A NOTE ON FANO MANIFOLDS WHOSE SECOND CHERN CHARACTER IS POSITIVE

A. J. DE JONG AND JASON MICHAEL STARR

ABSTRACT. This note outlines some first steps in the classification of Fano manifolds for which $c_2^2 - 2c_2$ is positive or nef.

1. INTRODUCTION

This note lists the few known examples of Fano manifolds X for which the second graded piece of the Chern character is positive, $c_2(T_X) = (C_1^2 - 2C_2)(T_X)/2$. There are also many non-examples. Presumably there are many more positive examples. They do not seem easy to find.

Theorem 1.1. In the following cases X is Fano and $c_2(T_X)$ is ample, positive or nef.

1. For every projective and weighted projective space, $c_2(T_X)$ is ample.
2. For a Grassmannian $X = \text{Grass}(k, n)$ of k-dimensional subspaces of a fixed n-dimensional space with $2k \leq n$, $c_2(T_X)$ is ample if $k = 1$, positive if $n = 2k$ or $n = 2k + 1$, and nef if $n = 2k + 2$.
3. A complete intersection $Y = D_1 \cap \cdots \cap D_r$ in X is Fano if $(C_1(T_X) - ([D_1] + \cdots + [D_r]))|_Y$ is ample. And $c_2(T_Y)$ is ample, resp. positive, weakly positive, nef, if $(c_2(T_X) - 1/2([D_1]^2 + \cdots + [D_r]))|_Y$ is ample, resp. positive, weakly positive, nef.
4. In particular, for a complete intersection of type (d_1, \ldots, d_r) in a n-dimensional weighted projective space, $c_2(T_X)$ is ample, resp. nef, if $d_1^2 + \cdots + d_r^2 < n + 1$, resp. $\leq n + 1$.
5. A product $X \times Y$ of Fano manifolds X and Y is Fano, and $c_2(T_{X \times Y})$ is nef if $c_2(T_X)$ and $c_2(T_Y)$ are nef.
6. A projective bundle $Y = \mathbb{P}(E)$ over a Fano manifold X associated to an extension E of \mathcal{O}_X by an invertible sheaf L, is Fano if $c_1(T_X) - c_1(L)$ is ample. And $c_2(T_Y)$ is nef if $c_2(T_X) + C_1(L)^2/2$ is nef.
7. In particular, let (n, d, a) be integers such that $d \geq 1$, $n \geq (d^2 + d + 1)/2$, and $n - d \geq a \geq \lfloor \sqrt{\max(0, d^2 - n - 1)} \rfloor$. Let X be a degree d hypersurface in \mathbb{P}^n, and let $E = (\mathcal{O}_{\mathbb{P}^n}(-a) \oplus \mathcal{O}_{\mathbb{P}^n})|_X$. Then $Y = \mathbb{P}(E)$ is Fano and $c_2(T_Y)$ is nef.

Theorem 1.2. In the following cases $c_2(T_X)$ is not ample.

1. For a Grassmannian $X = \text{Grass}(k, n)$ with $2k \leq n$, $c_2(T_X)$ is not ample if $k > 1$, and it is not nef if $(n - 2)/2 > k > 1$.
2. For a product $X \times Y$ of positive-dimensional Fano manifolds, $c_2(T_{X \times Y})$ is not weakly positive.
(3) For a projective bundle $Y = \mathbb{P}(E)$ over a positive-dimensional Fano manifold X, $\text{ch}_2(T_Y)$ is not weakly positive. Moreover, if $rk(E) > 2$, then Y is nef only if the restriction to every curve in X is semistable.

(4) For a blowing up Y of \mathbb{P}^n in a nonempty, codimension 2 center, $\text{ch}_2(T_Y)$ is not nef.

Following are the definitions of nef, weakly positive, positive and ample for cycles of codimension greater than one.

Notation 1.3. Let X be a projective variety over an algebraically closed field. For every integer $k \geq 0$, denote by $N^*_k(X)$ the finitely-generated free Abelian group of k-cycles modulo numerical equivalence, and denote by $N^k(X)$ the k^{th} graded piece of the quotient algebra $A^*(X)/\text{Num}^*(X)$, cf. [Ful84, Example 19.3.9]. For every \mathbb{Z}-module B, denote $N_k(X)_B := N_k(X) \otimes B$, resp. $N^k(X)_B := N^k(X) \otimes B$. Denote by $NE_k(X) \subset N_k(X)$ the semigroup generated by nonzero, effective k-cycles. For B a subring of \mathbb{R}, denote by $NE_k(X)_B$ the $B_{>0}$-semigroup in $N_k(X)_B$ generated by $NE_k(X)$.

Definition 1.4. A class in $N^k(X)_{\mathbb{R}}$ is **nef** if it pairs nonnegatively with every element in $N^k(X)$. The corresponding cone is denoted $Nef^k(X)$. A class is **weakly positive** if it pairs positively with every element in $NE_k(X)$.

Remark 1.5. There are obvious inclusions,

$$\text{Ample}^k(X) \subset \text{Pos}^k(X) \subset \text{WPos}^k(X) \subset Nef^k(X).$$

For $k = 1$, $\text{Ample}^1(X) = \text{Pos}^1(X)$ by definition. Moreover, by Kleiman’s criterion, this is the $\mathbb{R}_{>0}$-semigroup generated by first Chern classes of ample invertible sheaves. For $k > 1$, it can happen that $\text{Ample}^k(X) \neq \text{Pos}^k(X)$; for instance, because $(N^1(X))^{\otimes k} \to N^k(X)$ is not surjective. There are also examples where $\text{Pos}^k(X) \neq \text{WPos}^k(X)$ and $\text{WPos}^k(X) \neq Nef^k(X)$.

