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Abstract. This excerpt is a section from an article in progress. This section
proves that for the Grassmannians, i.e., the homogeneous spaces of Picard
number one for the classical simple algebraic groups, there exists a very twist-
ing family of pointed lines.

1. Very twisting lines on Grassmannians

This is an extract from an article in progress relating rational connectedness of
spaces of rational curves to existence of sections of families over surfaces. Two
other articles, [dJS05b] and [dJS05a], also deal with aspects of this work.

This extract is concerned with a very limited problem: extending the basic
arguments from [HS05] to Grassmannians and isotropic Grassmannians. This might
seem superfluous since Kim and Pandharipande prove rationality of the spaces of
rational curves on every projective homogeneous spaces, [KP01]. However, for
sections of families over surfaces, one needs also the existence of very twisting
families of lines, which is what this note proves.

Let κ be an algebraically closed field. Let (X,OX(1)) be a quasi-projective κ-
variety together with an ample invertible sheaf. Denote by Xsm the smooth locus
of X. The scheme M0,1(Xsm, 1) represents the functor of pointed lines in X. On
M0,1(Xsm, 1), there is a rank 2 locally free sheaf E, a rank 1 locally direct summand
L of E, and a morphism g : P(E) → Xsm pulling back OXsm(−1) to the universal
rank 1 locally direct summand OP(E)(−1) of π∗E. The universal line is the P1-
bundle π : P(E) → M0,1(Xsm, 1), the universal section of π, σ : M0,1(Xsm, 1) →
P(E), pulls back OP(E)(−1) to the locally direct summand L, and the universal
map is g.

OnM0,1(Xsm, 1) there is an important invertible sheaf ψ∨, defined as σ∗OP(E)(Image(σ)) =
σ∗Tπ, the pullback of the normal bundle of σ, which is also the pullback of the ver-
tical tangent bundle of π. Equivalently, ψ∨ satisfies a canonical isomorphism,

ψ∨ ∼= det(E)⊗ (L∨)⊗2.

The evaluation morphism, denoted ev : M0,1(Xsm, 1) → Xsm, is g ◦ σ. The open
subset where ev is smooth is denoted U . On this open set, an important locally free
sheaf is the vertical tangent bundle Tev of ev, i.e., the dual of the sheaf of relative
differentials of ev. The morphism (π, g) : P(E) →M0,1(Xsm, 1)×Xsm is a regular
embedding, and thus has a locally free normal sheaf N . The open subset U is the
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maximal open set over which N is π-relatively globally generated, and Tev has an
equivalent definition,

Tev
∼= π∗(N(−Image(σ))).

Definition 1.1. [HS05] A very twisting family of pointed lines on X is a morphism
ζ : P1 →M0,1(Xsm, 1) such that,

(i) U contains Image(ζ),
(ii) ζ∗Tev is ample, and
(iii) the degree of ζ∗ψ∨ is nonnegative.

Using the canonical isomorphisms, (i)–(iii) are equivalent to,
(i’) the restriction of N to the fiber of π over each point of Image(ζ) is globally

generated,
(ii’) ζ∗π∗(N(−σ(P1))) is ample, and
(iii’) ζ∗det(E)⊗ (L∨)⊗2 has nonnegative degree.

The open subset U intersects each irreducible component of M0,1(Xsm, 1) whose
lines cover a dense subset of Xsm, cf. [KMM92, 1.1].

Lemma 1.2. If TXsm is globally generated, then U equals M0,1(Xsm, 1). In partic-
ular, if X is a homogeneous space G/P , then U equals M0,1(X, 1).

Proof. Since TXsm is globally generated, g∗TXsm is globally generated, and thus the
quotient N is globally generated. For a homogeneous space G/P , TX is globally
generated by TeG⊗κ OX . �

Unfortunately, there typically exist rational curves in M0,1(G/P, 1) on which ψ∨ or
Tev has negative degree. Thus, if there exists a very twisting family, it is a special
rational curve. There are some obvious special rational curves in M0,1(X, 1); in
some cases these give very twisting families.

Definition 1.3. Let λ : Gm → G be a 1-parameter subgroup. Let s : G ×
M0,1(G/P, 1) →M0,1(G/P, 1) be the canonical action. Let p ∈M0,1(G/P, 1) be a
point. There is an induced morphism ζo : Gm →M0,1(G/P, 1) by ζ(t) = s(λ(t), p).
This extends uniquely to a morphism ζ : P1 → M0,1(G/P, 1), by the valuative
criterion of properness. An orbit curve is a morphism ζ thus obtained.

Question 1.4. Does there exist a very twisting family ζ : P1 →M0,1(G/P, 1)?

If the answer is affirmative, a second question is whether there exists a very twisting
orbit curve.

We answer Question 1.4 when X is the Grassmannian Flag(k, V ) of rank k sub-
spaces of an n-dimensional vector space V and when X is the Grassmannian
Flagk(V, β) of rank k isotropic subspaces of an n-dimensional vector space V with
a symmetric or skew-symmetric bilinear pairing β. Thus we answer the question
when G is one of the classical simple groups SLn, SOn, Sp2n and P is a maximal
parabolic group.

The exceptional cases. There are some exceptional cases: there does not exist
a very twisting family of pointed lines if X equals a finite set, P1, or P1 × P1. In
these case ev is finite, and thus Tev is the zero sheaf.

(i) For the classical Grassmannian, the single exceptional case is (n, k) = (2, 1).
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(ii) In the skew-symmetric case, the single exceptional case is (n, k) = (2, 1).
(iii) In the symmetric case, the exceptional cases are (n, k) = (2, 1), (3, 1), (4, 1),

and (4, 2).

Theorem 1.5. For every pair of positive integers (n, k) satisfying n ≥ 2k and not
on the exceptional list above, there is a very twisting family of pointed lines to X.
In many cases, there is a very twisting orbit curve.

2. Pointed lines on classical Grassmannians

Let V be a rank n κ-vector space, and let k be an integer, 0 < k < n. Denote by
X the Grassmannian Flag(k, V ), and denote by S(k, V ) the universal rank k locally
direct summand of V ⊗κ OX . Denote by OX(1) the ample invertible sheaf giving
the Plücker embedding, i.e., the ample generator of the Picard group of X. Denote
by M the scheme M0,1(X, 1). Denote by M the flag variety Flag(k−1, k, k+1;V ),
and denote by Sk−1 ⊂ Sk ⊂ Sk+1 ⊂ V ⊗OM the universal (k − 1, k, k + 1)-flag of
locally direct summands of V .

Lemma 2.1. On P(E), the locally free sheaf g∗S(k, V )∨ is globally generated. On
M, π∗[g∗S(k, V )∨⊗OP(E)(−1)] is an invertible sheaf, and π∗[g∗S(k, V )∨] is locally
free of rank k + 1. The tautological map V ∨ ⊗OM → π∗[g∗S(k, V )∨] is surjective.

Proof. Since V ∨ ⊗ OX generates S(k, V )∨, V ∨ ⊗ OP(E) generates g∗S(k, V )∨. So
the restriction of g∗S(k, V )∨ to every fiber of π is isomorphic to OP1(a1) ⊕ · · · ⊕
OP1(ak) for integers 0 ≤ a1 ≤ · · · ≤ ak. By definition, OX(1) =

∧k
S(k, V )∨ has

degree 1 on every fiber of π. Thus the restriction of g∗S(k, V )∨ to every fiber of
π is isomorphic to F := OP1(1) ⊕ O⊕(k−1)

P1 . So, firstly, π∗[g∗S(k, V )∨] is locally
free of rank h0(P1, F ) = k + 1, and π∗[g∗S(k, V )∨ ⊗ OP(E)(−1)] is locally free of
rank h0(P1, F (−1)) = 1. Since the only subspace of H0(P1, F ) generating F is
all of H0(P1, F ), and since V ∨ ⊗ OP(E) generates g∗S(k, V )∨, also V ∨ ⊗ OM →
π∗[g∗S(k, V )∨] is surjective. �

There is a (1, 2)-flag of locally direct summands of π∗[g∗S(k, V )∨],

π∗[g∗S(k, V )∨⊗OP(E)(−1)]⊗(E/L)∨ ⊂ π∗[g∗S(k, V )∨⊗OP(E)(−1)]⊗E∨ ⊂ π∗[g∗S(k, V )∨].

Dually, there is a (k − 1, k)-flag of locally direct summands of (π∗[g∗S(k, V )∨])∨,

(π∗[g∗S(k, V )∨ ⊗OP(E)(−1)]⊗ E∨)⊥ ⊂
(π∗[g∗S(k, V )∨ ⊗OP(E)(−1)]⊗ (E/L)∨)⊥ ⊂

(π∗[g∗S(k, V )∨])∨.

Because V ∨ ⊗OM → π∗[g∗S(k, V )∨] is surjective, (π∗[g∗S(k, V )∨])∨ is canonically
a rank k+1 locally direct summand of V ⊗OM. This defines a (k−1, k, k+1)-flag
of locally direct summands of V ⊗OM, denoted Ek−1 ⊂ Ek ⊂ Ek+1 ⊂ V ⊗OM,

Ek−1 := (π∗[g∗S(k, V )∨ ⊗OP(E)(−1)]⊗ E∨)⊥,
Ek := (π∗[g∗S(k, V )∨ ⊗OP(E)(−1)]⊗ (E/L)∨)⊥,
Ek+1 := (π∗[g∗S(k, V )∨])∨.

By the universal property of the flag variety, there exists a unique morphism ι′ :
M → M pulling back Sk−1 ⊂ Sk ⊂ Sk+1 ⊂ V ⊗ OM to Ek−1 ⊂ Ek ⊂ Ek+1 ⊂
V ⊗OM.
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Proposition 2.2. The morphism ι′ is an isomorphism. Moreover, ev : M →
Flag(k, V ) is the composition of ι′ with the tautological projection Flag(k− 1, k, k+
1;V ) → Flag(k, V ).

Proof. On M , denote by E′ the rank 2 locally free sheaf Sk+1/Sk−1. Denote by
L′ the rank 1 locally direct summand Sk/Sk−1. Denote by π′ : P(E′) → Flag(k −
1, k, k + 1;V ) the associated P1-bundle. There is a unique section σ′ : Flag(k −
1, k, k + 1;V ) → P(E′) pulling back the universal rank 1 locally direct summand
OP(E′)(−1) of (π′)∗E′ to L′. On P(E′), there is a rank k locally direct summand
S′k of V ⊗ OP(E′) defined to be the preimage in (π′)∗Sk+1 of the universal rank 1
locally direct summand OP(E′)(−1) ⊂ (π′)∗(Sk+1/Sk−1). By the universal property
of X, there exists a unique morphism g′ : P(E′) → X pulling back the locally direct
summand S(k, V ) to S′k. By definition of σ′, (σ′)∗S′k equals Sk as a locally direct
summand of V ⊗ OF . Therefore g′ ◦ σ′ is the tautological projection Flag(k −
1, k, k + 1;V ) → Flag(k, V ).

