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Abstract. These notes accompany lectures presented at the Clay Mathe-

matics Institute 2006 Summer School on Arithmetic Geometry. The lectures

summarize some recent progress on existence of rational points of projective
varieties defined over a function field over an algebraically closed field.

1. Introduction

These notes accompany lectures presented at the Clay Mathematics Institute 2006
Summer School on Arithmetic Geometry. They are more complete than the lectures
themselves. Exercises assigned during the lectures are proved as lemmas or propo-
sitions in these notes. Hopefully this makes the notes useful to a wider audience
than the original participants of the summer school.

This report describes some recent progress on questions in the interface between
arithmetic geometry and algebraic geometry. In fact the questions come from arith-
metic geometry: what is known about existence and “abundance” of points on alge-
braic varieties defined over a non-algebraically closed field K. But the answers are
in algebraic geometry, i.e., they apply only when the field K is the function field
of an algebraic variety over an algebraically closed field. For workers in number
theory, such answer are of limited interest. But hopefully the techniques will be of
interest, perhaps as simple analogues for more advanced techniques in arithmetic.
With regards to this hope, the reader is encouraged to look at two articles on the
arithmetic side, [GHMS04a] and [GHMS04b]. Also, of course, the answers have
interesting consequences within algebraic geometry itself.

There are three sections corresponding to the three lectures I delivered in the sum-
mer school. The first lecture proves the classical theorems of Chevalley-Warning
and Tsen-Lang: complete intersections in projective space of sufficiently low degree
defined over finite fields or over function fields always have rational points. These
theorems imply corollaries about the Brauer group and Galois cohomology of these
fields, which are also described.

The second section introduces rationally connected varieties and presents the proof
of Tom Graber, Joe Harris and myself of a conjecture of Kollár, Miyaoka and Mori:
every rationally connected fibration over a curve over an algebraically closed field of
characteristic 0 has a section. The proof presented here incorporates simplifications
due to A. J. de Jong. Some effort is made to indicate the changes necessary to prove
A. J. de Jong’s generalization to separably rationally connected fibrations over
curves over fields of arbitrary characteristic. In the course of the proof, we give a
thorough introduction to the “smoothing combs” technique of Kollár, Miyaoka and
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Mori and its application to weak approximation for “generic jets” in smooth fibers
of rationally connected fibrations. This has been significantly generalized to weak
approximation for all jets in smooth fibers by Hassett and Tschinkel, cf. [HT06].
Some corollaries of the Kollár-Miyaoka-Mori conjecture to Mumford’s conjecture,
fixed point theorems, and fundamental groups are also described (these were known
to follow before the conjecture was proved).

Finally, the last section hints at the beginnings of a generalization of the Kollár-
Miyaoka-Mori conjecture to higher-dimensional function fields (not just function
fields of curves). A rigorous result in this area is a second proof of A. J. de Jong’s
Period-Index Theorem: for a division algebra D whose center is the function field K
of a surface, the index of D equals the order of [D] in the Brauer group of K. This
also ties together the first and second sections. Historically the primary motivation
for the theorems of Chevalley, Tsen and Lang had to do with Brauer groups and
Galois cohomology. The subject has grown beyond these first steps. But the newer
results do have consequences for Brauer groups and Galois cohomology in much the
same vein as the original results in this subject.

2. The Tsen-Lang theorem

A motivating problem in both arithmetic and geometry is the following.

Problem 2.1. Given a field K and a K-variety X find sufficient, resp. necessary,
conditions for existence of a K-point of X.

The problem depends dramatically on the type of K: number field, finite field,
p-adic field, function field over a finite field, or function field over an algebraically
closed field. In arithmetic the number field case is most exciting. However the
geometric case, i.e., the case of a function field over an algebraically closed field, is
typically easier and may suggest approaches and conjectures in the arithmetic case.

Two results, the Chevalley-Warning theorem and Tsen’s theorem, deduce a suffi-
cient condition for existence of K-points by “counting”. More generally, counting
leads to a relative result: the Tsen-Lang theorem that a strong property about ex-
istence of k-points for a field k propagates to a weaker property about K-points for
certain field extensions K/k. The prototype result, both historically and logically,
is a theorem of Chevalley and its generalization by Warning. The counting result
at the heart of the proof is Lagrange’s theorem together with the observation that a
nonzero single-variable polynomial of degree ≤ q− 1 cannot have q distinct zeroes.

Lemma 2.2. For a finite field K with q elements, the polynomial 1−xq−1 vanishes
on K∗ and xq −x vanishes on all of K. For every integer n ≥ 0, for the K-algebra
homomorphism

evn : K[X0, . . . , Xn] → HomSets(Kn+1,K),

evn(p(X0, . . . , Xn)) = ((a0, . . . , an) 7→ p(a0, . . . , an)),
the kernel equals the ideal

In = 〈Xq
0 −X0, . . . , X

q
n −Xn〉.

Finally, the collection (Xq
i − Xi)i=0,...,n is a Gröbner basis with respect to every

monomial order refining the grading of monomials by total order. In particular, for
every p in In some term of p of highest degree is in the ideal 〈Xq

0 , . . . , Xq
n〉.
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Proof. Because K∗ is a group of order q − 1, Lagrange’s theorem implies aq−1 = 1
for every element a of K∗, i.e., 1 − xq−1 vanishes on K∗. Multiplying by x shows
that xq − x vanishes on K. Thus the ideal In is at least contained in the kernel of
evn.

Modulo Xq
n −Xn, every element of K[X0, . . . , Xn] is congruent to one of the form

p(X0, . . . , Xn) = pq−1 ·Xq
n + · · ·+ p0X

0
n, p0, . . . , pq−1 ∈ K[X0, . . . , Xn−1].

(Of course Kn is defined to be {0} and K[X0, . . . , Xn−1] is defined to be K if n
equals 0.) Since K has q elements and since a nonzero polynomial of degree ≤ q−1
can have at most q−1 distinct zeroes, for every (a0, . . . , an−1) ∈ Kn the polynomial
p(a0, . . . , an−1, Xn) is zero on K if and only if

p0(a0, . . . , an−1) = · · · = pq−1(a0, . . . , an−1).

Thus evn(p) equals 0 if and only if each evn−1(pi) equals 0. In that case, by the
induction hypothesis, each pi is in In−1 (in case n = 0, each pi equals 0). Then,
since In−1K[X0, . . . , Xn] is in In, p is in In. Therefore, by induction on n, the
kernel of evn is precisely In.

Finally, Buchberger’s algorithms applied to the set (Xq
0−X0, . . . , X

q
n−Xn) produces

S-polynomials

Si,j = Xq
j (Xq

i −Xi)−Xq
i (Xq

j −Xj) = Xj(X
q
i −Xi)−Xi(X

q
j −Xj)

which have remainder 0. Therefore this set is a Gröbner basis by Buchberger’s
criterion. �

Theorem 2.3. [Che35],[War35] Let K be a finite field. Let n and r be positive in-
tegers. Let F1, . . . , Fr be nonconstant, homogeneous polynomials in K[X0, . . . , Xn].
If

deg(F1) + · · ·+ deg(Fr) ≤ n

then there exists (a0, . . . , an) ∈ Kn+1 − {0} such that for every i = 1, . . . , r,
Fi(a0, . . . , an) equals 0. Stated differently, the projective scheme V(F1, . . . , Fr) ⊂
Pn

K has a K-point.

Proof. Denote by q the number of elements in K. The polynomial

G(X0, . . . , Xn) = 1−
n∏

i=0

(1−Xq−1
i )

equals 0 on {0} and equals 1 on Kn+1 − {0}. For the same reason, the polynomial

H(X0, . . . , Xn) = 1−
r∏

j=1

(1− Fj(X0, . . . , Xn)q−1)

equals 0 on

{(a0, . . . , an) ∈ Kn+1|F1(a0, . . . , an) = · · · = Fr(a0, . . . , an) = 0}
and equals 1 on the complement of this set in Kn+1. Since each Fi is homogeneous,
0 is a common zero of F1, . . . , Fr. Thus the difference G−H equals 1 on

{(a0, . . . , an) ∈ Kn+1 − {0}|F1(a0, . . . , an) = · · · = Fr(a0, . . . , an) = 0}
and equals 0 on the complement of this set in Kn+1. Thus, to prove that F1, . . . , Fr

have a nontrivial common zero, it suffices to prove the polynomial G−H does not
lie in the ideal In.
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Since
deg(F1) + · · ·+ deg(Fr) ≤ n,

H has strictly smaller degree than G. Thus the leading term of G − H equals
the leading term of G. There is only one term of G of degree deg(G). Thus, for
every monomial ordering refining the grading by total degree, the leading term of
G equals

(−1)n+1Xq−1
0 Xq−1

1 · · ·Xq−1
n .

This is clearly divisible by none of Xq
i for i = 0, . . . , n, i.e., the leading term of

G − H is not in the ideal 〈Xq
0 , . . . , Xq

n〉. Because (Xq
0 − X0, . . . , X

q
n − Xn) is a

Gröbner basis for In with respect to the monomial order, G−H is not in In. �

On the geometric side, an analogue of Chevalley’s theorem was proved by Tsen, cf.
[Tse33]. This was later generalized independently by Tsen and Lang, cf. [Tse36],
[Lan52]. Lang introduced a definition which simplifies the argument.

