction
to a general fiber {d} x C is a section passing through p. Suppose, by way of
contradiction, that f is a regular morphism in a neighborhood of D x {¢}. Since f
contracts D x {q}, by the Rigidity Lemma it also contracts D x {c} for all ¢ € C,
i.e., our family is constant which is a contradiction. Hence, f is not regular near
D x {q}. So there is at least one point of indeterminacy in D x {¢}. We may form
the minimal blow-up of D x C necessary to resolve the indeterminacy locus of f.
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The exceptional divisor of this blow-up is a tree of rational curves which intersects
the proper transform of D x {¢q} and which is mapped to a tree of m-contracted
rational curves in X. Therefore some rational curve in the exceptional divisor maps
to a m-contracted rational curve which meets p.

U

We will apply this lemma in two ways. The first application is to get a uniform
bound on the dimensions of spaces of sections. First we need a definition.

Definition 3.3. If 7 : X — B is a proper morphism, we define the rational curve
locus, V(r), to be the union of all w-contracted rational curves in X.

Let us pause to describe what sort of object V(7)) is. If 7 is projective and
we fix a relatively ample divisor H on X, then for each integer d, the locus of all
m-contracted rational curves of H-degree less than or equal to d is a Zariski closed
subset of X by [D, Sec. 5.6]. Hence, we see that V() is a countable union of closed
subvarieties.

The next lemma applies Lemma 3.2 to give a uniform bound on the dimensions
of spaces of sections. Let m: X — C be a projective morphism of relative dimension
d. Let ¥ be an irreducible variety parametrizing a family of sections of .

Lemma 3.4. If there exists a section parametrized by ¥ whose image is not con-
tained in V (m), then dim(X) < d.

Proof. Choose a very general point ¢ of C and set X. = 7~ 1(c). Let ev. : ¥ — X,
be the map which evaluates a section at ¢. Our hypotheses ensure that dim(X,.) = d

and that ev.(X) ¢ V(7). Lemma 3.2 then implies that ev, is generically finite onto
its image, yielding the desired bound.

U

Let B — PV be a closed immersion. Let D C Grass(N —b+1,PV) be the dense
open subset parametrizing linear spaces A such that A N B is smooth, irreducible,
and one-dimensional. Let pp : Cp — D denote the universal family of intersections
AN B and let ,o(Dz) : C’g) — D denote the fiber product of Cp with itself over D.
Denote by hp : Cp — B the obvious map.

Definition 3.5. A triangle is a stable map h: C — X such that
(1) C has three irreducible components Cy, Ca, and Cs,
(2) C has three nodes g1, = C1 N Ca, g1,3 =C1NCs, and ga,3 = C2N C3, and
(3) for each i = 1,2,3 the map h|c, : C; — X is a closed immersion whose
mmage is in D.

The space of triangles, is the locally closed subvariety T(B) C Cg) XC(D2) XC(D2)

which is the subset of triples

((Cr,q1,3,91,2): (C2,42,1,42,3), (C3,43,2,q3,1)) € C,(;)Q) X C(DQ) X C(DQ)

such that q; ; = q;; for 1 <1i < j <3, and such that ¢; ; # qi 1 for each triple of
distinct integers 1 < i,j,k < 3. The universal family of triangles over T(B) is the
family of curves C = C1 U Cy U C3 obtained by identifying the points q; j as above.
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Of course, T(B) depends not only on B, but also on a choice of projective
embedding of B. There is a morphism ev : T(B) — B x B x B which maps a triple

(Cr,q1,3,q1,2)5 (C2,42,1,92,3), (C3,43,2,G3,1))
to (q1,2, 41,3, G2,3)-

Let ¢ € B be a point. Define D, C D to be the closed subset where ¢ € h(C).
Define T(B), C T(B) to be the closed set where ¢ € h(Cy U Cy U C3). For each
i =1,2,3 define T(B),,; C T(B),4 to be the closed subset where ¢ € h(C;).

Lemma 3.6. (1) The morphism ev is flat with irreducible fibers.
(2) The variety T'(B) is irreducible.
(3) For each i =1,2,3, the variety T(B),,; is irreducible.
(4) The triangle associated to a general point of T(B) satisfies the hypotheses
of Lemma 2.3.

Proof. Let A C B x B x B denote the union of the three big diagonals, i.e., the
set of triples (¢i1.2,¢1,3,92,3) such that some ¢; ; = ¢;» ;7. Given (¢1,2,41,3,¢2,3) €
B x B x B — A, the fiber of ev over this point is an open subset of the prod-
uct of Grassmannians which parametrizes triples (A1, A, A3) € D x D x D such
that span(qi2,q1,3) C A1, span(gz,;1,¢2,;3) C Ap and span(gs1,¢32) C Az. So
ev : T(B) — B x B x B— A is an open subset of a fiber product of three
Grass(N — b — 1,P¥=2)-bundles. Therefore it is flat and has irreducible fibers.