2. **Projective spaces, Grassmannians, products and complete intersections**

2.1. **Projective spaces.** Let X be a projective variety of dimension $n \geq 2$. Denote by $h \in N^1(\mathbb{P}^n)$ the first Chern class of $\mathcal{O}_{\mathbb{P}^n}(1)$. Using the Euler sequence,

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n} \longrightarrow \mathcal{O}_{\mathbb{P}^n}(1)^{\oplus (n+1)} \longrightarrow T_{\mathbb{P}^n} \longrightarrow 0,$$

the Chern character of $T_{\mathbb{P}^n}$ is $(n+1)! - 1$. In particular, $\text{ch}_k(T_X) = (n+1)! - 1$ for every $k = 1, \ldots, n$. So $\text{ch}_k(T_X)$ is ample for $k = 1, \ldots, n$.

Weighted projective spaces work the same way provided we consider the space as a smooth Deligne-Mumford stack.

2.2. **Grassmannians.** Let X be the Grassmannian $\text{Grass}(k,n)$ of k-dimensional subspaces of a fixed n-dimensional space. Since $\text{Grass}(k,n) \cong \text{Grass}(n-k,n)$, assume $2k \leq n$ without loss of generality. Denote by $\mathcal{O}_X^{\oplus n} \to S_k^v$ the universal rank k quotient. There is an analogue of the Euler sequence,

$$0 \longrightarrow \text{Hom}_{\mathcal{O}_X}(S_k^v, S_k^v) \longrightarrow (S_k^v)^{\oplus n} \longrightarrow T_X \longrightarrow 0.$$
The Chern classes of S^r_Y are the Schubert classes,

$$C_m(S^r_Y) = \sigma_1^m = \sigma_{1, \ldots, 1}.$$

Therefore, by standard Chern class computations

$$\text{ch}(T_X) = (n-k)k + n\sigma_1 + \left[\frac{n+2-2k}{2}\sigma_2 - \frac{n-2-2k}{2}\sigma_{1,1}\right].$$

In particular, if $n > 2k+2$, then $\text{ch}_2(T_X)$ has negative intersection with the effective Schubert cycle dual to $\sigma_{1,1}$. If $n = 2k + 2$, $\text{ch}_3(T_X)$ has intersection number 0. If $n = 2k$ or $n = 2k + 1$, $\text{ch}_2(T_X)$ has positive intersection number with every irreducible surface in X. But it is not a multiple of σ_1^2, thus it is not ample.

2.3. **Products.** For a product $X \times Y$, there is an isomorphism

$$T_{X \times Y} \cong \text{pr}_X^* T_X \oplus \text{pr}_Y^* T_Y.$$

Therefore there is an equation

$$\text{ch}(T_{X \times Y}) = \text{pr}_X^* \text{ch}(T_X) + \text{pr}_Y^* \text{ch}(T_Y).$$

In particular $C_1(T_{X \times Y}) = \text{pr}_X^* C_1(T_X) + \text{pr}_Y^* C_1(T_Y)$ is ample if $C_1(T_X)$ and $C_1(T_Y)$ are ample. Similarly, $\text{ch}_2(T_{X \times Y})$ is nef if $\text{ch}_2(T_X)$ and $\text{ch}_2(T_Y)$ are nef. However, for every curve $A \subseteq X$ and every curve $B \subseteq Y$, the intersection number of $\text{ch}_2(T_{X \times Y})$ with $A \times B$ is 0. Therefore $\text{ch}_2(T_{X \times Y})$ is not weakly positive.

2.4. **Complete intersections.** Let Y be a smooth complete intersection of divisors D_1, \ldots, D_r in X. There is an exact sequence

$$0 \rightarrow T_Y \rightarrow T_X|_Y \rightarrow \bigoplus_{i=1}^r O_X(D_i)|_Y \rightarrow 0.$$

Therefore there is an equation

$$\text{ch}(T_Y) = \left[\text{ch}(T_X) - \sum_{i=1}^r e^{[D_i]}\right]|_Y.$$

In other words, for every integer m,

$$\text{ch}_m(T_Y) = \left[\text{ch}_m(T_X) - \frac{1}{m!} \sum_{i=1}^r [D_i]^m\right]|_Y.$$

Therefore Y is Fano if $(C_1(T_X) - ([D_1] + \cdots + [D_r])|_Y$ is ample. And $\text{ch}_2(T_Y)$ is ample, resp. positive, weakly positive, nef, if $(\text{ch}_2(T_X) - 1/2([D_1]^2 + \cdots + [D_r])|_Y$ is ample, resp. positive, weakly positive, nef.

In particular, taking X to be an n-dimensional weighted projective spaces, and taking $[D_i] = d_i h$ for each $i = 1, \ldots, r$, the Chern character of T_Y is $(n+1)e^h - 1 - \sum_{i=1}^r e^{d_i h}$. Thus $\text{ch}_k(T_Y) = 1/k!(n+1-(d_1^k + \cdots + d_r^k))h^k$ for $k = 1, \ldots, n-r$. In particular, if $d_1^k + \cdots + d_r^k < n+1$, resp. $\leq n+1$, then $\text{ch}_2(T_Y)$ is ample, resp. nef.

3. **Projective bundles**

One way to produce new examples of Fano manifolds is to form the projective bundle of a vector bundle of “low degree” over a given Fano manifold.