By the definition of OX(1), (g′)∗OX(−1) is isomorphic to
∧k

S′k. By definition of
S′k, this is isomorphic to (π′)∗

∧k−1
Sk−1⊗OP(E′)(−1). In particular, the restriction

of (g′)∗OX(1) to every fiber of π′ is isomorphic to OP1(1). Thus (π′, σ′, g′) is a
family of pointed lines in X. By the universal property of M0,1(X, 1), there exists
a unique morphism ι : M →M pulling back (π, σ, g) to (π′, σ′, g′). It follows easily
that ι′ ◦ ι is the identity map IdM .

To prove that ι ◦ ι′ is IdM, it suffices to find an isomorphism h : P(E) → (ι′)∗P(E′)
such that (ι′)∗σ′ equals h ◦ σ and g equals (ι′)∗g′ ◦ h. By construction of ι′, there
is a canonical isomorphism of (ι′)∗E′ with E ⊗ (π∗[g∗S(k, V )∨⊗OP(E)(−1)])∨. By
the universal property of P(E′), there exists a unique isomorphism h : P(E) →
(ι′)∗P(E′) pulling back the universal locally direct summand (ι′)∗OP(E′)(−1) of
(ι′)∗(π′)∗E′ to the locally direct summand,

OP(E)(−1)⊗(π∗π∗[g∗S(k, V )⊗OP(E)(−1)])∨ ⊂ π∗E⊗(π∗π∗[g∗S(k, V )⊗OP(E)(−1)])∨ ∼= π∗(ι′)∗E′,

obtained from the universal locally direct summand OP(E)(−1) ⊂ π∗E. Since
(ι′)∗L′ equals L ⊗ (π∗[g∗S(k, V )∨ ⊗ OP(E)(−1)])∨ as locally direct summands of
(ι′)∗E′, (ι′)∗σ′ equals h ◦ σ. To prove (ι′)∗g′ ◦ h equals g, it suffices to prove
that (ι′)∗S′k equals g∗S(k, V ) as locally direct summands of V ⊗OP(E). By defini-
tion of ι′, the locally direct summand (ι′)∗(π′)∗Sk−1 of V ⊗OP(E) equals π∗Ek−1,
which is contained in g∗S(k, V ). Forming the corresponding quotients, it suffices
to prove that g∗S(k, V )/π∗Ek−1 equals (ι′)∗OP(E′)(−1) as locally direct summands
of (ι′)∗(π′)∗E′, i.e., of π∗(Ek/Ek−1). As g∗S(k, V )/π∗Ek−1 ⊂ π∗(Ek/Ek−1) is
isomorphic to,

OP(E)(−1)⊗(π∗π∗[g∗S(k, V )⊗OP(E)(−1)])∨ ⊂ π∗E⊗(π∗π∗[g∗S(k, V )⊗OP(E)(−1)])∨,

compatibly with the isomorphism to π∗ι∗E′, this follows from the definition of
h. �

Corollary 2.3. Denote by ι : Flag(k − 1, k, k + 1;V ) → M the inverse morphism
of ι′. There are canonical isomorphisms,

ι∗Tev
∼= [(Sk+1/Sk)∨ ⊗ ((V ⊗OF )/Sk+1)]⊕ [(Sk/Sk−1)⊗ S∨k−1],

ι∗ψ∨ ∼= (Sk+1/Sk)⊗ (Sk/Sk−1)∨.
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Proof. Because ev ◦ ι′ is the tautological projection, (ι′)∗Tev is the vertical tan-
gent bundle of the projection. This projection is the fiber product of the relative
Grassmannian Flag(1, (V ⊗OF )/Sk) and the relative Grassmannian Flag(k−1, Sk).
The first isomorphism follows from the well-known computation of the vertical tan-
gent bundle of a Grassmannian bundle. The second isomorphism follows from the
isomorphisms (ι′)∗L = L′ = Sk/Sk−1 and (ι′)∗(E/L) = E′/L′ = Sk+1/Sk. �

3. Pointed lines on isotropic Grassmannians

Assume that char(κ) is not 2. This subsection gives the analogues of Proposi-
tion 2.2 and Corollary 2.3 in the isotropic case. Let V be an n-dimensional vector
space with a symmetric or skew-symmetric nondegenerate pairing. Let X be the
Grassmannian of isotropic k-planes in V . The later sections prove existence of a
very twisting family of pointed lines. The proof breaks up into several cases.

I. This is the case when k is odd and n ≥ max(4, 2k + 2).
II. This is the case when k is even and n ≥ 2k + 2.

III. This is the case when n = 2k and the pairing is symmetric. The case when
n = 2k − 1 and the pairing is symmetric reduces to this case.

IV. This is the case when n = 2k and the pairing is skew-symmetric.

Definition 3.1. Let B be a κ-scheme. A symmetric pairing over B, resp. a
skew-symmetric pairing on B, is a triple (E,L, β) of a locally free OB-module E
of finite, constant rank, an invertible OB-module L, and an isomorphism of OB-
modules, β : E → E∨ ⊗ L such that β equals β† ⊗ IdL, resp. β equals −β† ⊗ IdL.
If the invertible sheaf L equals OB , the pair is written (E, β).

Notation 3.2. Let (E, β) be a symmetric pairing over B or a skew-symmetric
pairing over B. For every increasing sequence of integers k = (k1 < · · · < kr),
denote by Flagk(E, β) the bundle over B parametrizing k-flags of isotropic locally
direct summands of E. Denote by π : Flagk(E, β) → B the projection, and denote
by Sk1(E, β) ⊂ · · · ⊂ Skr (E, β) ⊂ π∗E the universal k-flag of isotropic locally direct
summands.

Let k and n be positive integers with n ≥ 2k. Let W be a κ-vector space of
dimension n. Let (W,β) be a symmetric or skew-symmetric pairing. Denote by X
the isotropic flag variety,

X = Flagk(W,β).
By the universal property of Flag(k;W ), there exists a unique morphism e : X →
Flag(k;W ) pulling back the universal locally direct summand S(k,W ) of W to
the universal isotropic locally direct summand Sk(W,β). The morphism e is a
closed immersion. Except when β is odd and n = 2k or 2k − 1, the invertible
sheaf OX(1) is defined to be the pullback by e of the Plücker invertible sheaf O(1)
on Flag(k;W ). In these cases, the induced morphism M0,1(e, 1) : M0,1(X, 1) →
M0,1(Flag(k;W ), 1) is a closed immersion. Thus, using Proposition 2.2, there is
a canonical closed immersion of M0,1(X, 1) in Flag(k − 1, k, k + 1;W ). The cases
when n = 2k or 2k − 1 are a bit more complicated.

Symmetric case, n ≥ 2k + 2. Denote by M the scheme M0,1(X, 1). Denote by
M the isotropic flag variety,

M = Flagk−1,k,k+1(W,β).
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Denote by Sk−1 ⊂ Sk ⊂ Sk+1 ⊂ W ⊗κ OM the universal isotropic flag. By the
universal property of Flag(k− 1, k, k+1;W ), there is a unique morphism e′ : M →
Flag(k − 1, k, k + 1;W ) pulling back the universal flag to Sk−1 ⊂ Sk ⊂ Sk+1 ⊂
W ⊗κ OM . The morphism e′ is a closed immersion.

Define E′ to be the rank 2 locally free sheaf, Sk+1/Sk−1, and define L′ to be the
invertible sheaf, Sk/Sk−1. Denote by π′ : P(E′) → M the associated P1-bundle.
There is a unique section σ′ : M → P(E′) such that the pullback of the rank 1
locally direct summand OP(E′)(−1) of (π′)∗E′ equals L′. On P(E′) there is a rank k
locally direct summand S′k of (π′)∗Sk+1 defined as the preimage of the rank 1 locally
direct summand OP(E′)(−1) of (π′)∗(Sk+1/Sk−1). Because (π′)∗Sk+1 is a rank k+1
locally direct summand of W ⊗κ OP(E′), S′k is a rank k locally direct summand of
W ⊗κ OP(E′). Because (π′)∗Sk+1 is isotropic, also S′k is isotropic. By the universal
property of Flagk(W,β), there exists a unique morphism g′ : P(E′) → Flagk(W,β)
such that (g′)∗Sk equals S′k as a locally direct summand of W ⊗κ OP(E′).

Proposition 3.3. Assume n is at least 2k+2. The datum (π′, σ′, g′) is a family of
pointed lines in Flagk(W,β) parametrized by M . The associated morphism ι : M →
M is an isomorphism, compatible with the closed immersions into Flag(k−1, k, k+
1;W ). Moreover, ev ◦ ι equals the tautological projection Flagk−1,k,k+1(W,β) →
Flagk(W,β).

Proof. The proof that (π′, σ′, g′) is a family of pointed lines is identical to the
argument in the proof of Proposition 2.2. The morphism ι is clearly compatible
with the closed immersions into Flag(k−1, k, k+1;W ). So ι is a closed immersion.
Since both M and M are smooth, to prove ι is an isomorphism, it suffices to
prove that ι is surjective. The fact about ev follows from the analogous fact in
Proposition 2.2.

Let [Ek−1 ⊂ Ek ⊂ Ek+1 ⊂ W ] be any flag in Flag(k − 1, k, k + 1;W ) contained
in the image of M. Because the pointed line in Flag(k;W ) associated to this
flag is contained in Flagk(W,β), for every rank k subspace S′k ⊂ Ek+1 containing
Ek−1, S′k is isotropic. In particular, since every vector in Ek+1 is contained in
such a subspace, every vector in Ek+1 is isotropic. By the polarization identity for
symmetric bilinear pairings (which holds because char(k) is not two!), the subspace
Ek+1 is isotropic. Thus [Ek−1 ⊂ Ek ⊂ Ek+1 ⊂ W ] is contained in the image of
M . �

On M there is a rank n− k− 1 locally direct summand S⊥k+1 of W ⊗κ OM defined
as the annihilator of Sk+1 under β. Since Sk+1 is isotropic, by definition Sk+1 is a
locally direct summand of S⊥k+1.

Corollary 3.4. Assume n is at least 2k + 2. The pullbacks under ι of Tev and ψ∨

admit canonical isomorphisms,

ι∗Tev
∼= [(Sk+1/Sk)∨ ⊗ (S⊥k+1/Sk+1)]⊕ [(Sk/Sk−1)⊗ S∨k−1],

ι∗ψ∨ ∼= (Sk+1/Sk)⊗ (Sk/Sk−1)∨.

Proof. The projection Flagk−1,k,k+1(W,β) → Flagk(W,β) is the fiber product of
the relative isotropic Grassmannian, Flag1(S⊥k /Sk, β̃), and the relative classical
Grassmannian, Flag(k−1, Sk). The proof of the corollary is almost identical the the
proof of Corollary 2.3. The one new element is the well-known isomorphism of the
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vertical tangent bundle of Flag1(E, β) → B with S1(E, β)∨⊗(S1(E, β)⊥/S1(E, β)),
using Notation 3.2. �

Remark 3.5. If k = 1, then Sk−1 is the zero sheaf. If n = 2k+2, then S⊥k+1 equals
Sk+1 so that S⊥k+1/Sk+1 is the zero sheaf.