Statement (2) follows from (1) and the fact that B x B x B is irreducible.
Statement (3) follows by an argument similar to that for (1). For definiteness,
suppose i = 1. There is a projection pry : T(B)41 — D

((C1,q1,3,01,2), (C2,02,1,92,3), (C3, 43,2, 3.1)) — C1.
The image is a subset of the subvariety D,. This subvariety is isomorphic to an
open subset of Grass(N — b,PV~1) and so is irreducible (possibly empty). Define
C’g’)q to be the preimage of Dy in C(DQ). This is also irreducible since CI(DQ) — D
is flat with irreducible fibers. There is a projection T(B),1 — C'(DQ)q. For each

(Ci,q13,1,2) € 01(327)(1 the fiber in T'(B),1 is an open subset of a fiber product of
two Grass(N — b — 1,PN~2)-bundles over B: the map to B corresponds to the
choice of g2 3 and the Grassmannian bundles correspond to the choice of Ay and As
containing span(gz1,¢2,3) and span(gs,1,¢s2) respectively. Thus T'(B),1 — Cg’)q
is flat with irreducible fibers. Therefore T'(B),,1 is irreducible.

Finally (4) is trivial to verify.
U

Our second application of Lemma 3.2 is in the proof of the following lemma,
which is the main step in the proof of Theorem 1.3.

Lemma 3.7. Let 7: X — B be a morphism of projective varieties with B normal
and irreducible, and let p € X be any point such that p ¢ V(r). Suppose also that
p 1s not contained in the closure of the image of any rational section of w. Then
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a very general triangle passing through ¢ = w(p) admits no stable sections passing
through p.

Proof. Tt suffices to exhibit a single triangle with this property. Choose an irre-
ducible subfamily H C D of curves passing through ¢, such that for general b € B
a finite (but positive) number of members of H pass through b. Our strategy is to
show that if we construct a triangle by choosing two very general members of H
(which will necessarily intersect at ¢) as Cy and Cy, and a very general member of
D which intersects C1 and Cy as (3, then the result will be a triangle satisfying
the desired property.

We construct a subset 2 C X which is a countable union of subvarieties of X
in the following way. For every finite type family of sections of 7 over curves in H
which take the value p at ¢, we have a map from the base of this family to M (X).
Form the closure of the image of this map, and define Q to be the countable union
of all such closed subvarieties of M(X) arising from the countably many Chow
varieties of sections as above. Notice that € is not necessarily quasi-compact, but
it is a closed subset of M (X) (which is also not quasi-compact).

We can restrict the universal curve of M(X) over Q, and there is a map from the
total space of this universal curve to X. We define €2 to be the image of this map,
so Q is a countable union of closed subvarieties of X. Let (g be any irreducible
component of Q and let Q) C X be the (closed) image of the universal curve over
Qo. Notice that p € Qq, since it is in the image of each section parametrized by a
general point of Q.

Consider the restricted morphism M () : Qy — M(B). The general point of
Qo parametrizes a section over a member of H, so the image of Qo under M(r) is
contained in the closure H of H in M(B). By Lemma 3.2, the morphism M (r) :
Qo — H is generically finite, since p ¢ V(). Therefore the map from the universal
curve over ) to the universal curve over H is generically finite. By construction,
the evaluation morphism from the universal curve over H to B is generically finite.
So finally we conclude the restricted morphism 7 : Qo — B is generically finite, i.e.,
for a general point b € B there are only finitely many preimages of b in .

Claim 3.8. There are no rational sections of m whose image is contained in Q.

We will prove this by showing that the closure of any rational section p of 2
must contain p, in violation of the hypotheses on 7. First observe that p factors
through one of the subsets Qy C Q. Now for a general point b in B, p: B --+
is actually regular in a neighborhood of b and the image p(b) lies on some honest
section h : C — X over a curve C' in H which contains q and b and such that
h(q) = p. Since 7 : Qy — B is unramified at p(b) = h(b) (by genericity of the choice
of b), we have that h:C — X and plc : C --+ X are equal as rational maps. We
conclude that h : C — X factors through the closure of the image of p, in particular
p = h(q) lies on the closure of the image of p.
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Applying Lemma 3.1 to each of the countably many components of 2, we now
conclude that for a very general curve C3 in D, there is no section of

71 Y (C3) — Cs

whose image lies in Q.

We know that for each irreducible component g of Q, p is in Qo — V(7). Thus
Qo N V() is a proper closed subset of Qy, and by the finiteness of 7 : Q¢ — B,
we conclude that for a very general b in B, QN V(7) N 7~1(b) = (). Choose a very
general curve C3 in D as above, and choose a very general point » on C5. Then
QN71(r) is a countable set disjoint from V(). Given any point in this set, there
are at most countably many sections of m over C3 which take this value at r by
Lemma 3.1. Hence there are at most countably many sections of 7w over C'5 whose
value at r is contained in 2. The image of any such section cannot be contained in
Q) and thus meets €2 in at most countably many points with countably many images
in C3. Choosing another point s € C3 not to lie in any of these countably many
countable sets, we conclude that for any section hs of 7 over C3 such that Bg(r) is
in Q, we have that hs(s) is not in Q.