Lemma 3.1. Let E be a vector bundle on X of rank r. Denote by $\pi : \mathbb{P}E \rightarrow X$ the associated projective bundle. The graded pieces of the Chern character of $T_{\mathbb{P}E}$ are,

$$c_1(T_{\mathbb{P}E}) = r\zeta + \pi^*(c_1(T_X) + c_1(E))$$

and $\text{ch}_2(T_{\mathbb{P}E}) = r\zeta^2/2 + \pi^*(c_1(E)\zeta + \pi^*(\text{ch}_2(T_X) + \text{ch}_2(E)))$, where ζ equals $c_1(O_{\mathbb{P}E}(1))$.
Proposition 3.2. Let $\pi : X \to F$ be a vector bundle on a smooth Fano manifold F. The projective bundle $\mathbb{P}E$ is Fano if and only if there exists $\epsilon > 0$ such that for every finite morphism $g : B \to \mathbb{P}E$ of a smooth, connected curve to F for which $\pi \circ g$ is also finite. Using the universal property of $\mathbb{P}E$, this holds iff for every finite morphism $f : B \to X$ and every invertible quotient $f^*E \to L$, $
abla$ is ample.

Proof. By hypothesis, ω_X is ample. By Lemma 5.3, $\omega_{\mathbb{P}E}$ is ample iff there exists a real number $\epsilon > 0$ such that

$$\deg_B(g^*\omega_{\mathbb{P}E}) \geq \epsilon \deg_B(g^*\pi^*\omega_X),$$

for every finite morphism $g : B \to \mathbb{P}E$ of a smooth, connected curve to F for which $\pi \circ g$ is also finite. Using the universal property of $\mathbb{P}E$, this holds iff for every finite morphism $f : B \to X$ and every invertible quotient $f^*E \to L$, $
abla$ is ample.

So, finally, $\omega_{\mathbb{P}E}$ is ample iff there exists $\epsilon > 0$ such that for every finite morphism $f : B \to X$ and every invertible quotient $f^*E \to L$, $
abla$ is ample.

Taking the supremum over covers of B and invertible quotients of the pullback of E, this is,

$$\mu_B(L) - \mu_B(f^*E) \leq (1 - \epsilon)\deg_B(f^*c_1(T_X))/r.$$

Since every finite morphism $f : B \to X$ factors through its image, it suffices to consider only irreducible curves B in X.

For $r = 2$, there is a necessary and sufficient condition for $\chi_2(T_{\mathbb{P}E})$ to be nef.

Proposition 3.3. Let E be a vector bundle on X of rank 2. Denoting by $\pi : \mathbb{P}E \to X$ the projection, $\chi_2(T_{\mathbb{P}E}) = \pi^*(\chi_2(T_X) + 1/2(c_1^2 - 4c_2)(E))$. Therefore $\chi_2(T_{\mathbb{P}E})$ is nef iff $\chi_2(T_X) + 1/2(c_1^2 - 4c_2)(E)$ is nef. If $\dim(X) > 0$, $\chi_2(T_{\mathbb{P}E})$ is not weakly positive.
Proof. By Lemma 3.1, \(\text{ch}_2(T_{PE}) \) equals \(\zeta^2 + \pi^*c_1(E)\zeta + \pi^*(\text{ch}_2(T_X) + \text{ch}_2(E)) \). By definition of the Chern classes of \(E \), \(\zeta^2 + \pi^*c_1(E)\zeta + \pi^*c_2(E) \) equals 0. So the class above is \(-\pi^*c_2(E) + \pi^*(\text{ch}_2(T_X) + \text{ch}_2(E)) \). Finally, \(\text{ch}_2(E) - c_2(E) \) equals
\[
1/2(c_1^2 - 2c_2(E)) - c_2(E) = 1/2(c_1^2 - 4c_2(E)).
\]
\[\square\]

Applying Proposition 3.2 and Proposition 3.3 to the vector bundle \(E = L^r \oplus \mathcal{O}_X \) gives Theorem 1.1(6).

Finally, for \(r > 2 \), there is a necessary condition for \(\text{ch}_2(T_{PE}) \) to be nef.

Proposition 3.4. Let \(E \) be a vector bundle of rank \(r > 2 \) on \(X \). If \(\text{ch}_2(T_{PE}) \) is nef, then the pullback of \(E \) to every smooth, projective, connected curve is semistable. Also, \(\text{ch}_2(T_{PE}) \) is not weakly positive if \(\dim(X) > 0 \) and if the pullback of \(E \) to some curve is strictly semistable, e.g., if \(X \) contains a rational curve.

Proof. If the pullback of \(E \) to some smooth, projective, connected curve is not semistable, then by Corollary 5.1 there exists a smooth, projective, connected curve \(B \), a morphism \(f : B \to X \), and a rank 2 locally free subsheaf \(F \) of \(f^*E \) such that \(f^*E/F \) is locally free and \(\mu_B(F) > \mu_B(E) \). There is an induced morphism \(g : \mathbb{P}F \to \mathbb{P}E \) such that \(\pi \circ g = f \circ \pi \). By Lemma 3.1 \(g^*\text{ch}_2(T_{PE}) \) equals \(r\xi^2/2 + \pi^*f^*c_1(E)\xi + \pi^*f^*(\text{ch}_2(T_X) + \text{ch}_2(E)) \), where \(\xi \) equals \(c_1(\mathcal{O}_{PF}(1)) \). Since \(B \) is a curve, \(f^*(\text{ch}_2(T_X) + \text{ch}_2(E)) \) equals 0. Also, by definition of the Chern classes of \(F \), \(\xi^2 + \pi^*c_1(F)\xi = 0 \). Substituting in,
\[
g^*\text{ch}_2(T_{PE}) = 1/2\pi^*(2c_1(f^*E) - r c_1(F))\xi.
\]
In particular, \(\deg_B(g^*\text{ch}_2(T_{PE})) \) equals \(1/2(\deg_B(c_1(f^*E)) - r\deg_B(F)) \). This equals \(r(\mu_B(f^*E) - \mu_B(F)) \), which is negative by construction. Therefore \(\text{ch}_2(T_{PE}) \) is not nef. \[\square\]

Remark 3.5. A vector bundle on a product of projective spaces whose restriction to every curve is semistable is of the form \(L^{2r} \), where \(L \) is an invertible sheaf. [OSS80] Thm. 3.2.1. In this case, \(\mathbb{P}E \) is also a product of projective spaces.