Symmetric case, n = 2k+1, 2k+2. If n equals 2k+1 or 2k+2, then the Picard
group is Z, but the invertible sheaf giving the Plücker embedding, the Plücker
invertible sheaf, is not a generator of the Picard group. First consider the case
when n = 2k + 1. Let (1, β1) be a symmetric pairing such that dim(1) equals
1. Define (W ′, β′) to be the orthogonal direct sum of (W,β) and (1, β1). This
has rank n′ = n+ 1. Denote k + 1 by k′. Denote by M ′ the isotropic flag variety,
M ′ = Flagk′(W ′, β′). Because every isotropic subspace of W has dimension ≤ k, no
k′-dimensional isotropic subspace of W ′ is contained in W . Therefore the following
morphism of OM ′ -modules is surjective,

Sk′ →W ′ ⊗κ OM ′
pr1−−→ 1⊗κ OM ′ .

Denote the kernel by K. This is a rank k locally direct summand of W ⊗κ OM ′ .
Because Sk′ is isotropic for β′, K is isotropic for β. By the universal property
of Flagk(W,β), there exists a unique morphism e : M ′ → M , pulling back the
universal isotropic flag Sk ⊂W ⊗κ OM to K ⊂W ⊗κ OM ′ .

Lemma 3.6. If n = 2k+1, the morphism e : Flagk+1(W ′, β′) → Flagk(W,β) is an
étale, finite morphism of degree 2 identifying Flagk+1(W ′, β′) with a disjoint union
of 2 copies of Flagk(W,β).

Proof. The first part is just the fact that a symmetric, bilinear pairing on a rank 2
vector space has precisely 2 isotropic lines. That this cover is trivial can be checked
directly. It also follows from the fact that Flagk(W,β) is separably rationally con-
nected, in fact separably unirational, together with a corollary of Kollár: a separably
rationally connected variety has trivial étale fundamental group, cf. [Deb03, Cor.
3.6]. �

Of course dim(W ′) = n+ 1 = 2(k + 1) = 2k′. Thus the case n = 2k + 1 is reduced
to the case n′ = 2k′.

Next consider the case when n = 2k. LetX be one of the two connected components
of Flagk(V, β). As above, there is an embedding of X in Flag(k, V ), and thus a
Plücker invertible sheaf on X. Because X is smooth and rational, there is no torsion
in the Picard group of X. Therefore there exists a minimal ample invertible sheaf
some power of which equals the Plücker invertible sheaf.

Notation 3.7. Assume n equals 2k. Denote by OX(1) the unique minimal ample
invertible sheaf on Flagk(W,β) some power of which equals the Plücker invertible
sheaf.

Lemma 3.8. The Picard group of X is generated by OX(1) and the Plücker invert-
ible sheaf is isomorphic to OX(2). In particular, a smooth rational curve in X is a
line with respect to OX(1) iff it has degree 2 with respect to the Plücker invertible
sheaf.
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Proof. Write X as SO2k/P = Spin2k/P
′. There is a natural isomorphism of

the Picard group of X and the character group of P ′. Choose an isomorphism
W ∼= V ⊕ V ∨ sending β to the canonical symmetric bilinear pairing on V ⊕ V ∨.
Then the stabilizer group P of the isotropic flag V ⊂ V ⊕ V ∨ is the group of all
maps, (

U−1 B
0 U†

)
,

where U is in GL(V ) and B : V ∨ → V is any skew-symmetric map. The group P ′

is a connected extension of P by µ2. Because char(κ) is not 2, there is no nontrivial
µ2-extension of the additive group of skew-symmetric matrices. Therefore P ′ is the
basechange by P → GL(V ) of a connected µ2-extension G′ of GL(V ). There is
precisely one such, namely the basechange by det : GL(V ) → Gm of the unique
connected µ2 extension of Gm, (∗)2 : Gm → Gm. The character group of P ′ equals
the character group of G′, which is a free Abelian group containing the character
group of GL(V ) as an index 2 subgroup. The Plücker invertible sheaf corresponds
to the character det : GL(V ) → Gm. Since this character is twice the generator of
the character group of G′, the Plücker invertible sheaf is isomorphic to the square
of the generator of the Picard group of X. �

Denote by M the the space M0,1(X, 1). Denote by M the isotropic flag variety,

M = Flagk−2,k(W,β).

Denote by Sk−2 ⊂ Sk ⊂ W ⊗κ OM the universal isotropic flag. Denote by S⊥k−2

the rank k + 2 locally direct summand of W ⊗κ OM defined as the annihilator of
Sk−2. Because Sk, resp. Sk−2, is isotropic, it is a locally direct summand of S⊥k−2.
Denote by F the rank 4 locally free sheaf, S⊥k−2/Sk−2. Associated to β there is a
symmetric pairing (F, βF ) on M . Denote by C ′ the isotropic flag variety,

C ′ = Flag2(E, β̃).

Denote by π : C ′ → M the projection. Denote by G the rank 2, locally direct
summand Sk/Sk−2 of F . Because Sk is isotropic for β, G is isotropic for βF . By
the universal property of the isotropic flag variety, there exists a unique section
σ : M → C ′ such that the pullback of the universal flag S2(F, βF ) ⊂ π∗F equals
G ⊂ F . On C ′ there is a rank k locally direct summand S′k of π∗S⊥k−2 defined as the
preimage of the rank 2 locally direct summand S2(E, βF ) of π∗F = π∗(S⊥k−2/Sk−2).
Because S2(F, βF ) is isotropic for βF , S′k is isotropic for β. By the universal property
of Flagk(W,β), there exists a unique morphism g : C ′ → Flagk(W,β) such that g∗Sk
equals S′k as a locally direct summand of W ⊗κ OC′ .

Proposition 3.9. Assume n equals 2k. The morphism π′ : C ′ → M is a proper,
smooth morphism, and every fiber is a disjoint union of 2 copies of P1. There
is a unique open and closed subscheme C containing the image of σ such that
π : C → M is a P1-bundle. The datum (π : C → M,σ, g) is a family of pointed
lines in Flagk(W,β) parametrized by M . The associated morphism ι : M →
M0,1(Flagk(W,β), 1) is an isomorphism, and ev ◦ ι is the tautological projection
Flagk−2,k(W,β) → Flagk(W,β).

Proof. The first part follows from the fact that for n = 4, Flag2(W,β) is a disjoint
union of two copies of P1. Each P1 has degree 2 with respect to the Plücker
embedding, thus it has degree 1 with respect to OX(1). Therefore (π, σ, g) is a

8



family of pointed lines inX. As in the proofs of Proposition 2.2 and Proposition 3.3,
to prove ι is an isomorphism, it suffices to prove it is bijective on points.

Let C be a smooth conic in Flag(k,W ). By [Buc03, Lemma 1], there is a rank
k − 2 subspace Sk−2 of W such that every point of C parametrizes a subspace Sk
containing Sk−2. If C is contained in Flagk(W,β), then Sk is isotropic, hence also
Sk−2 is isotropic. Because Sk is isotropic and contains Sk−2, Sk is contained in the
rank k + 2 annihilator, S⊥k−2. Denote by F the quotient space S⊥k−2/Sk−2. Associ-
ated to β there is a symmetric bilinear pairing βF on F . A rank k subspace Sk of
W containing Sk−2 is isotropic for β iff the subspace Sk/Sk−2 of F is isotropic for
βF . Therefore C is also a smooth conic in Flag2(F, βF ). As above, Flag2(F, βF ) is
a disjoint union of two smooth conics, i.e., C is one of the two connected compo-
nents of Flag2(F, βF ). Also, since the subspaces of F parametrized by Flag2(F, βF )
collectively span F and have common intersection (0), Sk−2 is the common inter-
section in W of the spaces Sk for every point [Sk] of C. Therefore the space of
conics in Flagk(W,β) is the bijective image of the étale double cover Flag2(F, βF )
of Flagk−2(W,β). Therefore ι is bijective. �

Corollary 3.10. Assume n equals 2k. The pullbacks under ι of Tev and ψ∨ admit
canonical isomorphisms,

ι∗Tev
∼= (Sk/Sk−2)⊗ S∨k−2,

ι∗ψ∨ ∼=
2∧

(Sk/Sk−2)∨.

Proof. The projection Flagk−2,k(W,β) → Flagk(W,β) is the relative Grassman-
nian Flag(k− 2, Sk). So the first isomorphism follows from the well-known isomor-
phism of the vertical tangent bundle of a relative Grassmannian. By construction,
π : C → M is one connected component of the relative isotropic Grassmannian
Flag2(F, βF ), where F := S⊥k−2/Sk−2. The vertical tangent bundle of Flag(2, F )
equals S(2, F )∨ ⊗ π∗F/S(2, F ). The restriction of this sheaf to Flag2(F, βF ) is
S2(F, βF )∨ ⊗ S2(F, βF )∨. By [HT84, p. 474], the normal bundle of the reg-
ular embedding Flag2(F, βF ) → Flag(2, F ) equals Sym2(S2(F, βF ))∨. Therefore
the vertical tangent bundle of Flag2(F, βF ) is the kernel of the map S2(F, βF )∨ ⊗
S2(F, βF )∨ → Sym2(S2(F, βF ))∨, i.e.,

∧2
S2(F, βF )∨. The bundle ψ∨ is the pull-

back of the vertical tangent bundle by the section σ. Since σ pulls back S2(F, βF )
to G = Sk/Sk−2, the bundle ψ∨ is canonically isomorphic to

∧2(Sk/Sk−2)∨. �

Skew-symmetric case, n ≥ 2k. Assume (W,β) is a skew-symmetric pairing of
dimension n. Assume n is at least 2k. There is a natural embedding of the isotropic
Grassmannian in the classical Grassmannian, Flagk(W,β) ⊂ Flag(k,W ). Denote
by OX(1) the pullback of OP(

Vk W )(1) under the Plücker embedding.

Denote by M the space M0,1(X, 1). Denote by Mpre the isotropic flag variety,

M = Flagk−1,k(W,β).

Denote by Sk−1,pre ⊂ Sk,pre ⊂ W ⊗κ OMpre the universal isotropic flag. On Mpre

there is a rank n − k + 1 locally direct summand S⊥k−1,pre of W ⊗κ OMpre defined
as the annihilator of Sk−1,pre under β. Since Sk,pre and Sk−1,pre are isotropic, each
one is a locally direct summand of Sk−1,pre. Denote by G the rank n + 1 − 2k,
locally free sheaf S⊥k−1,pre/Sk,pre.
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Denote by ρ : M →Mpre the projective bundle,

M = Flag(1, G) = P(G).