Definition 2.4. [Lan52] Let m be a nonnegative integer. A field K is called Cm,
or said to have property Cm, if it satisfies the following. For every positive integer
n and every sequence of positive integers (d1, . . . , dr) satisfying

dm
1 + · · ·+ dm

r ≤ n,

every sequence (F1, . . . , Fr) of homogeneous polynomials Fi ∈ K[X0, . . . , Xn] with
deg(Fi) = di has a common zero in Kn+1 − {0}.

Remark 2.5. In fact the definition in [Lan52] is a little bit different than this. For
fields having normic forms, Lang proves the definition above is equivalent to his
definition. And the definition above works best with the following results.

With this definition, the statement of the Chevalley-Warning theorem is quite sim-
ple: every finite field has property C1. The next result proves that property Cm is
preserved by algebraic extension.

Lemma 2.6. For every nonnegative integer m, every algebraic extension of a field
with property Cm has property Cm.

Proof. Let K be a field with property Cm and let L′/K be an algebraic extension.
For every sequence of polynomials (F1, . . . , Fr) as in the definition, the coefficients
generate a finitely generated subextension L/K of L′/K. Thus clearly it suffices to
prove the lemma for finitely generated, algebraic extensions L/K.

Denote by e the finite dimension dimK(L). Because multiplication on L is K-
bilinear, each homogeneous, degree di, polynomial map of L-vector spaces,

Fi : L⊕(n+1) → L,

is also a homogeneous, degree di, polynomial map of K-vector spaces. Choosing
a K-basis for L and decomposing Fi accordingly, Fi is equivalent to e distinct
homogeneous, degree di, polynomial maps of K-vector spaces,

Fi,j : L⊕(n+1) → K, j = 1, . . . , e.

The set of common zeroes of the collection of homogeneous polynomial maps
(Fi|i = 1, . . . , r) equals the set of common zeroes of the collection of homogeneous
polynomial functions (Fi,j |i = 1, . . . , r, j = 1, . . . , e). Thus it suffices to prove there
is a nontrivial common zero of all the functions Fi,j .
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By hypothesis,
r∑

i=1

deg(Fi)m is no greater than n.

Thus, also
r∑

i=1

e∑
j=1

deg(Fi,j)m = e
r∑

i=1

deg(Fi)m is no greater than en.

Since K has property Cm and since

dimK(L⊕(n+1)), i.e., (n + 1)dimK(L) = e(n + 1),

is larger than en, the collection of homogeneous polynomials Fi,j has a common
zero in L⊕(n+1) − {0}. �

The heart of the Tsen-Lang theorem is the following proposition.

Proposition 2.7. Let K/k be a function field of a curve, i.e., a finitely generated,
separable field extension of transcendence degree 1. If k has property Cm then K
has property Cm+1.

This is proved in a series of steps. Let n, r and d1, . . . , dr be positive integers such
that

dm+1
1 + · · ·+ dm+1

r ≤ n.

For every collection of homogeneous polynomials

F1, . . . , Fr ∈ K[X0, . . . , Xn], deg(Fi) = di,

the goal is to prove that the collection of homogeneous, degree di, polynomial maps
of K-vector spaces

F1, . . . , Fr : K⊕(n+1) → K

has a common zero. Of course, as in the proof of Lemma 2.6, this is also a collection
of homogeneous polynomial maps of k-vector spaces. Unfortunately both of these
k-vector spaces are infinite dimensional. However, using geometry, these polyno-
mial maps can be realized as the colimits of polynomial maps of finite dimensional
k-vector spaces. For these maps there is an analogue of the Chevalley-Warning ar-
gument replacing the counting argument by a parameter counting argument which
ultimately follows from the Riemann-Roch theorem for curves. The first step is to
give a projective model of K/k.

Lemma 2.8. For every separable, finitely generated field extension K/k of tran-
scendence degree 1, there exists a smooth, projective, connected curve C over k and
an isomorphism of k-extensions K ∼= k(C). Moreover the pair (C,K ∼= k(C)) is
unique up to unique isomorphism.

Proof. This is essentially the Zariski-Riemann surface of the extension K/k. For
a proof in the case that k is algebraically closed, see [Har77, Theorem I.6.9]. The
proof in the general case is similar. �

The isomorphism K ∼= k(C) is useful because the infinite dimensional k-vector
space k(C) has a plethora of naturally-defined finite dimensional subspaces. For
every Cartier divisor D on C, denote by VD the subspace

VD := H0(C,OC(D)) = {f ∈ k(C)|div(f) + D ≥ 0}.
5



The collection of all Cartier divisors D on C is a partially ordered set where

D′ ≥ D if and only if D′ −D is effective.

The system of subspaces VD of k(C) is compatible for this partial order, i.e., if
D′ ≥ D then VD′ ⊃ VD. And K is the union of all the subspaces VD, i.e., it is the
colimit of this compatible system of finite dimensional k-vector spaces. Thus for
all k-multilinear algebra operations which commute with colimits, the operation
on k(C) can be understood in terms of its restrictions to the finite dimensional
subspaces k(C). The next lemma makes this more concrete for the polynomial
map F .

Lemma 2.9. Let C be a smooth, projective, connected curve over a field k and let

Fi ∈ k(C)[X0, . . . , Xn]di
, i = 1, . . . , r

be a collection of polynomials in the spaces k(C)[X0, . . . , Xn]di
of homogeneous, de-

gree di polynomials. There exists an effective, Cartier divisor P on C and for every
i = 1, . . . , r there exists a global section FC,i of the coherent sheaf OC(P )[X0, . . . , Xn]di

such that for every i = 1, . . . , r the germ of FC,i at the generic point of C equals
Fi.

Remark 2.10. In particular, for every Cartier divisor D on C and for every i =
1, . . . , r there is a homogeneous, degree d, polynomial map of k-vector spaces

FC,D,i : V
⊕(n+1)
D → Wdi,P,D, Wdi,P,D := VdiD+P ,

such that for every i = 1, . . . , r the restriction of Fi to V
⊕(n+1)
D equals FC,D,i

considered as a map with target K (rather than the subspace VdD+P ).

Proof. The coefficients of each Fi are rational functions on C. Each such function
has a polar divisor. Since there are only finitely many coefficients of the finitely
many polynomials F1, . . . , Fr, there exists a single effective, Cartier divisor P on C
such that every coefficient is a global section of OC(P ). �

Because of Lemma 2.9, the original polynomial maps F1, . . . , Fr can be understood
in terms of their restrictions to the subspaces VD. The dimensions of these subspaces
are determined by the Riemann-Roch theorem.

Theorem 2.11 (Riemann-Roch for smooth, projective curves). Let k be a field.
Let C be a smooth, projective, connected curve over k. Denote by ωC/k the sheaf of
relative differentials of C over k and denote by g(C) = genus(C) the unique integer
such that deg(ωC/k) = 2g(C)− 2. For every invertible sheaf L on C,

h0(C,L)− h0(C,ωC ⊗OC
L∨) = deg(L) + 1− g(C).

Remark 2.12. In particular, if deg(L) > deg(ωC) = 2g(C)−2 so that ωC ⊗OC
L∨

has negative degree, then h0(C,ωC ⊗OC
L∨) equals zero. And then

h0(C,L) = deg(L) + 1− g(C).

For a Cartier divisor D satisfying

deg(D) > 2g(C)− 2 and for each i = 1, . . . , r, dideg(D) + deg(P ) > 2g(C)− 2,
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the Riemann-Roch theorem gives that V
⊕(n+1)
D and Wdi,P,D are finite dimensional

k-vector spaces of respective dimensions,

dimk(V ⊕(n+1)
D ) = (n + 1)h0(C,OC(D)) = (n + 1)(deg(D) + 1− g)

and
dimk(Wdi,P,D) = dim(VdiD+P ) = dideg(D) + deg(P ) + 1− g.

In this case, choosing a basis for Wdi,P,D and decomposing

FC,D,i : V
⊕(n+1)
D → Wdi,P,D

into its associated components, there exist dimk(Wdi,P,D) homogeneous, degree d,
polynomial functions

(FC,D,i)j : V
⊕(n+1)
D → k, j = 1, . . . ,dimk(Wdi,P,D)

such that a zero of FC,D,i is precisely the same as a common zero of all the functions
(FC,D,i)j .

Proof of Proposition 2.7. By hypothesis, each di and n+1−
∑r

i=1 dm+1
i are nonzero

so that the fractions
2g(C)− 2− deg(P )

di
for each i = 1, . . . , r,

(n + 1−
∑r

i=1 dm
i )(g − 1) +

∑r
i=1 dm

i deg(P )
n + 1−

∑r
i=1 dm+1

i

are all defined. Let D be an effective, Cartier divisor on C such that

deg(D) > 2g(C)− 2, deg(D) >
2g(C)− 2− deg(P )

di
, i = 1, . . . , r, and

deg(D) >
(n + 1−

∑r
i=1 dm

i )(g − 1) +
∑r

i=1 dm
i deg(P )

n + 1−
∑r

i=1 dm+1
i

.