Corollary 3.6. Let \(X \) be a Fano manifold. For every vector bundle \(E \) on \(X \) of rank \(r > 1 \), \(\text{ch}_2(T_{PE}) \) is not weakly positive.

4. Blowings up

Let \(X \) be a smooth, connected, projective variety, let \(i : Y \hookrightarrow X \) be the closed immersion of a smooth, connected subvariety of \(X \) of codimension \(c \). Denote by \(\nu : \tilde{X} \to X \) the blowing up of \(X \) along \(Y \). Denote by \(\pi : E \to \tilde{X} \) the exceptional divisor. Denote by \(j : E \to \tilde{X} \) the obvious inclusion. Then \(E = \mathbb{P}N_{Y/X} \) and \(i^*\mathcal{O}_{\mathbb{P}X}(E) \) is canonically isomorphic to \(\mathcal{O}_{\mathbb{P}X}(-1) \).

Lemma 4.1. The graded pieces of the Chern character of \(\tilde{X} \) are, \(c_1(T_{\tilde{X}}) = \nu^*c_1(T_X) - (c - 1)[E] \) and \(\text{ch}_2(T_{\tilde{X}}) = \nu^*\text{ch}_2(T_X) + (c + 1)[E]^2/2 - \nu^*c_1(N_{Y/X}) \)

Proof. Using the short exact sequence,
\[
0 \longrightarrow \nu^*\Omega_X \longrightarrow \Omega_{\tilde{X}} \longrightarrow j_*\Omega_{\pi} \longrightarrow 0,
\]
\(\text{ch}(\Omega_{\tilde{X}}) \) equals \(\nu^*\text{ch}(\Omega_X) + \text{ch}(j_*\Omega_{\pi}) \). Grothendieck-Riemann-Roch for the morphism \(j \) gives,
\[
\text{ch}(Rj_*a) = j_*(\text{ch}(a))(1 - e^{-[E]}/[E]).
\]
Using the Euler sequence for Ω_π,

\[0 \longrightarrow \Omega_\pi \longrightarrow \pi^*N^\vee_{Y/X} \otimes O_{\mathbb{P}N}(-1) \longrightarrow O_E \longrightarrow 0, \]

$\text{ch}(\Omega_\pi)$ equals $\pi^*\text{ch}(N^\vee_{Y/X})i^*(1 + e[^E]) - 1$. Putting the pieces together gives the lemma. \hfill \square

When is \tilde{X} Fano? Denote by C_1 the collection of finite morphisms $g : B \to X$ from a smooth, connected curve to X whose image is not contained in Y. Denote by C_2 the collection of finite morphisms $g : B \to Y$ from a smooth, connected curve to Y. The following result is well-known.

Proposition 4.2. Let h be the first Chern class of an ample invertible sheaf on X, e.g., $h = c_1(T_X)$ if X is Fano. The blowing up \tilde{X} is Fano iff there exists $\epsilon > 0$ such that,

(i) for every $g : B \to X$ in C_1,

\[\deg_B(g^{-1}Y) \leq \frac{1}{c-1}(\deg_B(g^*c_1(T_X)) - \epsilon \deg_B(g^*h)), \]

and

(ii) for every $g : B \to Y$ in C_2,

\[\mu_B^1(g^*N_{Y/X}) \leq \frac{1}{c-1}(\deg_B(g^*c_1(T_X)) - \epsilon \deg_B(g^*h)). \]

The proof is similar to the proof of Proposition 3.2. Using an analogue of Proposition 3.3 no blowing-up of \mathbb{P}^n is a Fano manifold with ch_2 nef.

5. Theorems about Vector Bundles on Curves

There are two theorems in this section. The first theorem goes back to Shou-Wu Zhang, though possibly it is older. A much more sophisticated arithmetic analogue was also proved by Shou-Wu Zhang in [Zha95, Theorem 1.10]. The second theorem in this section is a variation of the first theorem.

Definition 5.1. Let B be a smooth, projective curve. A cover of B is a finite, flat morphism $f : C \to B$ of constant, positive degree. A vector bundle on B is a locally free O_B-module of constant rank.

Definition 5.2. Let B be a smooth, projective curve. For every non-zero vector bundle E on B, the slope is,

\[\mu_B(E) = \deg(E)/\text{rank}(E) = \chi(B, E)/\text{rank}(E) - \chi(B, O_B). \]

For every cover $f : C \to B$ and every non-zero vector bundle E on C, the B-slope is,

\[\mu_B(f, E) := \deg(E)/(\deg(f)\text{rank}(E)) = \mu_B(f_*E) - \mu_B(f_*O_C). \]

When there is no chance of confusion, this is denoted simply $\mu_B(E)$.