Now we take our triangle to be C' = C;UC5UC3 where C and Cs are members of
H which join ¢ to r and q to s respectively. By way of contradiction, suppose there
is a stable section h of m over C' whose image contains p. As we have discussed,
such a stable section consists of honest sections iLl, ﬁg and 713 over Cq, Cy, and
Cj5 respectively, perhaps with some trees of m-contracted rational curves attached
which connect hy(r) to hs(r), which connect ha(s) to hs(s) and which connect hy(q)
and hy(q) to p. Since p is not contained in V(rr), there is no tree of m-contracted
rational curves which meets p. Therefore hi(q) = ha(q) = p. By the definition of
Q, the images h1(C}) and hy(Cy) are therefore necessarily contained in Q. Since r
and s are very general on B, both QNV (7)N7~1(r) and QNV (7)7~1(s) are empty,
hence no w-contracted rational curves over r or s which meet 2. In particular, there
is no tree of m-contracted rational curves which meets either &y (r) or hy(s). So we
must have hy(r) = hs(r) and hy(s) = hs(s). The upshot is that, after pruning
any extraneous trees of m-contracted rational curves, we have that A is an honest
section of 7 over the reducible curve C.

But now we have our contradiction: we have seen that for any section hs of w
over C3 such that hs(r) is contained in €, then h3(s) is not contained in Q. On
the other hand we have by the last paragraph that hs(r) = hy(r) is contained in
and also hs(s) = hy(s) is contained in Q. Therefore we conclude there is no stable
section h of 7 over C.

U

Of course, Lemma 3.7 tells us nothing in case the fibers of 7 are uniruled. Thanks
to a construction of Campana and Kollar-Miyaoka-Mori and using Theorem 1.1,
we can always reduce to the case that the fibers of m are nonuniruled.
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Definition 3.9. Given a morphism m : X — B, the relative MRC fibration is
a dominant rational map ¢ : X --» W that fits into a commutative diagram

x-2-w
B

such that a general fiber of ¢ is rationally connected and a general fiber of 7' is not
uniruled.

Note that although the general fiber of a rational map is not well-defined, it
is well-defined up to birational equivalence. Hence the concept of the rational
connectivity of the general fiber of a rational map makes sense. Since the existing
references only establish the existence of the absolute MRC fibration (the case where
B = Spec(K) for some field K), we point out that the simplest way to construct
this relative version is to simply use the absolute MRC fibration for the fiber over
the generic point of B, and choose for W any B-model for the resulting K-scheme.
A very readable account of the construction in the case of B = Spec(K) can be
found in [D]. While K is assumed to be algebraically closed there, this hypothesis
is never actually used in the construction.

Finally, we warn the reader that the definition of the MRC fibration is usually
more complicated. The equivalence of our definition with the usual one is an easy
consequence of Theorem 1.1.

Before applying Lemma 3.7 to the proof of our main theorem, we note a corollary
which is interesting in its own right.

Corollary 3.10. If B is a normal, connected, quasi-projective variety, and H is
any family of smooth curves in B which dominates the family of triangles T(B),
then for any projective morphism w : X — B, the following two conditions are
equivalent.

(1) A general point of X lies in a pseudosection.
(2) For a general curve C parametrized by H, a general point of X¢ = = 1(C)
lies on a section of m: X¢ — C.

Note that the existence of such a family H is ensured by Lemma 2.3.

Proof. Direction (1) = (2) follows from a stronger version of Theorem 1.1: if
m : Z — C'is a proper morphism from an irreducible variety to a smooth curve,
and if a general fiber of m is rationally connected, then a general point of Z is
contained in a section of 7, cf. [KMM, 2.13] and also [K, Thm. IV.6.10].

Direction (2) = (1) is more interesting. Suppose first that a general fiber of 7 is
not uniruled and that (2) holds. By the properness of the spaces of stable sections
of bounded degree, for every curve C' parametrized by H, every point of X¢ lies on
a stable section. Therefore for every triangle h : C — B in T'(B), every point of X¢
lies on a stable section. Also a very general point of X is not contained in V().
So, by Lemma 3.7, a very general point of X is contained in a rational section. It
follows from a straightforward uncountability argument that a general point of X
is contained in a rational section, so (1) holds.
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Next suppose that the general fiber of 7 is uniruled and that (2) holds. Let

)
- — >
e

be a relative MRC fibration. Let f : X’ — X be a proper birational morphism
such that f o ¢ extends to a regular morphism ¢’ : X’ — W. Let p € X be
a point over which f is an isomorphism. Let C' be a curve in H which contains
m(p). Let s : C — X¢ be a section which contains p. Then the rational map
f7tos:C --» X[ is defined. Since 7 is proper and C is smooth, this rational
map extends to a section of X/,. So (2) holds for X’ — B. It suffices to prove that
(1) holds for X', since the image of a pseudosection in X’ is a pseudosection in X.
Thus, we will assume from now on that ¢ is a regular morphism.

»

w

s

-

Sy

For any section s : C — X¢, the composition pos: C — W =C xg W is a
section of We. Since a general point of X is contained in a section s, a general
point of W is contained in a section ¢ o s, i.e., (2) holds for W. Since a general
fiber of 7’ is not uniruled, a general point of W is contained in a rational section
Z C W. The preimage ¢~ 1(W) of a rational section through a general point of W
is a pseudosection of 7 passing through a general point of X. So (1) holds for X.