Because deg(D) > 2g(C)− 2, the Riemann-Roch theorem states that

dimk(V ⊕(n+1)
D ) = (n + 1)dimk(VD) = (n + 1)(deg(D) + 1− g).

For every i = 1, . . . , r, because di is positive and because deg(D) > (2g(C) − 2 −
deg(P ))/di, also

deg(diD + P ) = dideg(D) + deg(P ) is greater than 2g(C)− 2.

Thus the Riemann-Roch theorem states that

dimk(Wdi,P,D) = dimk(VdiD+P ) = dideg(D) + deg(P ) + 1− g(C).

Thus for the collection of polynomial functions (FC,D,i)j ,

dimk(V ⊕(n+1)
D )−

r∑
i=1

∑
j

deg((FC,D,i)j)m

equals

(n + 1)(deg(D) + 1− g)−
r∑

i=1

(dideg(D) + deg(P ) + 1− g(C))dm
i =

(n + 1−
r∑

i=1

dm+1
i )deg(D)− [(n + 1−

r∑
i=1

dm
i )(g − 1) +

r∑
i=1

dm
i deg(P )].
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Because

deg(D) >
(n + 1−

∑r
i=1 dm

i )(g − 1) +
∑r

i=1 dm
i deg(P )

n + 1−
∑r

i=1 dm+1
i

and because n + 1−
∑r

i=1 dm+1
i is positive, also

(n + 1−
r∑

i=1

dm+1
i )deg(D) > [(n + 1−

r∑
i=1

dm
i )(g − 1) +

r∑
i=1

dm
i deg(P )].

Therefore

dimk(V ⊕(n+1)
D ) is greater than

r∑
i=1

∑
j

deg((Fi,C,D)j)m.

Because of the inequality above, and because k has property Cm, there is a nontriv-
ial common zero of the collection of homogeneous polynomial functions (FC,D,i)j ,
i = 1, . . . , r, j = 1, . . . ,dimk(Wdi,Pi,D). Therefore there is a nontrivial common
zero of the collection of homogeneous polynomial maps FC,D,i, i = 1, . . . , r. By
Lemma 2.9, the image of this nonzero element in K⊕(n+1) is a nonzero element
which is a common zero of the polynomials F1, . . . , Fr. �

Proposition 2.7 is the main step in the proof of the Tsen-Lang theorem.

Theorem 2.13 (The Tsen-Lang Theorem). [Lan52] Let K/k be a field extension
with finite transcendence degree, tr.deg.(K/k) = t. If k has property Cm then K
has property Cm+t.

Proof. The proof of the theorem is by induction on t. When t = 0, i.e., when K/k
is algebraic, the result follows from Lemma 2.6. Thus assume t > 0 and the result
is known for t− 1. Let (b1, . . . , bt) be a transcendence basis for K/k. Let Et, resp.
Et−1, denote the subfield of K generated by k and b1, . . . , bt, resp. generated by
k and b1, . . . , bt−1. Since Et−1/k has transcendence degree t− 1, by the induction
hypothesis Et−1 has property Cm+t−1. Now Et/Et−1 is a purely transcendental
extension of transcendence degree 1. In particular, it is finitely generated and
separable. Since Et−1 has property Cm+t−1, by Proposition 2.7 Et has property
Cm+t. Finally by Lemma 2.6 again, since K/Et is algebraic and Et has property
Cm+t, also K has property Cm+t. �

The homogeneous version of the Nullstellensatz implies a field k has property C0

if and only if k is algebraically closed. Thus one corollary of Theorem 2.13 is the
following.

Corollary 2.14. Let k be an algebraically closed field and let K/k be a field exten-
sion of finite transcendence degree t. The field K has property Ct.

In particular, the case t = 1 is the historically the first result in this direction.

Corollary 2.15 (Tsen’s theorem). [Tse36] The function field of a curve over an
algebraically closed field has property C1.

Chevalley and Tsen recognized that property C1, which they called quasi-algebraic
closure, has an important consequence for division algebras. Lang recognized that
property C2 also has an important consequence for division algebras, cf. [Lan52,
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Theorem 13]. Let K be a field. A division algebra with center K is a K-algebra
D with center K such that every nonzero element of D has a (left-right) inverse.
Although this is not always the case, we will also demand that dimK(D) is finite.

Denote by K the separable closure of K. Every division algebra with center K is
an example of a central simple algebra over K, i.e., a K-algebra A with center K
and dimK(A) finite such that A⊗K K is isomorphic as a K-algebra to the algebra
Matn×n(K) of n× n matrices with entries in K for some integer n. In particular,
dimK(A) = n2 for a unique integer n. For a division algebra D with center K, the
unique integer n is called the index of D.

Let φ : A ⊗K K → Matn×n(K) be an isomorphism of K-algebras. There is an
induced homogeneous, degree n, polynomial map of K-vector spaces

det ◦ φ : A → Matn×n(K) → K.

By the Skolem-Noether theorem, every other isomorphism φ′ : A⊗KK → Matn×n(K)
is of the form conja ◦ φ where a ∈ Matn×n(K) is an invertible element and

conja : Matn×n(K) → Matn×n(K), conja(b) = aba−1

is conjugation by a. But det◦conja equals det. Thus the map det◦φ is independent
of the particular choice of φ. Since the Galois group of K/K acts on the polynomial
map through its action on φ, the polynomial map is also Galois invariant. Therefore
there exists a unique homogeneous, degree n, polynomial map of K-vector spaces

NrmA/K : A → K

such that for every isomorphism of K-algebras φ, det ◦ φ equals NrmA/K ⊗ 1.

The homogeneous, polynomial map of K-vectors spaces NrmA/K is the reduced
norm of A. It is multiplicative, i.e.,

∀a, b ∈ A, NrmA/K(ab) = NrmA/K(a)NrmA/K(b).

And the restriction to the center K is the polynomial map λ 7→ λn. These properties
characterize the reduced norm. By the same type of Galois invariance argument as
above, and using Cramer’s rule, an element a of A has a (left and right) inverse if
and only if NrmA/K(a) is nonzero. In particular, if D is a division algebra the only
zero of NrmA/K is a = 0.

Proposition 2.16. Let K be a field
(i) If K has property C1, then the only division algebra with center K is K

itself.
(ii) If K has property C2 then for every division algebra D with center K the

reduced norm map
NrmD/K : D → K

is surjective.

Proof. Let D be a division algebra with center K. Denote by n the index of D.
Because Matn×n(K) has dimension n2 as a K-vector space, also D has dimension n2

as a K-vector space. If K has property C1, then since the homogeneous polynomial
map NrmD/K has only the trivial zero,

n = deg(NrmD/K) ≥ dimK(D) = n2,
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i.e., n = 1. Thus for a field K with property C1, the only finite dimensional, division
algebra with center K has dimension 1, i.e., D equals K.

Next suppose that K has property C2. Clearly NrmD/k(0) equals 0. Thus to prove
that

NrmD/K : D → K

is surjective, it suffices to prove that for every nonzero c ∈ K there exists b in D
with NrmD/K(b) = c. Consider the homogeneous, degree n, polynomial map

Fc : D ⊕K → K, (a, λ) 7→ NrmD/K(a)− cλn.

Since
dimK(D ⊕K) = n2 + 1 > deg(Fc)2,

by property C2 the map Fc has a zero (a, λ) 6= (0, 0), i.e., NrmD/k(a) = cλn. In
particular, λ must be nonzero since otherwise a is a nonzero element of D with
NrmD/K(a) = 0. But then b = (1/λ)a is an element of D with NrmD/k(b) = c. �

It was later recognized, particularly through the work of Merkurjev and Suslin,
that these properties of division algebras are equivalent to properties of Galois
cohomology. The cohomological dimension of a field K is the smallest integer
cd(K) such that for every Abelian, discrete, torsion Galois module A and for every
integer m > cd(K),

Hm(K/K,A) = {0}.

Theorem 2.17. [Ser02, Proposition 5, §I.3.1], [Sus84, Corollary 24.9] Let K be a
field.

(i) The cohomological dimension of K is ≤ 1 if and only if for every finite
extension L/K, the only division algebra with center L is L itself.

(ii) If K is perfect, the cohomological dimension of K is ≤ 2 if and only if for
every finite extension L/K, for every division algebra D with center L, the
reduced norm map NrmD/L is surjective.

3. Rationally connected varieties

The theorems of Chevalley-Warning and Tsen-Lang are positive answers to Prob-
lem 2.1 for a certain class of fields. It is natural to ask whether these theorems can
be generalized for such fields.

Problem 3.1. Let r be a nonnegative integer. Give sufficient geometric conditions
on a variety such that for every Cr field K (or perhaps every Cr field satisfying
some additional hypotheses) and for every K-variety satisfying the conditions, X
has a K-point.

As with Problem 2.1, this problem is quite vague. Nonetheless there are important
partial answers. One such answer, whose proof was sketched in the lectures of
Hassett in this same Clay Summer School, is the following.