For every cover $g : C' \to C$, $f \circ g : C' \to B$ is a cover and $\mu_B(f \circ g, g^*E)$ equals $\mu_B(f, E)$.

Definition 5.3. Let B be a smooth, projective curve and let E be a vector bundle on B of rank $r > 0$. For every integer $1 \leq k \leq r$, define $\mu^k_B(E)$ to be,

$$\sup\{-\mu_B(f,F^\vee)|f:C \to B \text{ a cover }, f^*E^\vee \to F^\vee \text{ a rank } k \text{ quotient}\}$$

$$= \sup\{\mu_B(f,F)|f:C \to B \text{ a cover }, F \subset f^*E \text{ a rank } k \text{ subbundle whose cokernel is locally free}\}.$$

Let $f: X \to Y$ be a morphism of projective varieties. Denote by C_1 the collection of all irreducible curves in X not contained in a fiber of f. Denote by C_2 the collection of finite morphisms $g: C \to X$ occurring as the normalization of an irreducible curve in X not contained in a fiber of f. Finally, denote by C_3 the collection of all finite morphisms from smooth, connected curves to X whose image is not contained in a fiber of f.

Lemma 5.4. Let $f: X \to Y$ be a morphism of projective varieties and let L be an ample invertible O_Y-module. An f-ample invertible O_X-module M is ample iff there exists a real number $\epsilon > 0$ such that for every morphism $g : C \to X$ in C_1, resp. C_2, C_3, $\deg_C(g^*M) \geq \epsilon \deg_C(g^*f^*L)$.

Proof. Because M is f-ample and L is ample, there exists an integer $n > 0$ such that $M \otimes f^*L^\otimes n$ is ample. By Kleiman’s criterion, M is ample iff there exists a real number $0 < \delta < 1$ such that for every irreducible curve C in X,

$$\deg_C(M) \geq \delta \deg_C(M \otimes f^*L^\otimes n).$$

Simplifying, this is equivalent to,

$$\deg_C(M) \geq \frac{n \delta}{1 - \delta} \deg_C(f^*L).$$

As M is f-ample, this holds if C is contained in a fiber of f. So M is ample iff the inequality holds for every curve in C_1. Setting $\epsilon = n \delta/(1 - \delta)$, $\delta = \epsilon/(n + \epsilon)$, gives the lemma.

Since $C_2 \subset C_3$, the condition for C_3 implies the condition for C_2. Since degrees on a curve can be computed after pulling back to the normalization, the condition for C_2 implies the condition for C_1. Finally, for every morphism $g : C \to X$ in C_3, $g(C)$ is in C_1. The inequality for $g(C)$ implies the inequality for C. Thus the condition for C_1 implies the condition for C_3. \qed

Lemma 5.5. Let B be a smooth, connected, projective curve. A nonzero vector bundle E on B is ample iff there exists a positive real number δ such that for every cover $f : C \to B$ and every invertible quotient $f^*E \to L$, $\mu_B(L) \geq \delta$. In other words, E is ample iff $\mu^1_B(L^\vee) < 0$.

Proof. Denote by $\pi : \mathbb{P}E^\vee \to B$ the projective bundle associated to E^\vee, and denote by $\pi^*E \to \mathcal{O}_{\mathbb{P}E^\vee}(1)$ the tautological invertible quotient. By definition, E is ample iff $\mathcal{O}_{\mathbb{P}E^\vee}(1)$ is an ample invertible sheaf. Of course $\mathcal{O}_{\mathbb{P}E^\vee}(1)$ is π-relatively ample. Let M be an invertible \mathcal{O}_B-module of degree 1. Then M is ample. By Lemma 5.4 $\mathcal{O}_{\mathbb{P}E^\vee}(1)$ is ample iff there exists $\epsilon > 0$ such that for every smooth, connected curve C and every finite morphism $g : C \to \mathbb{P}E^\vee$ such that $\pi \circ g$ is finite, $\deg_C(g^*\mathcal{O}_{\mathbb{P}E^\vee}(1)) \geq \epsilon \deg_C(g^*\pi^*M)$. Of course $\deg_C(g^*\pi^*M) = \deg(\pi \circ g)$. Using
the universal property of $\mathbb{P}E^\vee$, this holds iff for every cover $f : C \to B$ and every invertible quotient $f^*E \to L$,
\[\deg_C(L) \geq \epsilon \deg(f) \iff \mu_B(L) \geq \epsilon. \]

\[\square \]

Lemma 5.6. For every ample vector bundle E on B, there exists a cover $f : C \to B$, invertible \mathcal{O}_C-modules L_1, \ldots, L_r, and a morphism of \mathcal{O}_C-modules, $\phi : f^*E \to (L_1 \oplus \cdots \oplus L_r)$ such that,

(i) the support of $\operatorname{coker}(\phi)$ is a finite set,

(ii) for every $i = 1, \ldots, r$, the projection $f^*E \to \oplus_{j \neq i} L_j$ is surjective, and

(iii) for every $i = 1, \ldots, r$, $\mu_B(L_i) = \deg_B(E)$.

Proof. Denote $r = \operatorname{rank}(E)$. The claim is that for every $k = 1, \ldots, r$, there exists a cover $f_k : C_k \to B$, invertible \mathcal{O}_{C_k}-modules $L_{k,1}, \ldots, L_{k,k}$, and a morphism of \mathcal{O}_{C_k}-modules, $\phi_k : f_k^*E \to (L_{k,1} \oplus \cdots \oplus L_{k,k})$ satisfying (ii) and (iii) above and the following variant of (i): for $k < r$, ϕ_k is surjective and for $k = r$, the support of $\operatorname{coker}(\phi_r)$ is a finite set. The lemma is the case $k = r$. The claim is proved by induction on k.