]

Our proof of Theorem 1.3 proceeds similarly. First we will prove the result for
maps whose general fiber is not uniruled, and then we will handle the general case
by appealing to the relative MRC fibration. In addition we will use an induction on
the relative dimension of X over B. We have already considered the case of fiber
dimension zero in Proposition 3.1, thus suppose that d > 0. By way of induction,
assume that we have already constructed a family Hy—; of smooth curves in B
which cover B and such that for any morphism 7 : X — B of relative dimension
less than d, m admits a section when restricted over a very general curve in Hg_1
if and only if 7 admits a pseudosection. We construct Hy as follows. First we
construct a family of reducible nodal curves by letting Hg be the family of maps
f:C — B of the form C = CyUCLU---UCqi1, where [fc,] is a member of Hg—1
and the other C;, i =1,...,d+ 1 are triangles which each meet Cj in a single node
which is embedded in the smooth locus of B. Now take H, to be any family of
smooth curves that dominates H,. By Lemma 2.3, we can take H, to be the family
of linear sections of B under a sufficiently positive projective embedding.

We need to check that H, satisfies the desired property. Namely, suppose 7 :
X — B is a projective morphism of relative dimension less than or equal to d which
does not admit a pseudosection. Then we need to show that over a very general
member of Hy, m does not admit a section. By Lemma 2.6, it suffices to check that
over a very general member of Hg, m does not admit a stable section.

First we will consider the case where the general fiber of 7 is not uniruled. In
order to later handle the uniruled case, it will be useful for us to prove a statement
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that seems stronger than necessary. In particular, we will prove a statement that
applies to morphisms 7w which do admit pseudosections. As above, we let V() be
the rational curve locus which is the union of all m-contracted rational curves in X.
This is a subset of X which is a countable union of subvarieties. We let Y (7) be
the union of V(7) and the closures of the images of all rational sections of 7. This
is also a countable union of subvarieties of X. Note that Lemma 3.7 says exactly
that for any point p in X — Y'(7), a very general triangle through 7(p) admits no
stable sections containing p.

Lemma 3.11. Any stable section of T over a very general member of Hq has values
over Cy contained in Y ().

Before proving the lemma, we remark that (given the inductive hypothesis) it
immediately implies our theorem in the case where the fibers are not uniruled. If
m: X — B is a morphism whose general fiber is not uniruled and which does not
admit a pseudosection then Y (7) = V(n) is a countable union of proper subvarieties
of X, i.e., it is a countable union of subvarieties Y (7)o of X such that the fiber
dimension of Y (7)o — B is strictly less than d. By the induction assumption, for a
very general Cy in H4_1, there can be no honest section of 7 over Cj contained in
any of the subvarieties Y (m)g. Thus, by the lemma, there can be no stable section
of mover C=CyUCLU---UCgyq1.

Proof. We now prove the lemma. We imagine assembling our very general member
of H, one component at a time. Pick a very general Cy € Hy_1 and let ¥ denote
the parameter space of all sections of m over Cy which are not contained in Y ().
This is the complement of a countable union of subvarieties in a countable union
of subvarieties of M(X). Denote the irreducible components of 3 by X, and by
Lemma 3.4 we conclude that each ¥ has dimension less than or equal to d.

Our strategy now is simple. The condition that a section over Cj extends to
a stable section over Cy U C; should impose a condition by Lemma 3.7, and so
after imposing d + 1 conditions there should be no sections left. To prove this, we
consider the chain

Yagr1 CEXqC - CY

where ¥; is defined to be the subset of ¥ parametrizing sections of m over Cj
which are not contained in Y (7) and which can extended to stable sections over
CoUC1U---UC;. That is, if we let ¢1, ..., gq+1 be the very general points at which
we attach the triangles, ¥; parametrizes those sections of m over Cy whose value
at q; agrees with the value of some stable section of 7 over C; for all j < ¢. This
is a countable union of closed subsets of 3. We will prove by induction on ¢ that
dim(3%;) < d — i for each ¢, in particular X441 is empty.

We have already seen that every component of ¥ = ¥, has dimension at most
d, so this establishes the base case i = 0. By way of induction, assume that every
component of ¥ has dimension at most d — k. Now we want to show the result
for £ + 1. For any one of the countably many irreducible components ¥¢ of 3y,
for a general point gr41 of Cp, a very general section of m over Cy parametrized by
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X% maps gx+1 to a point not in Y (7). Choosing a very general point gy41, we can
arrange that for every irreducible component 3¢ of 3, there is a section A§ in X
has the property that p* = hS(qx+1) is not in Y ().

Now for each «, for a very general triangle Cj; through gry1, we conclude by
Lemma 3.7 that there is no stable section over Cj1 which passes through p®. So if
we choose a very general triangle Cy1, we can arrange that for every «, there is no
stable section over Cj1 which passes through any of the points p®. So none of the
sections ?LS extend to a stable section over Cy U Ck1. Thus, for each o, 11 NEY
has dimension strictly less than dim(X¢) < d — k. Since we have

Sk = J G nEP)
«
we conclude that every irreducible component of 3,1 has dimension at most d —
k — 1, as desired. In particular, we conclude that X1 = 0, i.e., over Cy every
section of m which can be extended to stable sections over C is contained in Y (7).

U

As discussed above, Lemma 3.11 proves the induction step in case the fibers of
7 are not uniruled. So to finish the inductive proof of Theorem 1.3, we are left to
consider the case where the fibers of 7 are uniruled. We argue by contradiction.