Theorem 3.2. [Man86] [CT87] Let K be a C1 field and let X be a projective
K-variety. If X ⊗K K is birational to P2

K
then X has a K-point.
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This begs the question: What (if anything) is the common feature of rational
surfaces and of the varieties occurring in the Chevalley-Warning and Tsen-Lang
theorems, i.e., complete intersections in Pn of hypersurfaces of degrees d1, . . . , dr

with d1 + · · · + dr ≤ n? One answer is rational connectedness. This is a property
that was studied by Kollár-Miyaoka-Mori and Campana, cf. [Kol96].

Definition 3.3. Let k be an algebraically closed field. An integral (thus nonempty),
separated, finite type, k-scheme X is rationally connected, resp. separably rationally
connected, if there exists an integral, finite type k-scheme M and a morphism of
k-schemes

u : M ×k P1
k → X, (m, t) 7→ u(m, t)

such that the induced morphism of k-schemes

u(2) : M ×k P1
k ×k P1

k → X ×k X, (m, t1, t1) 7→ (u(m, t1), u(m, t2))

is surjective, resp. surjective and generically smooth.

In a similar way, X is rationally chain connected, resp. separably rationally chain
connected, if for some integer n ≥ 1, the analogous property holds after replacing P1

k

by the proper, connected, nodal, reducible curve Cn which is a chain of n smooth
rational curves.

The definition of rational connectedness, resp. rational chain connectedness, men-
tions a particular parameter space M . However, using the general theory of Hilbert
schemes, it suffices to check that every pair (x1, x2) of K-points of X ⊗k K is con-
tained in some rational K-curve, resp. a chain of rational K-curves, (not necessarily
from a fixed parameter space) for one sufficiently large, algebraically closed, field
extension K/k, i.e., for an algebraically closed extension K/k such that for every
countable collection of proper closed subvarieties Yi ( X, there exists a K-point of
X contained in none of the sets Yi. For instance, K/k is sufficiently large if K is
uncountable or if K/k contains the fraction field k(X)/k as a subextension.

A very closely related property is the existence of a very free rational curve, i.e., a
morphism

f : P1
k → Xsmooth

into the smooth locus of X such that f∗TX is ample, i.e.,

f∗TX
∼= OP1

k
(a1)⊕ · · · ⊕ OP1

k
(an), a1, . . . , an > 0.

Definition 3.4. The very free locus Xv.f. of X is the union of the images in X of
all very free rational curves to X ⊗k K as K/k varies over all algebraically closed
extensions.

The next theorem explains the relation of these different properties.

Theorem 3.5. [Kol96, §IV.3], [HT06], Unless stated otherwise, all varieties below
are quasi-projective over an algebraically closed field k.

(0) In characteristic 0, every rationally connected variety is separably rationally
connected.

(i) For every flat, proper morphism π : X → B (not necessarily of quasi-
projective varieties over a field), the subset of B parameterizing points
whose geometric fiber is rationally chain connected is stable under special-
ization. (If one bounds the degree of the chains with respect to a relatively
ample invertible OX-module, then it is a closed subset.)
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(ii) The very free locus of a quasi-projective variety is open. More generally, for
every flat, quasi-projective morphism π : X → B (not necessarily of quasi-
projective varieties over a field) having irreducible geometric fibers, there
exists an open subset Xπ,v.f. of X such that for every geometric fiber Xb of π,
(Xb)v.f. equals Xπ,v.f. ×B Xb. In particular, the subset of B parameterizing
points whose geometric fiber contains a very free rational curve is an open
subset, π(Xπ,v.f.).

(iii) The very free locus Xv.f. of a quasi-projective variety is (separably) ratio-
nally connected in the following strong sense. For every positive integer
N , for every positive integer m, and for every positive integer a, for every
collection of distinct closed points t1, . . . , tN ∈ P1

k, for every collection of
closed points x1, . . . , xN ∈ Xv.f., and for every specification of an m-jet of
a smooth curve in X at each point xi, there exists a morphism

f : P1
k → Xv.f.

such that for every i = 1, . . . , n, f is unramified at ti, f(ti) equals xi and
the m-jet of ti in P1

k maps isomorphically to the specified m-jet at xi, and

f∗TX
∼= OP1

k
(a1)⊕ · · · ⊕ OP1

k
(an), a1, . . . , an ≥ a.

(iv) Every rational curve in Xsmooth intersecting Xv.f. is contained in Xv.f..
Thus for every smooth, rationally chain connected variety, if X contains a
very free rational curve then Xv.f. equals all of X.

(v) A proper, irreducible variety X is rationally chain connected if it is generi-
cally rationally chain connected, i.e., if there exists a morphism u as in the
definition such that u(2) is dominant (but not necessarily surjective).

(vi) For the morphism u : M ×k P1
k → X, let m be a closed point of M such

that um : P1 → X has image in Xsmooth and such that u(2) is smooth at
(m, t1, t2) for some t1, t2 ∈ P1

k. Then the morphism um is very free. Thus
an irreducible, quasi-projective variety X contains a very free curve if and
only if there is a separably rationally connected open subset of Xsmooth.
Also, a smooth, quasi-projective variety X in characteristic 0 which is
generically rationally connected contains a very free morphism.

(vii) For a surjective morphism f : X → Y of varieties over an algebraically
closed field, if X is rationally connected, resp. rationally chain connected,
then also Y is rationally connected, resp. rationally chain connected.

(viii) For a birational morphism f : X → Y of proper varieties over an alge-
braically closed field, if Y is rationally connected then X is rationally chain
connected. If the characteristic is zero, then X is rationally connected.

Remark 3.6. Item (ii) is proved in Proposition 3.18. The generic case of Item (iii),
which is all we will need, is proved in Proposition 3.19. The complete result was
proved by Hassett and Tschinkel, [HT06]. Item (iv) follows from Corollary 3.20.
The remaining items are not proved, nor are they used in the proof of the main
theorem. For the most part they are proved by similar arguments; complete proofs
are in [Kol96, §IV.3].

Rational connectedness is analogous to path connectedness in topology, and satisfies
the analogues of many properties of path connectedness. One property of path
connectedness is this: for a fibration of CW complexes, if the base space and the
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fibers are path connected, then also the total space is path connected. This led to
two conjectures by Kollár, Miyaoka and Mori.

Conjecture 3.7. [Kol96, Conjecture IV.5.6] Let π : X → B be a surjective mor-
phism of smooth, projective schemes over an algebraically closed field of character-
istic 0. If both B and a general fiber of π are rationally connected, then X is also
rationally connected.

Conjecture 3.7 is implied by the following conjecture about rationally connected
fibrations over curves.

Conjecture 3.8. [Kol96, Conjecture IV.6.1.1] Let π : X → B be a surjective
morphism of projective schemes over an algebraically closed field of characteristic
0. If B is a smooth curve and if a general fiber of f is rationally connected, then
there exists a morphism s : B → X such that π ◦ s equals IdB , i.e., s is a section of
π.

Our next goal is to prove the following result.

Theorem 3.9. [GHS03] Conjecture 3.8 of Kollár-Miyaoka-Mori is true. Precisely,
let k be an algebraically closed field of characteristic 0 and let πX : X → B be a
surjective morphism from a normal, projective k-scheme X to a smooth, projective,
connected k-curve B. If the geometric generic fiber XηB

is a normal, integral
scheme whose smooth locus contains a very free curve, then there exists a morphism
s : B → X such that πX ◦ s equals IdB.

This was generalized by A. J. de Jong to the case that k is algebraically closed
of arbitrary characteristic, [dJS03]. The key difference has to do with extensions
of valuation rings in characteristic 0 and in positive characteristic. Given a flat
morphism of smooth schemes in characteristic 0, π : U → B, and given codimension
1 points ηD of U and η∆ of B with π(ηD) = η∆, the induced local homomorphism
of stalks π∗U : ÔB,η∆ → ÔU,ηD

, is equivalent to

k(∆) [[t]] → k(D) [[r]] , t 7→ urm

for a unit u and a positive integer m, cf. the proof of Lemma 3.23 below. In
particular, it is rigid in the sense that t 7→ urm + vrm+1 + . . . is equivalent to
t 7→ urm. However, extensions of positive characteristic valuation rings are not
rigid, e.g., t 7→ rp + v1r

p+1 is equivalent to t 7→ rp + v2r
p+1 only if v1 = v2. But

there is a weak rigidity of local homomorphisms, Krasner’s lemma in the theory of
non-Archimedean valuations. This is a key step in the generalization to positive
characteristic.

Of course when k has characteristic 0, then since X is normal the fiber XηB
is auto-

matically normal. If X is also smooth (which can be achieved thanks to resolution
of singularities in characteristic 0), then also XηB

is smooth. Then the hypothesis
on XηB

is equivalent to rational connectedness.

3.1. Outline of the proof. The proof that follows is based on a proof by T.
Graber, J. Harris and myself (not quite the version we chose to publish) together
with several major simplifications due to A. J. de Jong. The basic idea is to choose
a smooth curve C ⊂ X such that πX |C : C → B is finite, and then try to deform
C as a curve in X until it specializes to a reducible curve in X, one component of
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which is the image of a section s of πX . Here are some definitions that make this
precise.