The base case is $k = 1$. Denote by $\pi : \mathbb{P}E^\vee \to B$ the projective bundle associated to E^\vee, and denote by $\pi^*E \to \mathcal{O}_{\mathbb{P}E^\vee}(1)$ the tautological invertible quotient. By hypothesis, $\mathcal{O}_{\mathbb{P}E^\vee}(1)$ is ample. By Bertini’s theorem, for $d_1, \ldots, d_{r-1} \gg 0$, there exist effective Cartier divisors D_1, \ldots, D_{r-1} such that the intersection $C_1 = D_1 \cap \cdots \cap D_{r-1}$ is smooth, connected curve, cf. [Jou83]. Denote by $f_1 : C_1 \to B$ the restriction of π. Denote by $\phi_1 : f_1^*E \to L_{1,1}$ the restriction of $\pi^*E \to \mathcal{O}_{\mathbb{P}E^\vee}(1)$. This satisfies (i) because $\pi^*E \to \mathcal{O}_{\mathbb{P}E^\vee}(1)$ is surjective. It satisfies (ii) trivially. Finally, $\deg(f)$ equals $d_1 \times \cdots \times d_{r-1}$, and $\deg(C_1(L_{1,1}))$ equals $d_1 \times \cdots \times d_{r-1} \times |C_1(\mathcal{O}_{\mathbb{P}E^\vee}(1))|^r$, i.e., $d_1 \times \cdots \times d_{r-1} \times \deg_B(E)$. Therefore $\mu_B(L_{1,1}) = \deg_B(E)$, i.e., this satisfies (iii).

By way of induction, assume the result is known for $k < r$, and consider the case $k + 1$. Since ϕ_k is surjective, there is an induced closed immersion $\mathbb{P}(L_{k,1} \oplus \cdots \oplus L_{k,k})^\vee \subseteq \mathbb{P}(f_k^*E)^\vee$. The image is irreducible and has codimension $r - k - 1$. For every $i = 1, \ldots, k$, the image of $\mathbb{P}(\oplus_{j \neq i} L_{k,j})^\vee$ is irreducible and has codimension $r - k - 1 \geq 2$. Associated to the finite morphism f_k, there is a finite morphism $\mathbb{P}(f_k^*E)^\vee \to \mathbb{P}E^\vee$. The pullback of an ample invertible sheaf by a finite morphism is ample; hence $\mathbb{P}(f_k^*(f_k^*E)^\vee)(1)$ is ample. By Bertini’s theorem, for $d_1, \ldots, d_{r-1} \gg 0$, there exist effective Cartier divisors D_1, \ldots, D_{r-1} with $D_i \in |\mathcal{O}_{\mathbb{P}(f_k^*E)^\vee}(d_i)|$ such that the intersection $C_{k+1} = D_1 \cap \cdots \cap D_{r-1}$ is smooth, connected curve, disjoint from $\mathbb{P}(\oplus_{j \neq i} L_{k,j})^\vee$ for every $i = 1, \ldots, k$, and either disjoint from $\mathbb{P}(\oplus_i L_i)^\vee$ if $k < r - 1$, or else intersecting $\mathbb{P}(\oplus_i L_i)^\vee$ in finitely many points if $k = r - 1$. Define $g_{k+1} : C_{k+1} \to C_k$ to be the restriction of the projection. Define $f_{k+1} = f_k \circ g_{k+1}$, define $L_{k+1,i} = g_{k+1}^*L_{k,i}$ for $i = 1, \ldots, k$, and define $L_{k+1,k+1}$ to be the restriction of $\mathcal{O}_{\mathbb{P}(f_k^*E)^\vee}(1)$. Define ϕ_{k+1} to be the obvious morphism.

The cokernel of ϕ_{k+1} is supported on the intersection of C_{k+1} with $\mathbb{P}(L_{k,1} \oplus \cdots \oplus L_{k,k})^\vee$. By construction, this is empty if $k < r - 1$, and is a finite set if $k = r - 1$. Thus ϕ_{k+1} satisfies (i). By the induction hypothesis, $f_{k+1}^*E \to (L_{k+1,1} \oplus \cdots \oplus L_{k+1,k})$, which is the pullback under g_{k+1} of ϕ_k, is surjective. For $i = 1, \ldots, k$, the cokernel of $f_{k+1}^*E \to \oplus_{j \neq i} L_{k+1,j}$ is supported on the intersection of C_{k+1} with the
image of $\mathcal{P}(\oplus_{j \neq i} L_{k,j})^\vee$. By construction, this is empty, i.e., $f_{k+1}^* E \to \oplus_{j \neq i} L_{k+1,j}$ is surjective. Thus ϕ_{k+1} satisfies (ii). Finally, ϕ_{k+1} satisfies (iii) by the same argument as in the base case. The claim is proved by induction on k. \hfill \Box

Theorem 5.7. For every non-zero vector bundle E on B, for every $\epsilon > 0$, there exists a cover $f : C \to B$ and an invertible quotient $f^* E \to L$ such that $\mu_B(L) < \mu_B(E) + \epsilon$. In other words, $\mu_B(E^\vee) \geq \mu_B(E^\vee)$.

Proof. Denote $r = \text{rank}(E)$. If $r = 1$, set $f = \text{Id}_B$ and $L = E$. Then L is an invertible quotient of $f^* E$, and $\mu_B(L)$ equals $\mu_B(E)$ which is less than $\mu_B(E) + \epsilon$. Therefore assume $r > 1$.