By way of contradiction, assume that we have a morphism 7 : X — B with
no pseudosection, but which admits a section when restricted to a very general
element of Hy. Let ¢ : X — W be the relative MRC fibration. We may resolve the
indeterminacy locus of ¢ by blowing up:

Xl

I

X-"==w

v

B

Let Z C X denote the fundamental locus of the morphism f (i.e., the image under
f of the exceptional divisor of f).

Notice that the relative dimension of |z : Z — B is strictly less than d. Suppose
that 7|z : Z — B admits a section when restricted over a very general curve C' in
Hq. By Lemma 2.6, we conclude that 7|z : Z — B admits a stable section when
restricted over a stable map in Hgy. In particular, since every curve in Hg_1 occurs
as the Cy-submap of a stable map in Hgy, we conclude that Z — B admits a section
when restricted over a very general curve Cy in Hg_1. By the induction hypothesis,
this implies that there is a pseudosection of 7|z : Z — B. But, in particular, this
implies there is a pseudosection of 7 : X — B which contradicts our assumption. So
we conclude that for a very general curve C' in Hy, |z : Z — B admits no section
when restricted over C. On the other hand, our assumption is that = : X — B
does admit a section over C, so there exists a section over C' which is not contained
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in Z. This is the same as a rational section of wo f : X’ — B over C. Since C is
smooth, this rational section of 7 o f extends to a regular section of 7o f over C.

Thus we find that 7 o f admits a section over a very general curve C in Hy.
Now if 7 o f admits a pseudosection, so does 7 by simply taking the image of
the pseudosection under f. Therefore we conclude that 7o f : X’ — B admits no
pseudosection, but it does admit a section when restricted over a very general curve
in Hy. Therefore, as far as deriving a contradiction is concerned, we can replace X
by X’. So from now on we assume that ¢ : X — W is a regular morphism.

Let W/ C W denote the closure of the locus of points over which the fiber
of ¢ is not rationally connected. Any rational section of ' not contained in W’
gives rise to a pseudosection of 7, which does not exist by hypothesis. Therefore
all rational sections of 7’ are contained in W’. Applying Lemma 3.11, we find
that over a general member C' of Hg, any stable section of 7/ maps Cy into the
subset W’ U V(n"). Thus, any stable section of m over C' maps C into the subset
p~L (W'uV(r)).

On the other hand, ¢~ (W’ U V(n’)) is a countable union of proper subvarieties
of X, each of which has relative dimension at most d—1 over B. So by the induction
hypothesis, every section of 7 : X — B over the very general curve Cy in Hy_1 has
image which is not contained in ¢~ (W’ UV (n’)). We conclude that over a very
general member C' of Hg, © admits no stable section. By Lemma 2.6, # admits
no section over a very general member of H,y, and this is a contradiction of our
assumptions.

This establishes the inductive step needed and completes the proof of Theorem
1.3.

U

4. THE GENERAL CASE

In the last section we proved the main theorem in case B is normal and quasi-
projective and 7 : X — B is projective. In this section we will show how to reduce
the general case to this case. We proceed by induction on the dimension.

Suppose that B is an algebraic variety of finite type. By Chow’s lemma we can
find a projective, birational morphism B; — B such that B; is quasi-projective.
By Noether normalization, the normalization Bo — Bj of Bj is a finite morphism.
Thus f : B — B is a projective, birational morphism such that Bs is quasi-
projective and normal. Let H,4 be the family of curves C' in By constructed in the
last section. The restriction of f to a general curve in this family is a nonconstant
morphism, and hence a stable map. Therefore, replacing H, by a Zariski dense open
subset, we may consider Hy to be a family of stable maps h : C — B with smooth
domain C. The claim is that Theorem 1.3 holds for B and Hy. We will prove this
by induction, but before proceeding to the induction argument we introduce a little
more notation.
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Suppose that 7 : X — B is a proper morphism of relative dimension at most
d which admits no pseudosection. We need to prove that for a very general map
h : C — B in Hg, m admits no section over h. The base change m : X xp
By — Bs is a proper morphism of relative dimension at most d which admits no
pseudosection, since the image under 71 : X X g Bs — X of a pseudosection of 75 is
a pseudosection of w. By again applying Chow’s lemma, we can find a projective,
birational morphism ¢ : Xo — X X p By such that w5 0 ¢ : Xo — By is projective.
Any pseudosection of 75 0¢ maps under ¢ to a pseudosection of 5. Therefore m50¢
admits no pseudosection.

Now 75 0 ¢ : X9 — Bs satisfies the hypotheses of the last section. By the proof
of the main theorem in that section, for a very general curve C in Hg, 72 0 ¢ admits
no section over C'. Let Z C X denote the fundamental locus of the birational,
projective morphism Xo — X, i.e., the locus over which this morphism is not an
isomorphism.

If d = 0, we are essentially done. The locus Z C X is a proper subvariety, and
since 7 is generically finite, also 7(Z) C B is a proper subvariety. If we choose a very
general map h : C — B in Hy, then the image h(C) does not lie in 7(Z). But then
any section of m: X — B over h determines a rational section of mp 0 ¢ : X9 — By
over C. Since C is smooth this rational section extends to a regular section. This
contradicts the result of the last section. So we conclude that for a very general
map h: C' — B in Hy, there is no section of 7 : X — B over this map.