Definition 3.10. Let πC : C → B be a finite morphism of smooth, projective
k-curves. A linked curve with handle C is a reduced, connected, projective curve
Clink with irreducible components

Clink = C ∪ L1 ∪ · · · ∪ Lm

together with a morphism
πC,link : Clink → B

such that
(i) πC,link restricts to πC on the component C,
(ii) the restriction of πC,link to each link component Li is a constant morphism

with image bi, where b1, . . . , bm are distinct closed points of B,
(iii) and each link Li is a smooth, rational curve intersecting C in a finite number

of nodes of Clink.
If every link Li intersects C in a single node of Clink, then (Clink, πC,link) is called
a comb and the links Li are called teeth. For combs we will use the notation Ccomb

rather than Clink.

A one-parameter deformation of a linked curve (Clink, πC,link) is a datum of a
smooth, connected, pointed curve (Π, 0) and a projective morphism

(ρ, πC) : C → Π×k B

such that ρ is flat and such that C0 := ρ−1(0) together with the restriction of πC
equals the linked curve (Clink, πC,link).

A one-parameter deformation specializes to a section curve if there exists a closed
point ∞ ∈ Π and an irreducible component Bi of C∞ := ρ−1(∞) such that

(i) C∞ is reduced at the generic point of Bi

(ii) and the restriction of πC to Bi is an isomorphism

πC |Bi
: Bi

∼=−→ B.

Given a linked curve, a one-parameter deformation of the linked curve and a B-
morphism j : Clink → X, an extension of j is an open neighborhood of 0, 0 ∈ N ⊂ B
and a B-morphism

jN : CN → X, CN := ρ−1(N)
restricting to j on C0 = Clink.

For the purposes of producing a section, the particular parameter space (Π, 0) of
the one-parameter deformation is irrelevant. Thus, it is allowed to replace the
one-parameter deformation by the new one-parameter deformation obtained from
a finite base change (Π′, 0′) → (Π, 0). The following lemma is straightforward.

Lemma 3.11. Let (Π, 0,∞) together with (ρ, πC) : C → Π×k B be a one-parameter
deformation of (Clink, πC,link) specializing to a section curve Bi. For every mor-
phism of 2-pointed, smooth, connected curves

(Π′, 0′,∞′) → (Π, 0,∞),

the base change morphism
Π′ ×Π C → Π′ ×k B

14



is also a one-parameter deformation of (Clink, πC,link) specializing to the section
curve Bi.

The usefulness of these definitions is the following simple consequence of the valu-
ative criterion of properness.

Lemma 3.12. Let (Clink, πlink) be a linked curve together with a B-morphism
j : Clink → X. If there exists a one-parameter deformation of the linked curve
specializing to a section curve and if there exists an extension of j, then there exists
a section s : B → X of πX .

Proof. Let R denote the stalk OC,ηBi
of OC at the generic point ηBi

of Bi. By the
hypotheses on C and Bi, R is a discrete valuation ring with residue field κ = k(Bi)
and fraction field K = k(C). The restriction of jN to the generic point of C is a
B-morphism

jK : Spec K → X.

Because πX : X → B is proper, by the valuative criterion of properness the B-
morphism jK extends to a B-morphism

jR : Spec R → X,

which in turn gives a B-morphism from the residue field Spec κ to X, i.e., a rational
B-map

jBi
: Bi ⊃ U → X, U ⊂ Bi a dense, Zariski open.

Finally, because Bi is a smooth curve, the valuative criterion applies once more and
this rational transformation extends to a B-morphism

jBi
: Bi → X.

Because πC |Bi
: Bi → B is an isomorphism, there exists a unique B-morphism

s : B → X

such that jBi
= s ◦ πC |Bi

. The morphism s is a section of πX . �

Thus the proof of the theorem breaks into three parts:
(i) find a “good” linked curve j : Clink → X,
(ii) find a one-parameter deformation of the linked curve specializing to a sec-

tion curve,
(iii) and find an extension of j to the one-parameter deformation.

The first step in finding j : Clink → X is to form a curve Cinit which is an intersection
of X with dim(X)−1 general hyperplanes in projective space. By Bertini’s theorem,
if the hyperplanes are sufficiently general, then Cinit will satisfy any reasonable
transversality property. Moreover, there is a technique due to Kollár-Miyaoka-Mori
– the smoothing combs technique – for improving Cinit to another curve C ⊂ X
still satisfying the transversality property and also satisfying a positivity property
with respect to the vertical tangent bundle of π : X → B.

Unfortunately, even after such an improvement, there may be no one-parameter
deformation of πX |C : C → B specializing to a section curve. However, after
attaching sufficiently many link components over general closed points of B, there
does exist a one-parameter deformation of Clink specializing to a section curve. This
is one aspect of the well-known theorem that for a fixed base curve B and for a fixed
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degree d, if the number β of branch points is sufficiently large the Hurwitz scheme
of degree d covers of B with β branch points is irreducible. (This was proved by
Hurwitz when g(B) = 0, [Hur91], proved by Richard Hamilton for arbitrary genus
in his thesis, and periodically reproved ever since, cf. [GHS02].) Because the general
fibers of π : X → B are rationally connected, the inclusion C ⊂ X extends to a
B-morphism j : Clink → X.

Finally the positivity property mentioned above implies j extends to the one-
parameter deformation, at least after base change by a morphism Π′ → Π.

3.2. Hilbert schemes and smoothing combs. The smoothing combs technique
of Kollár-Miyaoka-Mori depends on a result from the deformation theory of Hilbert
schemes. Here is the setup for this result. Let Y → S be a flat, quasi-projective
morphism and let

(ρHilb : Hilb(Y/S) → S, Univ(Y/S) ⊂ Hilb(Y/S)×S T )

be universal among pairs (ρ : T → S, Z ⊂ T ×S Y ) of an S-scheme T and a closed
subscheme Z ⊂ T ×S Y such that Z → T is proper, flat and finitely presented. In
other words, Hilb(Y/S) is the relative Hilbert scheme of Y over S.

In particular, for every field K the K-valued points of Hilb(Y/S) are naturally in
bijection with pairs (s, Z) of a K-valued point s of S and a closed subscheme Z of
Ys := {s} ×S Y . The closed immersion Z → Ys is a regular embedding if at every
point of Z the stalk of the ideal sheaf IZ/Ys

is generated by a regular sequence
of elements in the stalk of OYs

. In this case the conormal sheaf IZ/Ys
/I2

Z/Ys
is a

locally free OZ-module, and hence also the normal sheaf

NZ/Ys
:= HomOZ

(IZ/Ys
/I2

Z/Ys
,OS)

is a locally free OZ-module.

Proposition 3.13. [Kol96, Theorem I.2.10, Lemma I.2.12.1, Proposition I.2.14.2]
If Z ⊂ Ys is a regular embedding and if h1(Z,NZ/Ys

) equals 0, then Hilb(Y/S) is
smooth over S at (s, Z).

There is a variation of this proposition which is also useful. There is a flag Hilbert
scheme of Y over S, i.e., a universal pair

(ρfHilb : fHilb(Y/S) → S, Univ1(Y/S) ⊂ Univ2(Y/S) ⊂ Hilb(Y/S)×S T )

among all pairs (ρ : T → S, Z1 ⊂ Z2 ⊂ T ×S Y ) of an S-scheme T and a nested
pair of closed subschemes Z1 ⊂ Z2 ⊂ T ×S Y such that for i = 1, 2, the projection
Zi → T is proper, flat and finitely presented. There are obvious forgetful morphisms

Fi : fHilb(Y/S) → Hilb(Y/S), Fi(s, Z1, Z2) = (s, Zi).

Proposition 3.14. Let K be a field and let (s, Z1, Z2) be a K-point of fHilb(Y/S).
If each closed immersion Z1 ⊂ Z2 and Z2 ⊂ Ys is a regular embedding and if

h1(Z2,NZ2/Ys
) = 0, h1(Z1,NZ1/Z2) = 0, and if hi(Z2, IZ1/Z2 ·NZ2/Y2) = 0 for i = 1, 2,

fHilb(Y/S) is smooth over S at (s, Z1, Z2), for each i = 1, 2, Hilb(Y/S) is smooth
over S at (s, Zi), and each forgetful morphism Fi : fHilb(Y/S) → Hilb(Y/S) is
smooth at (s, Z1, Z2).
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Proof. Since h1(Z2,NZ2/Ys
) equals 0, Hilb(Y/S) is smooth at (s, Z2) by Proposi-

tion 3.13. It is easy to see that the forgetful morphism F2 is equivalent to the
relative Hilbert scheme Hilb(Univ(Y/S)/Hilb(Y/S)) over Hilb(Y/S). Thus, apply-
ing Proposition 3.13 to this Hilbert scheme, the vanishing of h1(Z1,NZ1/Z2) implies
F2 is smooth at (s, Z1, Z2). Since a composition of smooth morphisms is smooth,
also fHilb(Y/S) is smooth over S at (s, Z1, Z2). The long exact sequence of coho-
mology associated to the short exact sequence

0 −−−−→ IZ1/Z2 · NZ2/Ys
−−−−→ NZ2/Ys

−−−−→ NZ2/Ys
|Z1 −−−−→ 0

implies that h1(Z1,NZ2/Ys
|Z1) equals h1(Z2,NZ2/Ys

), which is 0. Thus, the long
exact sequence of cohomology associated to

0 −−−−→ NZ1/Z2 −−−−→ NZ1/Ys
−−−−→ NZ2/Ys

|Z1 −−−−→ 0

implies that h1(Z2,NZ1/Y2) equals 0. So again by Proposition 3.13, Hilb(Y/S)
is smooth over S at (s, Z1). Finally, F1 is a morphism of smooth S-schemes at
(s, Z1, Z2). Thus, to prove F1 is smooth, it suffices to prove it is surjective on
Zariski tangent vector spaces. This follows from the vanishing of h1(Z2, IZ1/Z2 ·
NZ2/Ys

). �

Another ingredient in the smoothing combs technique is a a simple result about
elementary transforms of locally free sheaves on a curve: the higher cohomology of
the sheaf becomes zero after applying elementary transforms at sufficiently many
points.