Certainly an effective version of the following argument can be given, but a simpler argument is by contradiction. **Hypothesis 5.8.** For every cover $f : C \to B$ and every invertible quotient $f^* E \to L$, $\mu_B(L) \geq \mu_B(E) + \epsilon$, i.e., $\mu_B(E^\vee) < \mu_B(E^\vee) - \epsilon$.

By way of contradiction, assume Hypothesis 5.8. Let $f : C \to B$ be a connected, smooth cover of degree d. For every $a/d \in \mathbb{Q}$, there exists an invertible sheaf M on C of degree a, and thus $\mu_B(M) = a/d$. In particular, for d sufficiently large, there exists an invertible quotient M such that $0 < \mu_B(E) - \mu_B(M) < \epsilon/(r-1)$. Denote $\delta = \mu_B(E) - \mu_B(M)$. Denote $F = f^* E \otimes M^\vee$. Then $\mu_B(F)$ equals δ, and $0 < \delta < \epsilon/(r-1)$.

Let $g : C' \to C$ be any cover and let $g^* F \to N$ be any invertible quotient. Then $f \circ g : C' \to B$ is a cover and $(f \circ g)^* E = g^* F \otimes g^* M \to N \otimes g^* M$ is an invertible quotient. By Hypothesis 5.8,

$$\mu_C(N) = \deg(f) \mu_B(N) = \deg(f)(\mu_B(N \otimes g^* M) - \mu_B(M)) \geq \deg(f)(\mu_B(E) + \epsilon)$$

By Lemma 5.5 F is an ample vector bundle on C. By Lemma 5.6 there exists a cover $g : C' \to C$ and an invertible quotient $g^* F \to P$ such that $\mu_B(P) = r \mu_B(F) = r \delta$. Therefore $L := g^* M \otimes P$ is an invertible quotient of $g^* f^* E$ and,

$$\mu_B(L) = \mu_B(g^* M \otimes P) = \mu_B(M) + r \delta = \mu_B(E) + (r-1) \delta.$$

By hypothesis, $(r-1) \delta < \epsilon$. So $\mu_B(L) < \mu_B(E) + \epsilon$, contradicting Hypothesis 5.8. The proposition is proved by contradiction. \hfill \Box

Corollary 5.9. For every non-zero vector bundle E on B, for every $\epsilon > 0$, there exists a cover $f : C \to B$ and a sequence of vector bundle quotients,

$$f^* E = E^r \to E^{r-1} \to \cdots \to E^1,$$

such that each E^k is a vector bundle of rank k and $\mu_B(E^k) < \mu_B(E) + \epsilon$.

Proof. The proof is by induction on the rank r of E. If $\text{rank}(E) = 1$, defining $f = \text{Id}_B$ and $E^1 = E$, the result follows. Thus, assume $r > 1$ and the result is known for smaller values of r. By Theorem 5.7 there exists a cover $g : B' \to B$ and a rank 1 quotient $g^* E \to L$ such that $\mu_B(L) < \mu_B(E) + \epsilon$. Denote by K the kernel of $g^* E \to L$. Then $\text{rank}(K) = r - 1$ and $\mu_B(K) = (r \mu_B(E) - \mu_B(L))/(r-1)$. By the induction hypothesis, there exists a cover $h : C \to B'$ and a sequence of vector bundle quotients,

$$h^* K = K^{r-1} \to \cdots \to K^1,$$
such that each K^k is a vector bundle of rank k, and $\mu_{B'}(K^k) \leq \mu_{B'}(K) + \deg(g)\epsilon$. Of course $\mu_B(F) = \mu_{B'}(F)/\deg(g)$ for every F. Thus $\mu_B(K^k) \leq \mu_B(K) + \epsilon$.

Define $f = h \circ g$, define $E^i = h^*L$, and for every $k = 2, \ldots, r$, define $f^*E \to E^k$ to be the unique quotient whose kernel is contained in h^*K and such that $h^*K \to E^k$ has image K^{k-1}. Then $\mu_B(E^1) = \mu_B(L) \leq \mu_B(E) + \epsilon$, and for $k = 2, \ldots, r$,

$$\mu_B(E^k) = 1/k(\mu_B(L) + (k - 1)\mu_B(K^{k-1})) < 1/k(\mu_B(L) + (k - 1)\mu_B(K) + (k - 1)\epsilon) = \frac{r(k-1)}{(r-1)k} \mu_B(E) + \frac{r-k}{(r-1)k} \mu_B(L) + \frac{(r-1)(k-1)}{(r-1)k} \epsilon < \mu_B(E) + \epsilon.$$

□

For semistable bundles in characteristic zero, there is a more precise result. An arithmetic analogue is also proved by Zhang in [Zha95, Theorem 1.10].

Theorem 5.10 (Zhang). Let B be a smooth, projective curve over an algebraically closed field of characteristic 0. Let E be a semistable vector bundle on B. Let ϵ be a positive real number. There exists a cover $f : C \to B$, invertible sheaves L_1, \ldots, L_r on C, and a morphism of O_C-modules, $\phi : f^*E \to (L_1 \oplus \cdots \oplus L_r)$ such that,

(i) the support of $\ker(\phi)$ is a finite set,

(ii) for every $i = 1, \ldots, r$, the projection $f^*E \to \oplus_{j \neq i} L_j$ is surjective,

(iii) for every $i = 1, \ldots, r$, $\mu_B(L_i) \leq \mu_B(E) + \epsilon$.