Denote by Sk−1, resp. Sk, the locally direct summand of W ⊗κ OM obtained by
pulling back Sk−1,pre, resp. Sk,pre. Each one is an isotropic locally direct summand
of W ⊗κOM . Also the annihilator S⊥k−1 of Sk−1 with respect to β equals ρ∗S⊥k−1,pre

as subsheaves of W ⊗κ OM . There is a rank k+ 1 locally direct summand Rk+1 of
S⊥k−1 defined as the preimage of the rank 1 locally direct summand OPP (G)(−1) of
π∗G = S⊥k−1/Sk.

Altogether, this defines a flag of locally direct summands of W ⊗κ OM ,

Sk−1 ⊂ Sk ⊂ Rk+1 ⊂W ⊗κ OM .
The first two terms are isotropic. The term Rk+1 is not necessarily isotropic, but
it is contained in S⊥k−1. The following lemma is straightforward.

Lemma 3.11. The flag Sk−1 ⊂ Sk ⊂ Rk+1 ⊂ W ⊗κ OM is the universal (k −
1, k, k+1)-flag of locally direct summands of W such that Sk is isotropic and Rk+1

is contained in S⊥k−1.

Remark 3.12. There is a natural action of Sp(W,β) on M . There are 2 orbits.
The closed orbit is the projective homogeneous space Flagk−1,k,k+1(W,β). The
complement of the closed orbit is a non-projective homogeneous space. If 1 < k <
n/2, the automorphism group of M equals Sp(W,β), thus M is not a homogeneous
space for any group.

Define E′ to be the rank 2 locally free sheaf, Rk+1/Sk−1, and define L′ to be the
invertible sheaf, Sk/Sk−1. Denote by π : P(E′) → M the associated P1-bundle.
There is a unique section σ′ : M → P(E′) such that the pullback of the rank 1
locally direct summand OP(E′)(−1) of π∗E′ equals L′.

On P(E′) there is a rank k locally direct summand S′k of π∗Rk+1 defined as the
preimage of the rank 1 locally direct summandOP(E′)(−1) of π∗E′ = π∗(Rk+1/Sk−1).
Because π∗Rk+1 is a rank k+1 locally direct summand of W⊗κOP(E′), S′k is a rank
k locally direct summand of W ⊗κ OP(E). Denote by F the quotient S⊥k−1/Sk−1.
Associated to β there is a skew-symmetric pairing βF for F . The locally direct
summand OP(E′)(−1) of π∗F is isotropic for βF because every rank 1 locally direct
summand of a skew-symmetric pairing is isotropic. Because S′k/π

∗Sk−1) is isotropic
for βF , S′k is isotropic for β. By the universal property of Flagk(W,β), there exists
a unique morphism g′ : P(E′) → Flagk(W,β) such that (g′)∗Sk equals S′k as a
locally direct summand of W ⊗κ OP(E′).

Proposition 3.13. Assume n is at least 2k. The datum (π′, σ′, g′) is a family of
pointed lines in Flagk(W,β) parametrized by M . The associated morphism ι : M →
M is an isomorphism.

Proof. As in the proof of Proposition 3.3, the first statement follows from Propo-
sition 2.2, and the second statement reduces to surjectivity of ι. Let [Sk−1 ⊂ Sk ⊂
Rk ⊂ W ] be a flag parametrizing a line in Flag(k,W ) contained in Flagk(W,β).
Then Sk is isotropic, and hence also Sk−1 is isotropic. Every vector in Rk is con-
tained in a subspace S′k containing Sk−1. Because S′k is isotropic, S′k is contained in
S⊥k−1. Therefore Rk is contained in S⊥k−1. By Lemma 3.11, [Sk−1 ⊂ Sk ⊂ Rk ⊂W ]
is contained in the image of ι. �
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Corollary 3.14. Assume n is at least 2k. The pullback under ι of Tev admits a
short exact sequence,

0 → [(Rk+1/Sk)∨ ⊗ (S⊥k−1/Rk+1)] → ι∗Tev → [(Sk/Sk−1)⊗ S∨k−1] → 0.

And the pullback of ψ∨ under ι admits an isomorphism,

ι∗ψ∨ ∼= (Rk+1/Sk)⊗ (Sk/Sk−1)∨.

Proof. This is very similar to the proof of Corollary 3.4. �

4. Maps of vector bundles on the projective line

Using the propositions of Subsections 2 and 3, a very twisting family of pointed
lines on a classical or isotropic Grassmannian is equivalent to a flag of locally direct
summands of W ⊗κ OP2 such that the associated locally free sheaf ζ∗Tev is ample
and the associated invertible sheaf ζ∗ψ∨ has nonnegative degree. However, in the
isotropic case, the flags are difficult to construct directly. This subsection contains
the proof of a fact about maps of vector bundles on the projective line which will
be useful for constructing flags.

Let a ≤ b be nonnegative integers. Define H to be the rank ab(b + 1 − a) vector
space,

H = HomOP1
(O⊕aP1 ,OP1(b− a)⊕b).

There is an open subset of H parametrizing maps whose cokernel is locally free
of rank b − a. There is an open subset of this subset parametrizing maps whose
cokernel is isomorphic to OP1(b)⊕(b−a). Denote by Ho this open subset of H.

Proposition 4.1. The open subset Ho is not empty.

Proof. If a is zero, this is vacuous. Thus assume a ≥ 1. Let U be a rank 2
vector space and identify P1 with P(U). The homogeneous coordinate ring of P1

is S := Sym•(U∨). Denote the graded pieces by Sk, i.e., Sk = Symk(U∨). By
convention, define S−1 to be the zero vector space. Denote by A the associative,
unital κ-algebra of linear maps from S to S, A = Hom(S, S). This has a natural
structure of left S-module by (p · L)(q) = pL(q) for every p, q in S and every L in
A. Denote by Diff the subalgebra of Hom(S, S) of differential operators on S. This
is a left S-submodule of A.

Denote by d the unique κ-derivation,

d : S → S ⊗κ U∨,
such that d|S1 : U∨ → S ⊗κ U∨ factors as

U∨
Id−→ κ⊗κ U∨ = S0 ⊗κ U∨ ⊂ S ⊗κ U∨.

The derivation d identifies U as a linear subspace of Diff. Define Diffa−1 to be the
linear subspace of Diff generated by U⊗(a−1). This, of course, is just an isomorphic
copy of Syma−1(U). In particular it has rank a. Also every element in Diffa−1 has
order a− 1.

There is a canonical map c : A → (
∧2

U) ⊗κ A defined as follows. Choose an
ordered basis e0, e1 for U , and denote by T0, T1 the dual ordered basis for U∨. For
every linear map L : S → S, define c(L) : S → (

∧2
U)⊗ S to be,

c(L)(p) = (e0 ∧ e1)⊗ (T1L(T0 · p)− T0L(T1 · p)).
11



It is straightforward to check this is independent of the choice of basis. The map c is
a morphism of left S-modules (where

∧2
U is given the trivial S-module structure).

More importantly, if L is a differential operator of order k + 1, then c(L) is a
differential operator of order k. Define cl : A → (

∧2
U)⊗l ⊗κ A to be the l-

fold composition of c in the obvious way. Then Ker(cl) contains the subspace of
differential operators of order ≤ l − 1.

For every integer k, define Qk to be the quotient Hom(Sk, S) of A, and denote
by πk : A → Qk the quotient map. By convention, define Q−1 to be the zero
vector space. The space Qk has a natural left S-module structure by (q · L)(p) =
qL(p) and πk is a morphism of left S-modules. Make Qk a graded S-module by
defining (Qk)l = Hom(Sk, Sk+l) for every integer l. The associated sheaf on P(U)
is S∨k ⊗κ OP(U)(k). For every integer 0 ≤ l ≤ k + 1, there is a unique degree 2l
map of graded S-modules, Cl : Qk → (

∧2
U)⊗l ⊗κ Qk−l, such that the following

diagram commutes,

A
cl

−−−−→ (
∧2

U)⊗l ⊗κ A

πk

y yId⊗πk−l

Qk
Cl−−−−→ (

∧2
U)⊗l ⊗κ Qk−l.

This induces a map of associated sheaves,

C̃l : S∨k ⊗κ OP(U)(k) → [(
2∧
U)⊗l ⊗κ S∨k−l]⊗κ OP(U)(k + l).

The composite map Diffa−1 ↪→ A
πb−1−−−→ Qb−1 has image in the subspace (Qb−1)−(a−1),

and so induces a map of associated sheaves,

φa,b : Diffa−1 ⊗κ OP(U) → S∨b−1 ⊗κ OP(U)(b− a).

Twisting the map C̃a appropriately gives a map of associated sheaves,

ψa,b : S∨b−1 ⊗κ [(
2∧
U)⊗l ⊗ S∨b−a−1]⊗κ OP(U)(b).

Since dim(Diffa−1) equals a, dim(S∨b−1) equals b, and dim((
∧2

U)⊗l⊗S∨b−a−1) equals
b− a, the proposition is implied by the following.

Claim 4.2. The following sequence of sheaves on OP(U) is exact,

0 → Diffa−1⊗κOP(U)
φa,b−−→ S∨b−1⊗κOP(U)(b−a)

ψa,b−−−→ [(
2∧
U)∨⊗S∨a+b−1]⊗κOP(U)(b) → 0.

First of all, because Diffa−1 is contained in the kernel of ca, ψa,b ◦ φa,b is the zero
map. There is a natural action of GL(U) on P(U). Each vector bundle in the claim
has a natural GL(U)-linearization and each of φa,b and ψa,b is GL(U)-equivariant.
Thus to prove the sequence is exact, it suffices to prove it is exact at one point of
P(U). With respect to the bases e0, e1 of U and the dual basis T0, T1, denote by ∂0,
∂1 the elements of Diff1 corresponding to e0, e1. Then an ordered basis for Diffa−1

consists of,
1

(a− 1)! · 0!
∂a−1
0 , . . . ,

1
(a− k)! · (k − 1)!

∂a−k0 ∂k−1
1 , . . . ,

1
0! · (a− 1)!

∂a−1
1 .

12



An ordered basis for Sb−1 consists of,

T b−1
0 , . . . , T b−j0 T j−1

1 , · · · , T b−1
1 ,

and this gives a dual ordered basis for S∨b−1. Similarly, an ordered basis for Sb−a−1

consists of,
T a+b−1

0 , . . . , T a+b−1−i
0 T i−1

1 , . . . , T a+b−1
1 ,

and, tensored with (e0∧e1)⊗l, this gives a dual ordered basis for (
∧2

U)⊗l⊗S∨a+b−1.
With respect to these ordered bases, the entries of the matrix of φa,b equal,

(φa,b)j,k =
(
b− j

a− k

)(
j − 1
k − 1

)
T b−1+k−j

0 T j−k1 ,

and the entries of the matrix of ψa,b equal,

(ψa,b)i,j = (−1)j−i
(

a

j − i

)
T j−i0 T a+i−j1 .