Lemma 3.15. Let C be projective, at-worst-nodal, connected curve over a field k
and let E be a locally free OC-module.

(i) There exists a short exact sequence of coherent sheaves,

0 → F∨ → E∨ → T → 0

such that T is a torsion sheaf with support in Csmooth and such that h1(C,F)
equals 0.

(ii) Inside the parameter space of torsion quotients q : E∨ � T with support in
Csmooth, denoting

F∨ := Ker(E∨ → T ) and F := HomOC
(F∨,OC),

the subset parameterizing quotients for which h1(C,F) = 0 is an open sub-
set.

(iii) If h1(C,F) equals 0, then for every short exact sequence of coherent sheaves

0 → G∨ → E∨ q′−→ S → 0

admitting a morphism r : S → T of torsion sheaves with support in Csmooth

for which q = r ◦ q′, h1(C,G) equals 0.

Proof. (i) By Serre’s vanishing theorem, there exists an effective, ample divisor D
in the smooth locus of C such that h1(C, E(D)) equals 0. Define F = E(D), define
E → F to be the obvious morphism E → E(D), and define T to be the cokernel of
F∨ → E∨.

(ii) This follows immediately from the semicontinuity theorem, cf. [Har77, §III.12].
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(iii) There exists an injective morphism of coherent sheaves F → G with torsion
cokernel. Because h1(C,F) equals 0 and because h1 of every torsion sheaf is zero,
the long exact sequence of cohomology implies that also h1(C,G) equals 0. �

It is worth noting one interpretation of the sheaf F associated to a torsion quotient
T . Assume that T is isomorphic to a direct sum of skyscraper sheaves at n distinct
points c1, . . . , cn of Csmooth. (Inside the parameter space of torsion quotients, those
with this property is a dense, open subset.) For each point ci, the linear functional
E∨|ci � T |ci gives a one-dimensional subspace Homk(T |ci , k) ↪→ E|ci . The sheaf
F is precisely the sheaf of rational sections of E having at worst a simple pole
at each point ci in the direction of this one-dimensional subspace of E|ci

. This is
often called an elementary transform up of E at the point ci in the specified direc-
tion. So Lemma 3.15 says that h1 becomes zero after sufficiently many elementary
transforms up at general points in general directions.

This interpretation is useful because the normal sheaf of a reducible curve can be
understood in terms of elementary transforms up. To be precise, let Y be a k-
scheme, let C be a proper, nodal curve, let C0 be a closed subcurve (i.e., a union of
irreducible components of C), and let j : C → Y be a regular embedding such that
Y is smooth at every node p1, . . . , pn of C which is contained in C0 and which is
not a node of C0. Then j0 : C0 → Y is also a regular embedding and both NC/Y |C0

and NC0/Y are locally free sheaves on C0. For each i, there is a branch Ci of C at
pi other than C0. Denote by TCi,pi

the tangent direction of this branch in TY,pi
.

Lemma 3.16. [GHS03, Lemma 2.6] The restriction NC/Y |C0 equals the sheaf of
rational sections of NC0/Y having at most a simple pole at each point pi in the
normal direction determined by TCi,pi

.

Proof. The restrictions of NC/Y |C0 and NC0/Y to the complement of {p1, . . . , pn}
are canonically isomorphic. The lemma states that this canonical isomorphism is
the restriction of an injection NC0/Y ↪→ NC/Y |C0 which identifies NC/Y |C0 with
the sheaf of rational sections, etc. This local assertion can be verified in a formal
neighborhood of each node pi.

Locally near pi, C → Y is formally isomorphic to the union of the two axes in-
side a 2-plane inside an n-plane, i.e., the subscheme of An

k with ideal IC/Y =
〈x1x2, x3, . . . , xn〉. The branch C0 corresponds to just one of the axes, e.g., the
subscheme of An

k with ideal IC0/Y = 〈x2, x3, . . . , xn〉. The tangent direction of the
other branch Ci is spanned by (0, 1, 0, . . . , 0). Thus it is clear that IC/Y /IC0/Y ·IC/Y

is the submodule of IC0/Y /I2
C0/Y of elements whose fiber at 0 is contained in the

annihilator of TCi,pi
. Dualizing gives the lemma. �

The final bit of deformation theory needed has to do with deforming nodes. Let C
be a proper, nodal curve and let jC → Y be a regular embedding. Let p be a node
of C and assume that Y is smooth at p. There are two branches C1 and C2 of C
at p (possibly contained in the same irreducible component of C). The sheaf

T := Ext1OC
(ΩC ,OC)

is a skyscraper sheaf supported at p and with fiber canonically identified to

T |p = TC1,p ⊗k TC2,p.

The following lemma is as much definition as lemma.
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Lemma 3.17. There exists a quotient of coherent sheaves

NC/Y � T
such that for both i = 1, 2 the quotient NC/Y |Ci

/NCi/Y equals T . A first-order
deformation of C ⊂ Y , i.e., a global section of NC/Y is said to smooth the node
p to first-order if the image of the section in TC1,p ⊗k TC2,p is nonzero. For a
deformation

C ⊂ Π×k Y

of C ⊂ Y over a smooth pointed curve (Π, 0) (i.e., C0 = C), if the associated
first-order deformation of C ⊂ Y smooths the node p to first-order, then p is not
contained in the closure of the singular locus of the projection,

(Π− {0})×Π C → (Π− {0})
i.e., a general fiber Ct of the deformation smooths the node.

This is a well-known result. A good reference for this result, and many other
results about deformations of singularities, is [Art76], particularly §I.6. Here is a
brief remark on the proof. Because C ⊂ Y is a regular embedding, the conormal
sequence is exact on the left, i.e.,

0 −−−−→ IC/Y /I2
C/Y −−−−→ ΩY |C −−−−→ ΩC −−−−→ 0

is a short exact sequence. Applying global Ext, there is a connecting map

δ : H0(C,NC/Y ) → Ext1OC
(ΩC ,OC).

There is also a local-to-global sequence for global Ext inducing a map

Ext1OC
(ΩC ,OC) → H0(C,Ext1OC

(ΩC ,OC)) = H0(C, T ) = TC1,p ⊗k TC2,p.

The composition of these two maps is precisely the map on global sections associated
to NC/Y → T . induced map to H0(C,Ext1OC

(ΩC ,OC)) = T is precisely the map
above. The global Ext group is identified with the first-order deformations of C as
an abstract scheme, and the Ext term is identified with the first-order deformations
of the node. It is worth noting that even if the first-order deformation does not
smooth the node, the full deformation C ⊂ Π ×k Y may smooth the node if the
total space C is singular at (0, p).

The first result using the smoothing combs technique is the following.

Proposition 3.18. Let Y be a smooth, irreducible, quasi-projective scheme over
an algebraically closed field k. The very free locus Yv.f. is an open subset of Y .
More generally, for a smooth, quasi-projective morphism π : Y → B, the relative
very free locus Yπ,v.f. is an open subset of Y .

Again in the absolute case, denote by t1, resp. t2, the closed point of P1
k, t1 = 0,

resp. t2 = ∞. Let y1 and y2 be closed points of Yv.f., let a and k be nonnegative
integers, and let there be given curvilinear k-jets in Y at each of y1 and y2. If the
given k-jets are general among all curvilinear k-jets at y1 and y2, then there exists
a morphism

f : (P1
k, t1, t2) → (Yv.f., y1, y2)

mapping the k-jet of P1 at t1 isomorphically to the given k-jet at yi for i = 1, 2 and
such that

f∗TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ a.
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Proof. By the definition of Yv.f., for each i = 1, 2 there exists a very free morphism

fi : (P1, 0) → (Yv.f., yi), f∗i TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ 1.