Proof. Denote $r = \text{rank}(E)$. If r equals 1, the theorem is trivial. Thus assume $r > 1$. As in the proof of Theorem 5.7 there exists a cover $g : C' \to B$ and an invertible sheaf M on C' such that $0 < \mu_B(E) - \mu_B(M) < \epsilon/(r-1)$. Denote $\delta = \mu_B(E) - \mu_B(M)$ and denote $F = g^*E \otimes M^\vee$. Then $\mu_B(F)$ equals δ, and $0 < \delta < \epsilon/(r-1)$.

Let $h : C \to C'$ be any cover and let $h^*F \to N$ be an invertible quotient. The composition $g \circ h : C \to B$ is a cover. By Kempf’s theorem, [Kemp92], which ultimately relies on the theorem that every stable vector bundle admits a Hermite-Einstein metric, $(goh)^*E$ is semistable. (Note, there are counterexamples in positive characteristic.) Therefore h^*F is semistable. So $\mu_C(L) \geq \mu_C(h^*F)$, i.e., $\mu_C(L) \geq \mu_{C'}(F) = \delta$. Thus by Lemma 5.6 F is an ample vector bundle on C'. Thus by Lemma 5.6 there exists a cover $h : C \to C'$, invertible O_C-modules N_1, \ldots, N_r, and a morphism of O_C-modules $\psi : h^*F \to (N_1 \oplus \cdots \oplus N_r)$ satisfying (i), (ii) and (iii) of Lemma 5.6. Define $f = g \circ h$, $L_i = N_i \otimes h^*M$ and ϕ is the twist of ψ by Id_{h^*M}. Then ϕ satisfies (i) and (ii). And for every $i = 1, \ldots, r$,

$$\mu_B(L_i) = \mu_B(N_i) + \mu_B(M) = \mu_{C'}(N_i)/\deg(g) + \mu_B(E) - \delta = \mu_B(E) + r\delta/\deg(g) - \delta \leq \mu_B(E) + (r-1)\delta/\deg(g) < \mu_B(E) + \epsilon.$$

□

Of course, $\mu'_B(E)$ equals $\mu_B(E)$. The other values are more interesting.

Corollary 5.11. The slopes $\mu'^k_B(E)$ satisfy $\mu'^1_B(E) \geq \mu'^2_B(E) \geq \cdots \geq \mu'^r_B(E) = \mu_B(E)$. For each $1 \leq k < r$, $\mu'^k_B(E) = \mu_B(E)$ iff f^*E is semistable for every cover $f : C \to B$.

Proof. By Corollary 5.9, for every $\epsilon > 0$, there exists a cover $f : C \to B$ and a rank k quotient $f^*E \to E^k$ such that $\mu_B(E^k) < \mu_B(E) + \epsilon$. Thus $\mu^k_B(E) \geq \mu_B(E)$. Applying the same reasoning to rank $k - 1$ quotients of rank k quotients of f^*E, $\mu^{k-1}_B(E) \geq \mu^k_B(E)$.

If f^*E is semistable for every cover $f : C \to B$, then every vector bundle quotient of f^*E has slope $\geq \mu_C(f^*E)$, and thus has B-slope $\geq \mu_B(f^*E)$. Therefore $\mu^k_B(E) \leq \mu_B(E)$, i.e., $\mu^k_B(E) = \mu_B(E)$.

Conversely, suppose there is a cover $f : C \to B$ such that f^*E is not semistable. Then there exists a vector bundle quotient $f^*E \to F$ such that $\mu_B(F) < \mu_B(E)$. Denote the rank by l. Suppose first that $l \geq k$, and define $\epsilon = \deg(f)(\mu_B(E) - \mu_B(F))$. Then by Corollary 5.9, there exists a cover $g : C' \to C$ and a rank k quotient $g^*F \to G$ such that $\mu_C(G) < \mu_C(F) + \epsilon$. Therefore $g^*f^*E \to g^*F \to G$ is a rank k quotient of g^*f^*E and $\mu_B(G) < \mu_C(F) + (\mu_B(E) - \mu_B(F)) = \mu_B(E)$. Therefore $\mu^k_B(E) > \mu_B(E)$.

Next suppose that $l < k$. Denote by K the kernel of $f^*E \to F$. Then $r\mu_B(E) = l\mu_B(F) + (r - l)\mu_B(K)$. Define,

$$\epsilon = \frac{(r - k)\deg(f)(\mu_B(E) - \mu_B(F))}{(r - l)(k - l)}.$$

By Corollary 5.9, there exists a cover $g : C' \to C$ and a rank $k - l$ quotient $g^*K \to G'$ such that $\mu_C(G') < \mu_C(K) + \epsilon$. Therefore $\mu_B(G') < \mu_B(K) + \epsilon/\deg(f)$. Define $g^*f^*E \to G$ to be the unique vector bundle whose kernel is contained in g^*K and such that the image of $g^*K \to G$ equals G'. Then,

$$k\mu_B(G) = l\mu_B(F) + (k - l)\mu_B(G') < l\mu_B(F) + (k - l)\mu_B(K) + (k - l)\epsilon/\deg(f) = l\mu_B(F) + \frac{k - l}{r - l}(r\mu_B(E) - l\mu_B(F)) + \frac{k - l}{r - l}\epsilon = k\mu_B(E) - \frac{(r - k)l}{r - l}(\mu_B(E) - \mu_B(F)) + \frac{(r - k)l}{r - l}(\mu_B(E) - \mu_B(F)) = k\mu_B(E).$$

Thus $\mu_B(G) < \mu_B(E)$, and therefore $\mu^k_B(E) > \mu_B(E)$. \hfill \Box

References