Plugging in T0 = 1, T1 = 0 gives the matrices,

φa,b|[1,0] =
(

Da,a

0b−a,a

)
,

and
ψa,b|[1,0] = (−1)a ·

(
0a,b−a Ib−a,b−a

)
,

where 0k,l is the zero k × l matrix, Ik,k is the k × k identity matrix, and Da,a is
the invertible a× a diagonal matrix with entries (Da,a)j,j =

(
b−j
a−j

)
. These matrices

visibly give a short exact sequence of κ-vector spaces. �

Because the entries of φa,b and ψa,b are monomials, the very twisting families con-
structed later are more likely to be orbit curves.

5. Application to isotropic subspaces

This subsection applies Proposition 4.1 to construct some useful isotropic sub-
spaces of W ⊗κ OP1 .

Hypothesis 5.1. Let a and b be positive integers. Assume that b is at least 2a.

Let Wb,+ be an b-dimensional κ-vector space. Denote the dual vector space by
Wb,−. By Proposition 4.1, there exists a map,

φa,b,+ : OP1(−(b− a))⊕a →Wb,+ ⊗κ OP1 ,

whose cokernel is isomorphic to OP1(a)⊕(b−a). Thus the annihilator in Wb,−⊗κOP1

of the image of φa,b,+ is the image of a map,

ψ†a,b,+ : OP1(−a)⊕(b−a) →Wb,− ⊗κ OP1 .

By hypothesis, b− a is at least a. Thus, by Proposition 4.1, there exists a map,

φa,b−a : OP1(−(b− a))⊕a → OP1(−a)⊕(b−a),

whose cokernel is isomorphic to O⊕(b−2a)
P1 . Define φa,b,− to be the composite map,

ψ†a,b,+ ◦ φa,b−a : OP1(−(b− a))⊕a →Wb,− ⊗κ OP1 .
13



Define W2b to be Wb,+ ⊕Wb,−. Thus (W2b)∨ is canonically isomorphic to Wb,− ⊕
Wb,+. In the symmetric case, define β2b : W2b →W∨

2b to be the linear map (Wb,+⊕
Wb,−) → (Wb,− ⊕Wb,+) with matrix,

β2b =
(

0 IdWb,−

IdWb,+ 0

)
.

In the skew-symmetric case, define β2b to be the linear map with matrix,

β2b =
(

0 −IdWb,−

IdWb,+ 0

)
.

Define E2a,2b to be the image in W2b ⊗κ OP1 of the sheaf map,

φa,b,+⊕φa,b,− : OP1(−(b−a))⊕a⊕OP1(−(b−a))⊕a → (Wb,+⊗κOP1)⊕(Wb,−⊗κOP1).

Denote by E⊥2a,2b the annihilator of E2a,2b for β2b.

Lemma 5.2. The subsheaf E2a,2b is a rank 2a locally direct summand of W2b⊗κOP1

isotropic for β2b. The quotient (E2a,2b)⊥/E2a,2b is isomorphic to O⊕(2b−4a)
P1 . And,

E∨2a,2b is an ample vector bundle on P1.

Proof. Denote by F the rank 2b−4a) locally free sheaf E⊥2a,2b/E2a,2b. Associated to
β, there is a symmetric, resp. skew-symmetric, pairing βF for F . By construction,
G := Image(ψ†a,b,+)/Image(φa,b,−) is an rank b − 2a locally direct summand of F ,
isotropic for βF . Therefore F is isomorphic to G ⊕ G∨. By construction, G is
isomorphic to O⊕(b−2a)

P1 . Therefore F is isomorphic to O⊕(2b−4a)
P1 .

By construction, E∨2a,2b is isomorphic to OP1(b−a)⊕2a. By hypothesis, a is positive,
and b− 2a is nonnegative, so also b− a = (b− 2a) + a ≥ a > 0. Thus OP1(b− a) is
ample. Since 2a > 0, OP1(b− a)⊕2a is ample. �

6. The classical Grassmannian

Let n > 2 be an integer and let k be an integer 0 < k < n. Let V be an n-
dimensional κ-vector space, and denote by (X,OX(1)) the Grassmannian Flag(k, V )
and the Plücker invertible sheaf. Replacing Flag(k, V ) by the isomorphic scheme
Flag(n−k, V ∨) if necessary, assume k ≤ n/2. Of course Flag(k, V ) equals SLn/Pk,
where Pk is the maximal parabolic group corresponding to the kth node of the
Dynkin diagram An−1.

By Proposition 2.2, a morphism ζ : P1 → M0,1(Flag(k, V ), 1) is equivalent to a
(k − 1, k, k + 1)-flag of locally direct summands,

Ek−1 ⊂ Ek ⊂ Ek+1 ⊂ V ⊗κ OP1 .

By Corollary 2.3, the morphism ζ is very twisting iff
(i) the bundle,

[(Ek+1/Ek)∨ ⊗ ((V ⊗OP1)/Ek+1)]⊕ [(Ek/Ek−1)⊗ E∨k−1],

is ample, and
(ii) the bundle,

(Ek+1/Ek)⊗ (Ek/Ek−1)∨,
has nonnegative degree.

Proposition 6.1. There exists a very twisting morphism ζ : P1 →M0,1(X, 1).
14



Proof. It is equivalent to prove there exists a flag Ek−1 ⊂ Ek ⊂ Ek+1 ⊂ V ⊗ OP1

satisfying Conditions (i)–(ii). Let T0, T1 denote homogeneous coordinates on P1.

Let V ′2k−2 be a rank 2k − 2 vector space, let E′k−1 be OP1(−1)⊕(k−1), and let
φ′k−1,2k−2 : E′k−1 → V ′2k−2 ⊗κ OP1 be a morphism whose cokernel is isomorphic to
OP1(1)⊕(k−1), as in Proposition 4.1. Let V ′′n+1−2k be a rank n+1−2k vector space,
let E′′1 be OP1(−(n−2k)), and let φ′′1,n+1−2k : E′′1 → V ′′n+1−2k⊗κOP1 be a morphism
whose cokernel is isomorphic to OP1(1)n−2k, as in Proposition 4.1. Finally, let V ′′′1

be a rank 1 vector space, let E′′′1 be V ′′′1 ⊗κ OP1 , and let φ′′′1,1 be the identity map.

Define V to be the direct sum of V ′2k−2, V
′′
n+1−2k and V ′′′1 . Define Ek+1 to be the

image of φ′k−1,2k−1 ⊕ φ′′1,n+1−2k ⊕ φ′′′1,1 in V ⊗ OP1 . The cokernel is isomorphic to
OP1(1)⊕(k−1) ⊕OP1(1)⊕(n−2k), i.e., OP1(1)⊕(n−k−1).

Define Ek to be the image of φ′k−1,2k−2⊕φ′′1,n+1−2k. The quotient Ek+1/Ek equals
E′′′1

∼= OP1 . In particular, (Ek+1/Ek)∨ ⊗ ((V ⊗ OP1)/Ek+1) is isomorphic to
OP1(1)n−k−1, which is ample. This is half of Condition (i). For Ek−1, there are
two cases.

Case I: k = 1. In this case, define Ek−1 to be (0). The quotient Ek/Ek−1

equals E′′1 ∼= OP1(−(n− 2k)). So deg(Ek+1/Ek) equals 0 and deg(Ek/Ek−1) equals
−(n − 2k). Since n ≥ 2k, −(n − 2k) ≤ 0, i.e., Condition (ii) holds. Since k = 1,
Condition (i) holds.

Case II: k > 1. Decompose E′k−1 as E′k−2,a ⊕E′1,b, where E′k−2,a is the first k− 2
summands and E′1,b is the last summand. Define E′′′′1 to be OP1(−(n + 1 − 2k)).
Define φ′k−2,a : E′k−2,a → E′k−2,a to be the identity map. And define φ′′′′1,2 : E′′′′1 →
E′1,b ⊕ E′′1 , i.e., OP1(−(n + 1 − 2k)) → OP1(−1) ⊕ OP1(−(n − 2k)), to be the map
with matrix,

φ′′′′1,2 =
(
Tn−2k

0

T1

)
Define Ek−1 to be E′k−2,a⊕E′′′′1 , and define φk−1 : Ek−1 → Ek to be φ′k−2,a⊕φ′′′′1,2.
The map φ′′′′1,2 is injective with cokernel OP1 . Thus φk−1 is injective and Ek/Ek−1

equals OP1 . Since both Ek+1/Ek and Ek/Ek−1 have degree 0, Condition (ii) holds.
Also, E∨k−1⊗ (Ek/Ek−1) equals OP1(1)⊕(k−2)⊕OP1(n+1− 2k). Since n ≥ 2k, this
is an ample bundle. Therefore Condition (i) holds. �

Claim 6.2. The very twisting family in the proof of Proposition 6.1 can be chosen
to be an orbit curve.

Proof. For simplicity, assume k > 1; the case k = 1 is similar and easier. Choose
φ′k−1,2k−2 to be the map with matrix,

φ′k−1,2k−2 =



T0 0 . . . 0
T1 0 . . . 0
0 T0 . . . 0
0 T1 . . . 0
...

...
. . .

...
0 0 . . . T0

0 0 . . . T1
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Choose φ′′1,n+1−2k to be the map with matrix,

φ′′1,n+1−2k =



Tn−2k
0
...

Tn−2k−j
0 T j1

...
Tn−2k

1



Let λ′ : Gm × V → V be the linear action compatible with the direct sum decom-
position V ′2k−2 ⊕ V ′′n+1−2k ⊕ V ′′′1 given by the diagonal matrices D1, D2,

D1 =



1 0 0 0 . . . 0 0
0 t 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 t . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 t



D2 =


t 0 . . . 0
0 t2 . . . 0
...

...
. . .

...
0 0 . . . tn+1−2k


and D3 is the 1× 1 matrix tc for c = −[(k − 1) + (n+ 2− 2k)(n+ 1− 2k)/2]. Let
E′k−1 be the subspace of V ′2k−2 which is the image of the matrix,

1 0 . . . 0
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 1


.

Let E′′1 be the subspace of V ′′n+1−2k spanned by the vector, 1
...
1

 .

And let E′′′1 equals V ′′′1 . Define Ek+1 = E′k−1⊕E′′1⊕E′′′1 . Define Ek to be E′k−1⊕E′′1 .

Decompose V ′2k−2 as V ′2k−4,a⊕V ′2,b where V ′2k−4,a is the first 2k−4 summands, and
V ′2,b is the last 2 summands. Define E′k−2,a to be the subspace of V ′2k−4,a which is
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the image of the matrix, 

1 0 . . . 0
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 1


.

Define E′′′′1 to be the subspace of V ′2,b ⊕ V ′′n+1−2k spanned by the vector,

1
...
1
1
...
1


.