In particular, for each i = 1, 2, h1(P1, f∗i TY (−0 − ∞)) equals 0, where 0, resp.
∞, is the Cartier divisor of the point 0, resp. ∞, in P1. Since the normal sheaf
of fi is a quotient of f∗i TY , also h1(P1,Nfi(−0 − ∞)) equals 0. Thus, applying
Proposition 3.14 where Z1 = {0,∞} and Z2 = P1, there exist deformations of the
morphism fi such that fi(0) equals yi and fi(∞) is any point in a nonempty Zariski
open subset of Y . The same argument holds in the relative case.

Since Y is irreducible, the open for i = 1 intersects the open for i = 2. Thus there
exist very free morphisms f1 and f2 such that f1(∞) = f2(∞). Let C be the union
of two copies C1 and C2 of P1 attached at ∞ and let f : C → Y be the morphism
whose restriction to each Ci equals fi. Denote by

0 −−−−→ N ′
C/Y −−−−→ NC/Y −−−−→ T −−−−→ 0

the short exact sequence coming from Lemma 3.17. Using Lemma 3.16, there is an
exact sequence

0 −−−−→ NC/Y |C1(−0−∞) −−−−→ N ′
C/Y (−y1 − y2) −−−−→ NC2/Y (−0) −−−−→ 0

and an exact sequence

0 −−−−→ NC1/Y (−0−∞) −−−−→ NC/Y |C1(−0−∞) −−−−→ κ∞ −−−−→ 0

where κ∞ is the skyscraper sheaf on C1 supported at ∞. Applying the long exact
sequence of cohomology, using that h1(Ci,NCi/Y (−0 −∞)) equals 0 for i = 1, 2,
and chasing diagrams, this finally gives that h1(C,N ′

C/Y (−y1 − y2)) also equals 0.

This has two consequences. First, this implies h1(C,NC/Y (−y1−y2)) equals 0, and
thus the space of deformations of C containing y1 and y2 is smooth by Proposi-
tion 3.14. And second, the map

H0(C,NC/Y (−y1 − y2)) → TC1,∞ ⊗ TC2,∞

is surjective. Thus there exist first-order deformations of C containing y1 and y2

and smoothing the node at ∞. Since the space of deformations containing y1 and
y2 is smooth, this first-order deformation is the one associated to a one-parameter
deformation

C ⊂ Π×k Y

of [C] over a smooth, pointed curve (Π, 0) (e.g., choose Π to be a general complete
intersection curve in the smooth deformation space containing the given Zariski
tangent vector). By Lemma 3.17, for a general point t of Π, Ct is a smooth,
connected curve containing y1 and y2. Since the arithmetic genus of C is 0, the
arithmetic genus of Ct is also 0, i.e., Ct

∼= P1
k. Let

f1 : P1
k → Ct

be an isomorphism with f1(ti) = yi for i = 1, 2. Because h1(C,NC/Y (−y1 − y2))
equals 0, by the semicontinuity theorem also h1(Ct,NCt/Y (−y1−y2)) equals 0. This
implies that

f∗1 TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), for integers a1, . . . , an ≥ 1.
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Next, for every integer a, let ga : (P1 → P1 be the morphism z 7→ za. Then the
composition fa = f1 ◦ g1 is a morphism

fa : (P1
k, t1, t2) → (Yv.f., y1, y2)

with

f∗aTY = g∗a(f∗1 TY ) ∼= OP1(a1)⊕ · · · ⊕ OP1(an) for integers a1, . . . , an ≥ a,

namely the new integer ai(fa) equals a · ai(f1). Next, choosing a ≥ 2k + 1, this
implies that

h1(P1, f∗aTY (−(k + 1)(t1 + t2))) = 0.

Applying Proposition 3.14 with P1 ×k Y in the place of Y , with the graph of fa in
the place of Z2 and with Z1 = (k +1)(t1 + t2) in the place of Z, deformations of fa

map the k-jet of P1 at t1, resp. at t2, isomorphically to a general k-jet at y1, resp.
at y2. �

The following proposition is the strongest generalization of Proposition 3.18 we will
need. It is stated as a theorem about finding new sections of a rationally connected
fibration under the hypothesis that one such section exists. In this sense it may
seem premature (and dangerously close to circular logic), since Theorem 3.9 is not
yet proved. In fact the proposition is used in the proof of Theorem 3.9 not for the
original fibration, but only for a constant fibration

prP1 : P1
k ×k Y → P1

k

which obviously admits sections (constant sections). So there is nothing circular in
the application of the proposition to the proof of Theorem 3.9.

Proposition 3.19 (Generic weak approximation). [KMM92], [HT06] Let B be a
smooth, connected, projective curve over an algebraically closed field k. Let U be
a smooth, quasi-projective k-scheme and let π : U → B be a good morphism (in
the sense of Definition 3.22). Assume there exists a section s : B → U . Let
(b1, . . . , bM , b′1, . . . , b

′
M ′) be distinct closed points of B such that s(bi) is in the very

free locus Ubi,v.f. of the fiber Ubi for each i = 1, . . . ,M . Let k and a be nonnegative
integers. For each i, let xi be a closed point of Ubi,v.f. and let there be given an
curvilinear k-jet in U at xi. Assuming each of these k-jets is a general k-jet at xi,
there exists a section σ : B → U such that

(i) for each i = 1, . . . ,M , σ(bi) equals xi,
(ii) for each i = 1, . . . ,M ′, σ(b′i) equals s(b′i),
(iii) for every invertible OB-module L of degree ≤ a, h1(B,Nσ(B)/U ⊗OB

L∨)
equals 0,

(iv) and σ maps the k-jet of bi in B isomorphically to the given k-jet at xi for
each i.

Proof. Choose a large integer N and enlarge the set of pairs ((bi, xi))|i=1,...,M to
a set ((bi, xi))i=1,...,N having the same properties above and such that the collec-
tion (bi)i=M+1,...,N is a general collection of N − M points in B (this is possible
because for all but finitely many closed points of B, s(b) is contained in Ub,v.f.).
By Prop 3.18, applied with k = 1, i.e., in the case that k-jets are simply tangent
directions, for every i = 1, . . . , N there exists a morphism

fi : (P1, 0,∞) → (Ubi,v.f., s(bi), xi)
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such that
f∗i Tπ,log

∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ 1

and the tangent direction of fi(P1) at s(bi) is a general tangent direction in TUbi
,s(bi).

But of course the tangent space TUbi
,s(bi) equals the normal space Ns(B)/U |s(bi).

Thus the tangent direction of fi(P1) at s(bi) gives a general normal direction to
s(B) in U at s(bi).

Form the comb j : Ccomb → U with handle s(B) and with each morphism fi

being a tooth Li attached at s(bi). By Lemma 3.16, NCcomb/U |s(B) equals the
sheaf of rational sections of Ns(B)/U having at most a simple pole at each point
s(bi) in a general normal direction at s(bi). Assuming the integer N is suffi-
ciently large, Lemma 3.15 then implies that h1(B, s∗NCcomb/U ) equals 0. More-
over, fixing an auxiliary invertible sheaf M on B of degree g(B) + 1 and applying
Lemma 3.15 to s∗Ns(B)/U (−(b′1 + · · ·+ b′M ′))⊗OB

M∨, for N sufficiently large also
h1(B, s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB

M)∨ equals 0.

For every i, there is a short exact sequence

0 −−−−→ f∗i NLi/Ubi
−−−−→ f∗i NLi/U −−−−→ f∗i NUbi

/U −−−−→ 0.

Of course the normal sheaf NUbi
/U is just OUbi

since Ubi
is a smooth fiber of a

morphism to a curve. Also the normal direction of s(B) at s(bi) surjects onto the
fiber of NUbi

/U at s(bi). Thus the elementary transform up of NLi/U at s(bi) in
this normal direction surjects onto the elementary transform up of O1

P at ∞, i.e., it
surjects onto OP1(1). Thus, by Lemma 3.16, there is a short exact sequence

0 −−−−→ f∗i NLi/Ubi
−−−−→ f∗i NCcomb/U −−−−→ OP1(1) −−−−→ 0.

Twisting by OP1(−2) and applying the long exact sequence of cohomology associ-
ated to the short exact sequence, h1(P1, f∗i NCcomb/U (−0−∞)) equals 0. Combined
with the result of the previous paragraph and joining the two types of normal sheaf
via the short exact sequence

0 → ⊕N
i=1NCcomb/U |Li

(−xi−s(bi)) → NCcomb/U (−(x1 + · · ·+xN )− (b′1 + · · ·+b′M ′))

→ NCcomb/U |s(B)(−(b′1 + · · ·+ b′M ′)) → 0,

the long exact sequence of cohomology implies both that

h1(Ccomb,NCcomb/U (−(x1 + · · ·+ xN )− (b′1 + · · ·+ b′M ′))) equals 0,

and that the map

H0(Ccomb,NCcomb/U (−(x1+· · ·+xN )−(b′1+· · ·+b′M ′))) → H0(B, s∗NCcomb/U (−(b′1+· · ·+b′M ′)))

is surjective.