Now we proceed by induction via an argument very similar to that in the end
of the last section. We have established the base case d = 0, so we suppose that
d > 1. By way of induction, we suppose the theorem has been proved for d — 1.
Consider 7|z : Z — B. This morphism has fiber dimension at most d — 1. By
our induction assumption, we conclude that 7|z : Z — B has no section when
restricted over a very general map hg : Cop — B in Hy_1. By Lemma 2.6, we
conclude that 7|z : Z — B has no section when restricted over a very general map
h:C — B in Hy (since Hy dominates Hy—1). So if we choose a very general map
h:C — B in Hg, then for any section h : C'— X of w over h, we have that h(C)
is not contained in Z. So the regular section h determines a rational section of
mo @ Xo — By over C'. Since C is smooth, this rational section extends to a regular
section. This contradicts the result of the last section. So we conclude that for a
very general map h : C' — B in Hg, there is no section of 7 : X — B over h.

5. APPLICATION: FAMILIES OF ENRIQUES SURFACES

In this section we will show how to apply Theorem 1.3 to a family of Enriques
surfaces to deduce Corollary 1.4, that is, to find a one-parameter family of Enriques
surfaces without a section.

5.1. A family of quartic Enriques surfaces. The family we will be starting
with is the universal family over a parameter space for quartic Enriques surfaces:
that is, a family of polarized Enriques surfaces S with a polarization M € Pic(S)
of self-intersection 4 that includes a general such surface. Now, for the purposes



18 T. GRABER, J. HARRIS, B. MAZUR, AND J. STARR

of applying Theorem 1.3 and deducing Corollary 1.4, we can just write down the
family as in Definition 5.2 below — we do not need to know that it is actually the
generic quartic Enriques surface, and the reader who does not particularly care can
jump directly to Definition 5.2 — but since we are going to be working closely with
the family it seems worthwhile to take a few paragraphs and establish its origin.

To begin with, since Enriques surfaces have fundamental group Z/2Z and have as
universal covering space a K3 surface, a quartic Enriques surface S is the quotient of
an octic K3 surface (7, L) — that is, a K3 surface T' with a polarization L € Pic(T")
of self-intersection ¢1(L)? = 8 — by an involution 7 of T preserving L. For a general
octic K3 (T, L), the linear system of sections of L is base-point-free and defines an
embedding of T" into P°, and the image surface is the intersection of three quadric
hypersurfaces in P® with defining equations Q1, Q2, and Qs.

Next, since 7*L = L, the action of 7 can be lifted to an action on H(T, L),
and hence to an involution of P° carrying T to itself. Moreover, if we let M be
the line bundle on the quotient Enriques surface S obtained by descent, then by
Riemann-Roch

C1 (M)2
2

4
RS, M) = +x(0s) = 5+1 =3

the action of 7 on H°(T, L) must have eigenvalues 1 and —1, each with multiplicity
3. We thus have a canonical direct-sum decomposition

HY(T,L) =TaVv
with dimI"' = dim ¥ = 3.
Applying the same principle, we see that the action of 7 on H°(T, L?) has eigen-
value 1 with multiplicity
M?)? 16
RO(S, M?) = % +x(0s) = 5 +1 =9

and correspondingly eigenvalue —1 with multiplicity h°(T,L?) — 9 = 18 —9 = 9.
On the other hand, given that H°(T,L) = T @& ¥ as above, we can write

Sym?H°(T, L) = Sym’I' @ (T ® ¥) ® Sym*¥

with the action of 7 on Sym?H(T, L) having (41)-eigenspace Sym*T" & Sym?W¥ of
dimension 12 and (—1)-eigenspace I' ® ¥ of dimension 9. It follows that the kernel
of the restriction map

Sym?*H®(T, L) — H°(T,L?)

— that is, the vector space of quadrics in P° vanishing on T — must be contained
in the direct sum Sym?T’ @ Sym?W¥. In other words, we can choose homogeneous
coordinates

[Z’ W] = [ZO7Z15 Z27WOaW1; WQ]

on P? so that the action of 7 is given by

T [ZOaZbZ27WO;W1aW2] = [Z()»ZDZQa*WOv*Wl»*WQ]
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and the defining equations of the double cover T of a general quartic Enriques
surface S may be written in the form

We are now prepared to write down the families of K3 and Enriques surfaces we
will be studying in the sequel. To start with, let I' and ¥ be 3-dimensional vector
spaces and denote by P° the projective space of 1-dimensional subspaces of I' @ ¥
And let

P = P(Sym’T"V @ Sym?¥")

be the projective space of 1-dimensional subspaces of the (12-dimensional) vector
space of quadrics on P? of the form above. Finally, we let [Z, W] = [Zy, Z1, Zo, Wo, W1, W]
be homogeneous coordinates on P° with I' the zero locus of Wy, W; and W,
and W likewise the zero locus of Zy, Z; and Zs; and we let 7 be the involution
[207 Z17 ZQ, I/V()7 Wl, WQ] = [Z(), Zl; 227 —Wo, _Wh —WQ] Of ]P)5.