Define Ek−1 to be E′k−2,a ⊕ E′′′′1 . This gives a flag of subbundle of V , Ek−1 ⊂
Ek ⊂ Ek+1 ⊂ V . Define P to be the maximal parabolic subgroup of SL(V ) that
is the stabilizer of the flag Ek ⊂ V and define P ′ to be the stabilizer of the flag
Ek−1 ⊂ Ek ⊂ Ek+1 ⊂ V . The 1-parameter subgroup λ : Gm → SL(V ) is defined
above. The rational curve ζ : P1 → Flag(k − 1, k, k + 1, V ) equals the orbit curve
associated to λ and the flag [Ek−1 ⊂ Ek ⊂ Ek+1 ⊂ V ]. �

7. Isotropic Grassmannians, Case I

Let (W,β) be a symmetric or skew-symmetric pairing of dimension n. If n = 2
or 3 there is no very twisting family of pointed lines to an isotropic Grassmannian
of (W,β). Thus assume n ≥ 4. This subsection proves existence of a very twisting
family of pointed lines on the Grassmannian of isotropic k-planes when k is odd
and n ≥ 2k + 2.

Hypothesis 7.1. The pairing (W,β) is symmetric of dimension 2m or 2m+ 1 or
the pairing (W,β) is skew-symmetric of dimension 2m, and k = 2l + 1. Assume
that l is nonnegative and m is at least max(2, 2l + 2).

The last inequality is equivalent to k is positive, n ≥ 4, and n ≥ 2k + 2.

Let (W ′
4, β4) and E′2,4 be as in Subsection 5 for a = 1 and b = 2. In particular, E′2,4

is isomorphic to OP1(−1)⊕2.

Case Ia: k = 1. Assume that k = 1. Let (W ′′
n−4, β

′′) be a symmetric pairing, resp.
skew-symmetric pairing, of dimension n − 4. Define (W,β) to be the orthogonal
direct sum of (W ′

4, β
′
4) and (W ′′

n−4, β
′′). Define E2 to be E′2,4 considered as a locally

direct summand of W ⊗κ OP1 via the embedding W ′
4 ⊗κ OP1 ↪→W ⊗κ OP1 . Define

E1 to be a direct summand OP1(−1) in E2, and define E0 to be the zero sheaf.

Lemma 7.2. Assume k = 1 and n ≥ 4. The flag E0 ⊂ E1 ⊂ E2 ⊂ W ⊗κ OP1 is
a (0, 1, 2)-flag of isotropic locally direct summands for β. The cokernel E⊥2 /E2 is
isomorphic to W ′′

n−4 ⊗κ OP1 . The cokernels E2/E1 and E1/E0 are isomorphic to
OP1(−1). And E∨0 is the zero sheaf.
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Proof. By construction, E2 is isotropic of rank 2. Since E1 is contained in E2, it is
isotropic. Of course (0) is isotropic. By construction, the annihilator E⊥2 of E2 with
respect to β equals the direct sum of the annihilator (E′2,4)

⊥ of E′2,4 with respect
to β′2,4 and W ′′

n−4 ⊗κ OP1 . By Lemma 5.2, (E′2,4)
⊥ equals E′2,4. Therefore E⊥2 /E2

equals W ′′
n−4 ⊗κ OP1 . By definition of E1 and E0, E2/E1

∼= E1/E0
∼= OP1(−1).

The dual of the zero sheaf is the zero sheaf. �

Proposition 7.3. Assume k = 1. In the skew-symmetric case, assume n ≥ 4. In
the symmetric case, assume n ≥ 5. The morphism ζ : P1 → M associated to the
flag in Lemma 7.2 is a very twisting family of pointed lines on Flag1(W,β).

Proof. By Corollary 3.4 and Corollary 3.14, in both the symmetric and skew-
symmetric case ι∗ψ∨ equals (Ek+1/Ek)⊗ (Ek/Ek−1)∨. By Lemma 7.2, this equals
OP1 , and so has nonnegative degree. This is (iii) of Definition 1.1. In the skew-
symmetric case, by Corollary 3.14 and since E∨0 is the zero sheaf, ι∗Tev is isomorphic
to (E2/E1)∨ ⊗ (E⊥0 /E2). Also since E0 is the zero sheaf, E⊥0 equals W ⊗κ OP1 . In
particular, E⊥0 /E2 has rank n− 2, which is positive by the hypothesis that n ≥ 4.
Since W ⊗κ OP1 is globally generated, the quotient E⊥0 /E2 is globally generated
of positive rank. The tensor product of an ample bundle and a globally generated,
positive rank bundle is an ample bundle. Since (E2/E1)∨ is ample, the tensor
product (E2/E1)∨ ⊗ (E⊥0 /E2) is ample.

The argument in the symmetric case is the same, except E⊥0 /E2 is replaced by
E⊥2 /E2, which is globally generated of rank n − 4 by Lemma 7.2. The rank n − 4
is positive by the hypothesis that n ≥ 5. �

An argument similar to the proof of Claim 6.2 proves the very twisting family can
be chosen to be an orbit curve.

Case Ib: k > 1. Assume now that k > 1, i.e., l ≥ 1. Let (W ′′
2m−4, β

′′
2m−4) and

E′′2l,2m−4,pre be as in Subsection 5 for a = l and b = m− 2. Hypothesis 7.1 implies
b ≥ 2a, i.e., Hypothesis 5.1 holds. By Lemma 5.2, (E′′2l,2m−4,pre)

∨ is ample. Let
f : P1 → P1 be any finite morphism such that f∗[(E′′2l,2m−4,pre)

∨] ⊗ OP1(−1) is
ample. In every case except (l,m) = (1, 4), it suffices to take f to be the identity
map. If (l,m) = (1, 4), it suffices to take f to be any finite morphism of degree
≥ 2. At any rate, define E′′2l,2m−4 to be f∗(E′′2l,2m−4,pre) considered as a subsheaf
of f∗(W ′′

2m−4 ⊗κ OP1) = W ′′
2m−4 ⊗κ OP1 .

If n = 2m, define (W,β) to be the orthogonal direct sum of (W ′
4, β

′
4) and (W ′′

2m−4, β
′′
2m−4).

If n = 2m + 1, which can only occur in the symmetric case, let (1, β1) be a sym-
metric pairing of dimension 1, and define (W,β) to be the orthogonal direct sum
of (W ′

4, β
′
4), (W ′′

2m−4, β
′′
2m−4) and (1, β1). Define E2l+2 to be the direct sum E′2,4

and E′′2l,2m−4. Define E2l+1 to be the direct sum of one direct summand OP1(−1)
of E′2,4 and E′′2l,2m−4. Finally, define E2l to be E′′2l,2m−4.

Lemma 7.4. Assume l ≥ 1 and m ≥ 2l+2. The flag E2l ⊂ E2l+1 ⊂ E2l+2 ⊂W⊗κ
OP1 is a (k−1, k, k+1)-flag of isotropic locally direct summands for β. The cokernel
E⊥2l+2/E2l+2 is isomorphic to O⊕(2m−4l−4)

P1 if n = 2m, respectively O⊕(2m−4l−3)
P1 if

n = 2m + 1. The cokernel E⊥2l/E2l+2 is isomorphic to OP1(1)⊕2 ⊕ O⊕(2m−4l−4)
P1

if n = 2m, respectively OP1(1)⊕2 ⊕ O⊕(2m−4l−3)
P1 if n = 2m + 1. The cokernels
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E2l+2/E2l+1 and E2l+1/E2l are each isomorphic to OP1(−1). And E∨2l⊗(E2l+1/E2l)
is ample.

Proof. Since E′2,4 is isotropic for β′2,4 and E′′2l,2m−4 is isotropic for β′′2l,2m−4, E2l+2 is
isotropic for β. Since E2l+1 and E2l are contained in E2l+2, they are also isotropic
for β. The annihilator E⊥2l+2 of E2l+2 with respect to β is the direct sum of the anni-
hilator (E′2,4)

⊥ of E′2,4 with respect to β′2,4, the annihilator (E′′2l,2m−4)
⊥ of E′′2l,2m−4

with respect to β′′2l,2m−4, and also OP1 if n = 2m + 1. Therefore E⊥2l+2/E2l+2

equals the direct sum of (E′2,4)
⊥/E′2,4, (E′′2l,2m−4)

⊥/E′′2l,2m−4, and also OP1 if n =
2m + 1. By Lemma 5.2, E′2,4 is its own annihilator, and (E′′2l,2m−4)

⊥/E′′2l,2m−4

equals O⊕(2m−4l−4)
P1 . Therefore E⊥2l+2/E2l+2 equals O⊕(2m−4l−4)

P1 if n = 2m, and
equals O⊕(2m−4l−3)

P1 if n = 2m+ 1.

The computation of E⊥2l/E2l+2 is similar, except the summand (E′2,4)
⊥/E′2,4 is

replaced by W ′
4⊗κOP1/E′2,4. Since E′2,4 equals its own annihilator, W ′

4⊗κOP1/E′2,4
equals the dual of E′2,4. Thus W ′

4⊗κOP1/E′2,4 equals (OP1(−1)⊕2)∨, i.e., OP1(1)⊕2.

Therefore E⊥2l/E2l+2 equals OP1(1)⊕2 ⊕ O⊕(2m−4l−4)
P1 if n = 2m, and OP1(1)⊕2 ⊕

O⊕(2m−4l−3)
P1 if n = 2m+ 1.

By definition, E2l+2/E2l+1 and E2l+1/E2l are isomorphic to OP1(−1) and E∨2l ⊗
(E2l+1/E2l), i.e., E∨2l ⊗OP1(−1), is ample. �

Proposition 7.5. Assume l ≥ 1 and m ≥ 2l + 1. The morphism ζ : P1 → M
associated to the flag in Lemma 7.4 is a very twisting family of pointed lines on
Flagk(W,β).

Proof. This is very similar to the proof of Proposition 7.3. �

It seems likely ζ can be chosen to be an orbit curve. However, since the entries of
the matrix for φ′′2l,2m−4 are typically not monomials, it is not certain.

8. Isotropic Grassmannians, Case II

Let (W,β) be a symmetric or skew-symmetric pairing of dimension n. This
subsection proves existence of a very twisting family of pointed lines on the Grass-
mannian of isotropic k-planes when k is even and n ≥ 2k + 2.

Hypothesis 8.1. The pairing (W,β) is symmetric of dimension 2m or 2m+ 1 or
the pairing (W,β) is skew-symmetric of dimension 2m, and k = 2l. Assume that l
is positive and m is at least 2l + 1.

The last inequality is equivalent to k is positive and n ≥ 2k + 2. In particular,
observe that m is at least 3.

Define (W ′
6, β

′
6) as in Subsection 5 for b = 3. Choose an ordered basis e1, e2, e3

of W ′
3,+. Denote the dual ordered basis of W ′

3,− by x1, x2, x3. Define E′3,6 to be
the rank 3 locally free OP1-module OP1(−2)f⊕OP1(−1)g1⊕OP1(−1)g2, where the
symbols f,g1,g2 are simply place-holders. There is an isomorphism φ′3,6 of E′3,6 to
an isotropic locally direct summand of W ′

6⊗κOP1 . The definition of φ′3,6 is different
in the symmetric and skew-symmetric case.
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Symmetric case. Define φ′3,6 : E′3,6 → W ′
6 ⊗κ OP1 to be the unique OP1-module

homomorphism satisfying,

φ′3,6(g) = T 2
0 e1 + T0T1e2 + T 2

1 x3

φ′3,6(f1) = T0e3 − T1x2

φ′3,6(f2) = T1x1 − T0x2

The proof of the following lemma is a straightforward computation.

Lemma 8.2. Let (W ′
6, β

′
6) be the symmetric pairing from above. The image of φ′3,6

is a rank 3 locally direct summand of W ′
6 ⊗κOP1 isotropic for β′6. It equals its own

annihilator with respect to β′6.

Skew-symmetric case. Define φ′3,5 : E′3,6 → W ′
6 ⊗κ OP1 to be the unique OP1-

module homomorphism satisfying,

φ′3,6(g) = −T 2
0 e1 + T0T1(e2 − x2) + T 2

1 x3

φ′3,6(f1) = T0(e2 + x2) + 2T1x1

φ′3,6(f2) = T1(e2 + x2) + 2T0e3

The proof of the following lemma is a straightforward computation.

Lemma 8.3. Let (W ′
6, β

′
6) be the skew-symmetric pairing from above. The image

of φ′3,6 is a rank 3 locally direct summand of W ′
6 ⊗κ OP1 isotropic for β′6. It equals

its own annihilator with respect to β′6.

Case IIa: k = 2. Assume that k = 2, i.e., l = 1. Then Hypothesis 8.1 is
equivalent to n ≥ 6. Let (W ′′

n−6, β
′′) be a symmetric pairing, resp. skew-symmetric

pairing, of dimension n − 6. Define (W,β) to be the orthogonal direct sum of
(W ′

6, β
′
6) and (W ′′

n−6, β
′′). Define E3 to be E′3,6. Define E2 to be direct summand

OP1(−2)g⊕OP1(−1)f1, and define E1 to be OP1(−2)g.

Lemma 8.4. Assume k = 2 and n ≥ 6, either the symmetric or the skew-symmetric
case. The flag E1 ⊂ E2 ⊂ E3 ⊂ W ⊗κ OP1 is a (1, 2, 3)-flag of isotropic locally
direct summands for β. The cokernel E⊥3 /E3 is isomorphic to W ′

n−6 ⊗κ OP1 . The
cokernel E⊥1 /E3 is isomorphic to OP1(1)⊕2 ⊕W ′

n−4 ⊗κ OP1 . The cokernels E3/E2

and E2/E1 are isomorphic to OP1(−1). And E∨1 ⊗ (E2/E1) is isomorphic to the
ample invertible sheaf OP1(1).

Proof. By Lemma 8.2, resp. Lemma 8.3, E3 is isotropic of rank 3. Since E2 and
E1 are contained in E3, they are isotropic. By construction, the annihilator E⊥3
of E3 with respect to β is the direct sum of the annihilator (E′3,6)

⊥ of E′3,6 with
respect to β′3,6 and W ′′

n−6⊗κOP1 . By Lemma 8.2, resp. Lemma 8.3, (E′3,6)
⊥ equals

E′3,6. Therefore E⊥3 /E3 equals W ′′
n−6⊗κOP1 . Similarly, E⊥1 is the direct sum of the

annihilator of OP1(−2)g with respect to β′3,6 and W ′′
n−6 ⊗κ OP1 . Since E′3,6 equals

its own annihilator, (OP1(−2)g)⊥/E′3,6 equals the dual of E′3,6/OP1(−2)g. Thus
(OP1(−2)g)⊥/E′3,6 equals (OP1(−1)⊕2)∨, i.e., OP1(1)⊕2. Therefore E⊥1 /E3 equals
OP1(1)⊕2 ⊕W ′′

n−6 ⊗κ OP1 .

By the definition of E2 and E1, E3/E2
∼= E2/E1

∼= OP1(−1). Since E1
∼= OP1(−2),

E∨1 ⊗ (E2/E1) equals OP1(2)⊗OP1(−1), i.e., OP1(1). �

Proposition 8.5. Assume k = 2 and n ≥ 6, either the symmetric or the skew-
symmetric case. The morphism ζ : P1 →M associated to the flag in Lemma 8.4 is
a very twisting family of pointed lines on Flag2(W,β).
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Proof. This is very similar to the proof of Proposition 7.3. Of course now the term
E∨1 ⊗ (E2/E2) in ζ∗Tev is nonzero. But by the last part of Lemma 8.4, this is
ample. �

An argument similar to the proof of Claim 6.2 proves the very twisting family can
be chosen to be an orbit curve.

Case IIb: k > 2. Assume now that k > 2, i.e., l ≥ 2. In both the symmetric
case and the skew-symmetric case, let (W ′′

2m−6, β
′′
2m−6) and E′′2l−2,2m−6,pre be as

in Subsection 5 for a = l − 1 and b = m − 3. Because l ≥ 2, a is positive. By
Hypothesis 8.1, b ≥ 2a. In particular, b is positive and Hypothesis 5.1 holds. By
Lemma 5.2, (E′′2l−2,2m−6,pre)∨ is ample. Let f : P1 → P1 be any finite morphism
such that f∗[(E′′2l−2,2m−6,pre)

∨]⊗OP1(−1) is ample. In every case except (l,m) =
(2, 5), it suffices to take f to be the identity map. If (l,m) = (2, 5), it suffices to take
f to be any finite morphism of degree ≥ 2. At any rate, define E′′2l−2,2m−6 to be
f∗(E′′2l−2,2m−6,pre) considered as a subsheaf of f∗(W ′′

2m−6⊗κOP1) = W ′′
2m−6⊗κOP1 .

If n = 2m, define (W,β) to be the orthogonal direct sum of (W ′
6, β

′
6) and (W ′′

2m−6, β
′′
2m−6).

If n = 2m + 1, which can only occur in the symmetric case, let (1, β1) be a sym-
metric pairing of dimension 1, and define (W,β) to be the orthogonal direct sum
of (W ′

6, β
′
6), (W ′′

2m−6, β
′′
2m−6) and (1, β1). Define E2l+1 to be the direct sum E′3,6

and E′′2l−2,2m−6. Define E2l to be the direct sum of OP1(−2)g ⊕ OP1(−1)f1 and
E′′2l−2,2m−6. Finally, define E2l−1 to be the direct sum of OP1(−2)g and E′′2l−2,2m−6.

Lemma 8.6. Assume l ≥ 2 and m ≥ 2l+1. The flag E2l−1 ⊂ E2l ⊂ E2l+1 ⊂W⊗κ
OP1 is a (k−1, k, k+1)-flag of isotropic locally direct summands for β. The cokernel
E⊥2l+1/E2l+1 is isomorphic to O⊕(2m−4l−2)

P1 if n = 2m, respectively O⊕(2m−4l−1)
P1 if

n = 2m + 1. The cokernel E⊥2l−1/E2l+1 is isomorphic to OP1(1)⊕2 ⊕O⊕(2m−4l−2)
P1

if n = 2m, respectively OP1(1)⊕2 ⊕ O⊕(2m−4l−1)
P1 if n = 2m + 1. The cokernels

E2l+1/E2l and E2l/E2l−1 are each isomorphic to OP1(−1). And E∨2l−1⊗(E2l/E2l−1)
is ample.

Proof. Since E′3,6 is isotropic for β′3,6 and E′′2l−2,2m−6 is isotropic for β′′2l−2,2m−6,
E2l+1 is isotropic for β. Since E2l and E2l − 1 are contained in E2l+1, they are also
isotropic for β. The annihilator E⊥2l+1 of E2l+1 with respect to β is the direct sum of
the annihilator (E′3,6)

⊥ of E′3,6 with respect to β′3,6, the annihilator (E′′2l−2,2m−6)
⊥

of E′′2l−2,2m−6 with respect to β′′2l−2,2m−6, and also OP1 if n = 2m + 1. Therefore
E⊥2l+1/E2l+2 equals the direct sum of (E′3,6)

⊥/E′3,6, (E′′2l−2,2m−6)
⊥/E′′2l−2,2m−6, and

also OP1 if n = 2m + 1. By Lemma 8.2, resp. Lemma 8.3, E′3,6 is its own anni-

hilator. By Lemma 5.2, (E′′2l−2,2m−6)
⊥/E′′2l−2,2m−6 equals O⊕(2m−4l−2)

P1 . Therefore

E⊥2l+1/E2l+1 equals O⊕(2m−4l−2)
P1 if n = 2m, and equals O⊕(2m−4l−1)

P1 if n = 2m+1.

The computation of E⊥2l−1/E2l+1 is similar, except the summand (E′3,6)
⊥/E′3,6 is re-

placed by (OP1(−2)g)⊥/E′3,6. Since E′3,6 equals its own annihilator, (OP1(−2)g)⊥/E′3,6
equals the dual of E′3,6/OP1(−2)g. Thus (OP1(−2)g)⊥/E′3,6 equals (OP1(−1)⊕2)∨,

i.e., OP1(1)⊕2. Therefore E⊥2l−1/E2l+1 equals OP1(1)⊕2 ⊕ O⊕(2m−4l−2)
P1 if n = 2m,

and OP1(1)⊕2 ⊕O⊕(2m−4l−1)
P1 if n = 2m+ 1.
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By definition, E2l+1/E2l andE2l/E2l−1 are isomorphic toOP1(−1). Since (E′′2l−2,2m−6)
∨⊗

OP1(−1) is ample, also E∨2l−1⊗ (E2l/E2l−1), which equals the direct sum of OP1(1)
and (E′′2l−2,2m−6)

∨ ⊗OP1(−1), is ample. �

Proposition 8.7. Assume l ≥ 1 and m ≥ 2l + 1. The morphism ζ : P1 → M
associated to the flag in Lemma 8.6 is a very twisting family of pointed lines on
Flagk(W,β).

Proof. The proof is very similar to the proof of Proposition 8.5. �

It seems likely ζ can be chosen to be an orbit curve. However, since the entries of
the matrix for φ′′2l,2m−4 are typically not monomials, it is not certain.

9. Isotropic Grassmannians, Case III

Let (W,β) be a symmetric pairing of dimension n = 2k. This subsection proves
existence of a very twisting family of pointed lines on the Grassmannian of isotropic
k-planes when k ≥ 3. There is no very twisting family if k = 1 or k = 2.

Case IIIa, k even. Let l ≥ 2 be an integer, and let k equal 2l. Let n equal 2k, i.e.,
4l. Let (W ′

4, β
′
4) and E′2,4 be as in Subsection 5 for a = 1 and b = 2. In particular,

E′2,4 is isomorphic to OP1(−1)⊕2.

Let (W ′′
4l−4, β

′′
4l−4) and E′′2l−2,4l−4,pre be as in Subsection 5 for a = l−1 and b = 2l−2.

Since l ≥ 2, a is positive. And, of course, b equals 2a. Thus Hypothesis 5.1 holds.
By Lemma 5.2, (E′′2l−2,4l−4,pre)

∨ is ample. Let f : P1 → P1 be any finite morphism
such that f∗[(E′′2l−2,4l−4,pre)

∨] ⊗ OP1(−1) is ample. In every case except l = 2, it
suffices to take f to be the identity map. If l = 2, it suffices to take f to be any
finite morphism of degree≥ 2. At any rate, define E′′2l−2,4l−4 to be f∗(E′′2l−2,4l−4,pre)
considered as a subsheaf of f∗(W ′′

4l−4 ⊗κ OP1) = W ′′
4l−4 ⊗κ OP1 .