Definition 5.1. By the principal family of K3 surfaces we will mean the
family 7 : Y — B with B =P x P! x P! and Y the subvariety of B x P° defined
by

Y = {(Q1,Q2,Q3,p) € BxP’| Q1(p) = Q2(p) = Q3(p) =0},
with w:' Y — B the projection on the first factor.

Note that the action of 7 on the second factor of B x P? carries Y into itself, so
that we can make the following definition.

Definition 5.2. By the principal family of Enriques surfaces we will mean the
family m : X — B with B again as above and X the quotient of the variety Y above
by the involution T of P°.

It may be a misnomer to call these families of K3 and Enriques surfaces, since
they are only generically that: there are degenerate fibers, and even fibers of di-
mension greater than 2. But it is convenient to use the term, and we hope the
reader will forgive this.

5.2. Proof of Corollary 1.4. In order to apply Theorem 1.3 to the principal
family of Enriques surfaces and deduce Corollary 1.4, we simply have to show that
X — B admits no pseudosections. We will do this by analyzing the corresponding
family Y — B of K3 surfaces, since their equations are in simpler form. We start
with a straightforward result.

Lemma 5.3. Let Y — B be the principal family of K3 surfaces of Definition 5.1.
The total space Y is smooth, and its Chow ring, A*(Y'), is generated by restrictions
of pullbacks of hyperplane classes under the inclusion

Y — P x P! x P x PO
Proof. To start, introduce the variety

W = {(@Qp):peQ} C P xP°
Via the projection n : W — P° on the second factor, W is a P'%-bundle over P?;
it is therefore smooth, and its Chow ring is generated over the Chow ring of P° by
any class whose restriction to the fibers of 1 is the hyperplane class on P'°—for
example, the restriction of the pullback of the hyperplane class from P!, via the
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inclusion W — P! x P5. Since the total space Y of our principal family of K3
surfaces is (via projection to P%) simply the triple fiber product

Y = WX[p)sWXPSW

the lemma follows.

U

As an immediate corollary of this lemma, we have the following description of
cycles Z C X of relative dimension 0 over B.

Proposition 5.4. Let X — B be the principal family of Enriques surfaces as in
Definition 5.2. If Z C X is any cycle of codimension 2, the degree of the projection
7|z : Z — B is divisible by 4.

Proof. Let n:Y — X be the quotient map. Let T be the class of a general fiber
of Y over B. By the preceding Lemma, the class of any cycle in Y is a polynomial
(with integer coefficients) in the restrictions to Y of the pullbacks of the hyperplane
classes to P11 x P! x P! x P, But the first three of these classes restrict to 0 on
a general fiber, so the class of n~!Z - T must be a multiple of the restriction to T
of the hyperplane class on P° This has degree divisible by 8. As 1 has degree 2, the
proposition follows.

U

As an immediate consequence of Proposition 5.4, we see that the principal family
X — B of Enriques surfaces has no rational sections: the image of such a section
would give a codimension 2 cycle of X with degree one over B.

In order to show that X — B admits no pseudosections, it remains to prove that
X cannot contain a subvariety Z C X whose general fiber over B is an irreducible
rational curve. To do this, suppose that Z is such a subvariety. Let Z be a resolution
of singularities of Z. We then have a commutative diagram

71 x

N

Consider the class fi(c1(wz,5)) in A?(X). Since the general fiber of Z over B
is a smooth rational curve, this class has degree —2 when restricted to a general
fiber of 7. This contradicts the fact that all elements of A%(X) have degree over B
divisible by 4.

We have thus established the following result.

Lemma 5.5. The principal family X — B of Enriques surfaces admits no pseu-
dosections.

Applying Theorem 1.3 we may deduce Corollary 1.4.
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6. APPLICATION: TORSORS FOR ABELIAN VARIETIES

It follows from Theorem 1.3 that any family 7 : X — B of smooth, connected,
projective curves of positive genus over some smooth variety B has a section over
B if and only if the restriction of this family over every curve C' C B has a section:
since the fibers contain no rational curves, every pseudosection is a rational section,
and every rational section is everywhere defined. Similarly, we have the following
corollary.

Corollary 6.1. Let B be a smooth variety, let A — B be an Abelian scheme over
B (i.e., a family of Abelian varieties over B), and let 7 : T — B be a torsor for
A — B. Then w is a trivial torsor if and only if for every curve C C B, the
restriction Tc — C' is a trivial torsor for Ac — C'.

Since torsors for an Abelian scheme are classified by étale cohomology with
coefficients in the group scheme, we can rephrase Corollary 6.1 by saying that the
map

Hj(B,A) — ] H&(C, Ac)
ccB
is injective. Note that the Lefschetz hyperplane theorem for Picard groups tells us
that the same is true if we replace the Abelian scheme A — B by the commutative
group scheme G, x B — B. It is an interesting question, for which other (possibly
noncommutative) group schemes over B does this hold.

7. FURTHER QUESTIONS AND CONJECTURES

In this section we will consider some questions and conjectures raised by Theo-
rem 1.3.