Define (W,β) to be the orthogonal direct sum of (W ′
4, β

′
4) and (W ′′

4l−4, β
′′
4l−4). Define

E2l to be the direct sum of E′2,4 and E′′2l−2,4l−4. And define E2l−2 to be E′′2l−2,4l−4.

Lemma 9.1. Assume l ≥ 2. Let k equal 2l and let n equal 4l. The flag E2l−2 ⊂
E2l ⊂W ⊗κOP1 is a (k− 2, k)-flag of isotropic locally direct summands for β. The
cokernel E2l/E2l−2 is isomorphic to OP1(−1)⊕2. The determinant

∧2(E2l/E2l−2)∨

is isomorphic to OP1(2). And (E2l/E2l−2)⊗ E∨2l−2 is ample.

Proof. The proof is very similar to the proof of Lemma 7.4. The novel feature is the
computation of

∧2(E2l/E2l−2)∨, which is obviously OP1(2) since E2l/E2l−2 equals
OP1(−1)⊕2. �

Proposition 9.2. Assume l ≥ 2. Let k equal 2l and let n equal 4l. The morphism
ζ : P1 →M associated to the flag in Lemma 9.1 is a very twisting family of pointed
lines on Flagk(W,β).

Proof. The proof is very similar to the proof of Proposition 7.3. Instead of Corol-
lary 3.4, use Corollary 3.10. �

An argument similar to the proof of Claim 6.2 proves the very twisting family can
be chosen to be an orbit curve.

Case IIIb, k odd. Let l ≥ 1 be an integer, let k equal 2l + 1, and let n equal
2k = 4l + 2. For (n, k) = (2, 1), there is no very twisting family of lines. Let
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(W ′
6, β

′
6) and E′3,6 be as in Subsection 8 for the symmetric pairing. In particular,

E′3,6 is isomorphic to OP1(−2)g⊕OP1(−1)f1 ⊕OP1(−1)f2. If l = 1, i.e., k = 3 and
n = 6, define (W,β) to be (W ′

6, β
′
6), define E′k to be E′3,6 and define E′k−2 to be

OP1(−2)g.

Next assume l ≥ 2. Let (W ′′
4l−4, β

′′
4l−4) and E′′2l−2,4l−4,pre be as in Subsection 5 for

a = l − 1 and b = 2l − 2. Since l ≥ 2, a is positive. And, of course, b = 2a. Thus
Hypothesis 5.1 holds. By Lemma 5.2, (E′′2l−2,4l−4,pre)

∨ is ample. Let f : P1 → P1

be any finite morphism such that f∗[(E′′2l−2,4l−4,pre)
∨]⊗OP1(−1) is ample. In every

case except l = 2, it suffices to take f to be the identity map. If l = 2, it suffices to
take f to be any finite morphism of degree ≥ 2. At any rate, define E′′2l−2,4l−4 to be
f∗(E′′2l−2,4l−4,pre) considered as a subsheaf of f∗(W ′′

4l−4 ⊗κ OP1) = W ′′
4l−4 ⊗κ OP1 .

Define (W,β) to be the orthogonal direct sum of (W ′
6, β

′
6) and (W ′′

4l−4, β
′′
4l−4). Define

E2l+1 to be the direct sum of E′3,6 and E′′2l−2,4l−4. And define E2l−1 to be the direct
sum of OP1(−2)g and E′′2l−2,4l−4.

Lemma 9.3. Assume l ≥ 1. Let k equal 2l + 1 and let n equal 4l + 2. The flag
E2l−1 ⊂ E2l+1 ⊂W ⊗κOP1 is a (k− 2, k)-flag of isotropic locally direct summands
for β. The cokernel E2l+1/E2l−1 is isomorphic to OP1(−1)⊕2. The determinant∧2(E2l+1/E2l−1)∨ is isomorphic to OP1(2). And (E2l+1/E2l−1)⊗ E∨2l−1 is ample.

Proof. The proof is very similar to the proof of Lemma 9.1. �

Proposition 9.4. Assume l ≥ 1. Let k equal 2l + 1 and let n equal 4l + 2. The
morphism ζ : P1 →M associated to the flag in Lemma 9.1 is a very twisting family
of pointed lines on Flagk(W,β).

Proof. The proof is very similar to the proof of Proposition 9.2. �

An argument similar to the proof of Claim 6.2 proves the very twisting family can
be chosen to be an orbit curve.

10. Isotropic Grassmannians, Case IV

Let (W,β) be a skew-symmetric pairing of dimension n = 2k. This subsection
proves existence of a very twisting family of pointed lines on the Grassmannian of
isotropic k-planes when k ≥ 2. For k = 1 there is no very twisting family of pointed
lines.

Case IVa, k even. Let l ≥ 1 be an integer, and let k equal 2l. Let n equal 2k,
i.e., 4l. Let (W ′

4, β
′
2) be (W ′

2,+ ⊕W ′
2,−, β

′
4) as in Subsection 5 for b = 2. Choose

an ordered basis e1, e2 for W ′
2,+, and let x1, x2 be the dual ordered basis for W ′

2,−.
Define R′3 to be the image of the sheaf,

φ′3 : OP1{a} ⊕ OP1(−1){b+,b−} →W ′
4 ⊗OP1 ,

φ′3(a) = e2 − x2, φ
′
3(b+) = T0e1 + T1e2, φ

′
3(b−) = −T1x1 + T0x2.

Define E′2 and E′1 to be the subsheaves of R′3 given by,

E′2 = φ′3(OP1(−1){b+,b−}),
E′1 = φ′3(OP1(−2){T0b+ − T1b−}) = OP1(−2){T 2

0 e1 + T0T1(e2 − x2) + T 2
1 x2}.
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Lemma 10.1. Let (W ′
4, β

′
4) be the skew-symmetric pairing from above. The sheaf

E′2 is a rank 2 isotropic locally direct summand of W ′
4 ⊗κ OP1 . The subsheaf E′1 is

a rank 1 isotropic locally direct summand. The annihilator of E′1 with respect to
β′4 equals R′3. The cokernels R′3/E

′
2 and E′2/E

′
1 are both isomorphic to OP1 . And

(E′1)
∨ is an ample invertible sheaf.

Proof. Since b+ maps into W ′
2,+ ⊗κ OP1 and b− maps into W ′

2,− ⊗κ OP1 , the
images are mutually orthogonal. Therefore E′2 is isotropic. It is straightforward to
compute that E′2 and E′1 are locally direct summands of rank 2, respectively rank
1. It is also straightforward to compute that R′3 is a rank 3 locally direct summand
that annihilates E′1. Thus it is all of the annihilator of E′1. The cokernels R′3/E

′
2

and E′2/E
′
1 are invertible sheaves. Comparing the degrees of E′1, E

′
2 and R′3, the

cokernels have degree 0, thus are isomorphic to OP1 . Of course (E′1)
∨ is isomorphic

to the ample invertible sheaf OP1(2). �

If l = 1, define W ′′
0 to be the zero vector space, and define E′′0 to be the zero sheaf

on P1. If l > 1, let (W ′′
4l−4, β

′′
4l−4) and E′′2l−2,4l−4 be as in Subsection 5 for a = l− 1

and b = 2l − 2. Since l > 1, a is positive. And, of course, b equals 2a. Thus
Hypothesis 5.1 holds. By Lemma 5.2, (E′′2l−2,4l−4)

∨ is ample.

Define (W,β) to be the orthogonal direct sum of (W ′
2, β

′
2) and (W ′′

4l−4, β
′′
4l−4), which

is just (W ′
2, β

′
2) if l equals 1. Define R2l+1 to be the direct sum of R′3 and E′′2l−2,4l−4.

Define E2l to be the direct sum of E′2 and E′′2l−2,4l−4. And define E2l−1 to be the
direct sum of E′1 and E′′2l−2,4l−4.

Lemma 10.2. Assume l ≥ 2. Let k equal 2l and let n equal 4l. The flag E2l−1 ⊂
E2l ⊂ R2l+1 ⊂ W ⊗κ OP1 is a (k − 1, k, k + 1)-flag parametrized by a morphism
ζ : P1 → M . The annihilator of E2l−1 equals R2l+1. The cokernels Rk+1/Ek and
Ek/Ek−1 are each isomorphic to OP1 . And (Ek/Ek−1)⊗ E∨k−1 is ample.

Proof. This follows by combining Lemma 10.1 with the method of proof of Lemma 7.2.
The novelty is that R2l+1 is not isotropic. However, it does equal the annihilator
of E2l−1 with respect to β2l. �

Proposition 10.3. Assume l ≥ 2. Let k equal 2l and let n equal 4l. The morphism
ζ : P1 →M associated to the flag in Lemma 10.2 is a very twisting family of pointed
lines on Flagk(W,β).

Proof. This is very similar to the proof of Proposition 7.3. �

Case IVb, k odd. Let l ≥ 1 be an integer, let k equal 2l + 1, and let n equal
2k = 4l + 2. For (n, k) = (2, 1), there is no very twisting family of lines. Let
(W ′

2, β
′
2) be as in 5 for b = 1. In particular, W ′

2 is the direct sum of W ′
1,+ and W ′

1,−.

Let (W ′′
4l, β

′′
4l) and E′′2l,4l be as in Subsection 5 for a = l and b = 2l. Since l ≥ 1, a

is positive. And, of course, b equals 2a. Thus Hypothesis 5.1 holds.

Define (W,β) to be the orthogonal direct sum of (W ′
2, β

′
2) and (W ′′

4l, β
′′
4l). Define

R2l+2 to be the direct sum of W ′
2 and E′′2l,4l. Define E2l+1 to be the direct sum of

W ′
1,+ and E′′2l,4l. And define E2l to be E′′2l,4l.
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Lemma 10.4. Assume l ≥ 1. Let k equal 2l + 1 and let n equal 4l + 2. The
flag E2l ⊂ E2l+1 ⊂ R2l+2 ⊂ W ⊗κ OP1 is a (k − 1, k, k + 1)-flag parametrized by
a morphism ζ : P1 → M . The annihilator of E2l equals R2l+2. The cokernels
Rk+1/Ek and Ek/Ek−1 are each isomorphic to OP1 . And (Ek/Ek−1) ⊗ E∨k−1 is
ample.

Proof. This is similar to the proof of Lemma 10.2. �

Proposition 10.5. Assume l ≥ 1. Let k equal 2l + 1 and let n equal 4l + 2. The
morphism ζ : P1 → M associated to the flag in Lemma 10.4 is a very twisting
family of pointed lines on Flagk(W,β).

Proof. This is similar to the proof of Proposition 10.5. �

An argument similar to the proof of Claim 6.2 proves the very twisting family can
be chosen to be an orbit curve.
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