7.1. Arithmetic question. For arithmetic questions related to rationally con-
nected varieties, we refer the reader to [GHMS1] and [GHMS2]. Let us just mention
the following question which is an analogue of our main theorem in the case of fiber
dimension 1. Let K be a number field, let B be a smooth scheme defined over K,
and let 7 : X — B be a proper, smooth morphism of schemes whose geometric
fibers are connected curves of positive genus. Suppose that for every number field
extension L/K, the induced mapping on rational points 7 : X (L) — B(L) is sur-
jective — we refer to this property by saying 7 is arithmetically surjective. Does it
then follow that m : X — B has a section? We may also ask the same question
when the geometric fibers of 7 are Abelian varieties.

7.2. Possible extensions. We would like to take a moment here to discuss possible
extensions of Theorem 1.3. To begin with, we interpreted the theorem as stating
that a family of varieties 7 : X — B such that every one-parameter subfamily
has a section has this property “by virtue of” the fact that X contains a family of
rationally connected varieties. But the statement of the theorem asserts only the
existence of a pseudosection in 7w : X — B; it does not assert any direct connection
between the sections of X — C' over very general curves C' and the pseudosection.
Accordingly, we could ask the following.

Question 7.1. Does there exist a family H/; of curves on B, whose general member
is smooth and irreducible, with the property that for any proper morphism w: X —
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B of relative dimension d, for very general [C] € H!, every section of the pullback
Wc:XcZXXBCHC
lies in a pseudosection of m: X — B?

One special case of this question is when 7 : A — B is an Abelian scheme over
a smooth variety B. In this case we are asking whether we can find a family of
curves C' C B such that for a very general member of this family, the map

Hgt(Bv A) - Hgt(ca AC)

is surjective. So, in this case, the question above is an H°-analogue of the H!-
interpretation of Theorem 1.3.

7.3. Dependence on d. A simpler question is whether we can eliminate the de-
pendence of the family Hy of curves on d. The answer to this is “no.” Proving this
is not so easy, and for full details the reader is referred to [S]. Here we will just
sketch an argument, since it may shed some light on how fast the size of the curves
in Hy4 have to grow with d.

Briefly, for any e we will write down families of hypersurfaces in P™ parametrized
by B = P? with the property that their restriction to any curve C' C P? of degree e
or less has a section, but which admits no pseudosections at all. To do this, let m
and n be any integers; let P” be projective n-space with homogeneous coordinates
[Xo,...,X,] and let PV be the projective space parametrizing hypersurfaces of
degree m in P*. Let X C PV x P* — PV be the universal hypersurface of degree
m in P™; that is, the zero locus of the polynomial

F(a,X) = Y arX'

which is linear in the coordinates a; on PV and of degree m in the X;. Finally, let
P? < PV be a general map of the form
p2 e, p(“3*)-1 _, pN
where v, is a Veronese map of degree e and the second map is a general linear
inclusion; and let
T X=P?xpn X — P?

be the pullback of the universal hypersurface to P? via this inclusion.

Now assume that
e+ 2 ‘1
=n
2

and that m is large. Consider the following two assertions:

e the restriction of the family 7 : X — P? to any curve C' C P? of degree e or less
has a section; but

e the family 7 : X — P2 itself has no pseudosection.

The first of these assertions is straightforward to prove: under the inclusion
P? < PN, the span of a curve C' C P? of degree e or less has dimension (652) —2=
n—1 or less. Thus the hypersurfaces appearing as fibers of the restriction X¢ — C
of the family 7 : X — P2 to C are all linear combinations of n hypersurfaces
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G1,...,G, C P™ and any point of intersection of these hypersurfaces gives a section
of Xe¢ — C.

As for the second assertion, we will not prove it here, but we give a “plausibility
argument” which suggests it is true. To begin with, a general fiber of 7 : X — P?
is a general hypersurface of degree m in P"; by a result of Clemens [C]], for m large
this will contain no rational curves. Thus to prove the second assertion we need
only show that 7 : X — P? has no rational sections.

Since rational sections over P? are tricky to parametrize we will restrict to a
general curve C' C P2 of degree e + 1, and present evidence that the restriction
Xc — C has no section. To do this, we start by counting the dimension of the
family of sections of the product C' x P™ there are of a given degree k—that is,
graphs of maps C' — P" of degree k—and then estimating the number of conditions
it imposes on such a section to require it lies on the hypersurface X¢ C C' x P™.
For the first, a map C' — P" of degree k is given by a line bundle L of degree k on
C, together with n + 1 sections of L up to scalars. The line bundles of degree k on
C' are parametrized by the Jacobian of C, which has dimension

()

If & is large, moreover, each such line bundle will have & — g + 1 global sections, so
the dimension of the family of maps C' — P" of degree k is

g+n+)(k—g+1)—1 = (n+1)(k+1)—ng—1.

Now we count how many conditions it is for the graph of such a map to lie in
Xc. This is straightforward: when we pull the polynomial F(a, X) defining the
universal hypersurface back to C, the coefficients pull back to sections of O¢(e)
and the coordinates X; to sections of L, so that the pullback of F' is a section of
the bundle

M = L®™® Oc(e).
The number of conditions for this section to vanish identically should thus be
RO(M) = deg(M)—g+1
= km+ele+1l)—g+1

and the expected dimension of the family of sections of X — C of degree k is
accordingly

m+1-mk—(n—-1)(g—1) —e(e+1).
In particular, for m large this is negative, suggesting that there should be no sec-
tions.
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