Thus, by Proposition 3.14, the space of deformations of Ccomb containing x1, . . . , xN

and b′1, . . . , b
′
M ′ is smooth. And, by Lemma 3.17, to prove there exists a deformation

smoothing every node of Ccomb, it suffices to prove for every i there exists a section
of s∗NCcomb/U (−(b′1 + · · ·+ b′M ′)) whose image in Ts(B),s(bi) ⊗k TLi,s(bi) is nonzero.
Of course this skyscraper sheaf Ts(bi) is a quotient of the fiber of s∗NCcomb/U (−(b′1+
· · ·+ b′M ′)) at bi. Thus it suffices to prove for every i that h1(B, s∗NCcomb/U (−bi −
(b′1+· · ·+b′M ′))) equals 0. Recall the auxiliary invertible sheafM of degree g(B)+1.
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Because the invertible sheaf M(−bi) has degree g(B), it is effective, say OB(∆i).
Thus there exists an injective OB-module homomorphism

s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB
M∨ ↪→

s∗NCcomb/U (−(b′1 + . . . b′M ′))⊗OB
M∨(∆i) = s∗NCcomb/U (−bi − (b′1 + · · ·+ b′M ′))

with torsion cokernel. Since h1(B, s∗NCcomb/U (−(b′1 + · · ·+ b′M ′))⊗OB
M∨) equals

0, and since every torsion sheaf has h1 equal to 0, also h1(B, s∗NCcomb/U (−bi −
(b′1 + · · ·+ b′M ′))) equals 0 for every i. Therefore there exist a one-parameter family
of deformations (Ct)t∈Π of Ccomb containing each of x1, . . . , xM , containing each
of s(b′1), . . . , s(b

′
M ′) and smoothing every node of Ccomb, i.e., for t general, Ct is

smooth.

Because πU maps s(B) to B with degree 1, also πU maps Ct to B with degree
1. Because Ct is smooth, this means the projection Ct → B is an isomorphism.
Therefore there exists a section σt : B → U of πU with image Ct. In particular,
σt(bi) = xi for every i = 1, . . . ,M and σt(b′i) = s(b′i) for every i = 1, . . . ,M ′.
Because h1(Ccomb,NCcomb/U (−(x1 + · · · + xN ))) equals 0, by semicontinuity also
h1(B, σ∗tNσt(B)/U (−(x1 + · · · + xN ))) equals 0 for t general. In particular, if N ≥
a + g(B), then for every invertible sheaf L of degree ≤ a, L∨(x1 + · · · + xN ) has
degree ≥ g(B) and thus is effective, say OB(∆). Therefore there exists an injective
sheaf homomorphism

σ∗tNσt(B)/U (−(x1+· · ·+xN )) ↪→ σ∗tNσt(B)/U (−(x1+· · ·+xN )+∆) = σ∗tNσt(B)/U⊗OB
L∨

with torsion cokernel. So, by the same type of argument as above, h1(B, σ∗tNσt(B)/U⊗OB

L∨) equals 0 for every invertible sheaf L of degree ≤ a.

Finally, applying the last result when a = (k + 1)(M + M ′) and L = OB((k +
1)(b1 + · · ·+ bM + b′1 + · · ·+ b′M ′)), there exists a section σ : B → U of πU as above
and satisfying h1(B, σ∗Nσ(B)/U (−(k + 1)(b1 + · · · + bM + b′1 + · · · + b′M ′))) equals
0. Therefore, by Proposition 3.14 once more, for a general deformation of σ(B)
containing x1, . . . , xM and s(b′1), . . . , s(b

′
M ′), the k-jet of the curve at each point xi

and s(b′i) is a general curvilinear k-jet in U at that point. �

The main application is to the case when U = P1 ×k Y where Y is a smooth,
irreducible, quasi-projective k-scheme whose very free locus Yv.f. is nonempty.

Corollary 3.20. Every rational curve in Y intersecting Yv.f. is contained in Yv.f..
For every integer k, for every integer a, for every collection of closed points b1, . . . , bM

of P1, for every collection of closed points y1, . . . , yM of Yv.f., and for every choice of
a curvilinear k-jet in Y at each point yi, if each k-jet is general among curvilinear
k-jets at yi, then there exists a morphism

f : (P1, b1, . . . , bM ) → (Y, y1, . . . , yM )

mapping the k-jet of P1 at bi isomorphically onto the given k-jet at yi and such that

f∗TY
∼= OP1(a1)⊕ · · · ⊕ OP1(an), a1, . . . , an ≥ a.

Proof. Let B = P1, let U = B ×k Y and let πB be the obvious projection. The
sections of πB are precisely the graphs of morphisms f : P1 → Y . In particular,
if f is a morphism whose image intersects Yv.f., then the section s = (IdB , f)
satisfies the hypotheses of Proposition 3.19. Thus, for every point b′ = b′1 of P1,
there exists a section σ = (IdP1 , φ) with σ(b′) = s(b′) and h1(B, σ∗Nσ(B)/U (−2))
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equals 0. In other words, φ : P1
k → Y is a morphism with φ(b′) = f(b′) and with

h1(P1, φ∗TY (−2)) equals 0. Thus φ is a very free morphism whose image contains
f(b′). Therefore every point in the image of f is contained in the very free locus,
i.e., every rational curve in Y intersecting Yv.f. is contained in Yv.f..

The rest of the corollary is just a straightforward translation of Proposition 3.19 to
this context. �

There is one more result in this direction which is useful. The proof is similar to
the arguments above.

Lemma 3.21. [Kol96, Lemma II.7.10.1] Let Ccomb be a comb with handle C and
teeth L1, . . . , Ln. Let ρ : C → Π be a one-parameter deformation of Ccomb over a
pointed curve (Π, 0) whose general fiber Ct is smooth. Let E be a locally free sheaf
on C. If E|Li is ample for every i and if h1(C, (E|C) ⊗OC

M) equals 0 for every
invertible OC-module M of degree ≥ n, then h1(Ct, E|Ct

) equals 0 for general t in
Π.

3.3. Ramification issues. The argument sketched in Subsection 3.1 and the pow-
erful smoothing combs technique from Subsection 3.2 form the core of the proof
of Theorem 3.9. However there is a technical issue complicating matters. There
may be codimension 1 points of X at which πX : X → B is not smooth. In other
words, finitely many scheme-theoretic fibers of πX may have irreducible compo-
nents occurring with multiplicity ≥ 1. This is a well-known issue when working
with fibrations. Although there are sophisticated ways to deal with this (using log
structures or Deligne-Mumford stacks), for the purposes of this proof it suffices to
deal with this in a more naive manner.

Definition 3.22. Let B be a smooth k-curve, let X be a reduced, finite type k-
scheme and let π : X → B be a flat morphism. The good locus of π is the maximal
open subscheme U of X such that U is smooth and such that for every point b of
B the reduced scheme of the fiber π−1

X (b) ∩ U is smooth. Denote the restriction of
πX to U by πU . The morphism π is good if the good locus equals all of X.

The log divisor of π is the Cartier divisor Dπ,log of U given by

Dπ,log :=
∑

b∈B(k)

π∗U (b)− π∗U (b)red,

where π∗U (b)red is the reduced Cartier divisor. Notice this is actually a finite sum
over those closed points b of B for which π∗U (b) is nonreduced.

Lemma 3.23. The complement of U in X has codimension ≥ 2. If char(k) equals
0, then the pullback map on relative differentials

π∗U : π∗UΩB/k → ΩU/k

factors uniquely through the inclusion

π∗UΩB/k ↪→ π∗UΩB/k(Dπ,log)

and the cokernel

Ωπ,log := Coker(π∗UΩB/k(Dπ,log) → ΩU/k)

is locally free.
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Proof. To construct U , first remove the closure of the singular locus of the geometric
generic fiber of πX and next remove the singular locus from the reduced scheme of
the finitely many singular fibers. Both of these sets have codimension 2 in X (the
first by hypothesis).

The proof of the second part uses that char(k) = 0. It can be checked formally
locally near every closed point x of U . Denote by b the image πX(x) in B and denote
by D the reduced structure on the irreducible component of π−1(b) containing x.
Since x is in U , D is a smooth Cartier divisor in U . Let r be a defining equation
for D in U and let t be a defining equation for b in B. Near x, π∗(b) = mD+ other
terms. Thus, in ÔU,x,

π∗Xt = amrm + am+1r
m+1 + . . .

where am is a unit. Because char(k) = 0, the power series

u = m
√

am + am+1r + . . .

is a well-defined unit in ÔU,x. Thus, after replacing r by ur, there exists a regular
system of parameters r, r2, . . . , rn for ÔU,x such that π∗X is given by

π∗Xt = rm, π∗X(dt) = mrm−1dr.

Thus π∗ locally factors through π∗XΩB((e− 1)D) = π∗XΩB(Dπ,log). Moreover it is
clear that locally the cokernel is the locally free sheaf generated by dr2, . . . , drn. �

The locally free quotient Ωπ,log of Ωπ is called the sheaf of log relative differentials.
Of course it equals the torsion-free quotient of Ωπ. But its true importance comes
from the following lemma: given a base change V → B for which the normal-
ized fiber product ˜U ×B V is smooth over V , the sheaf of relative differentials of
˜U ×B V /V equals the pullback of Ωπ,log. Thus the relative deformation theory of

the ˜U ×B V over V is already captured by the sheaf Ωπ,log on U . Before stating
the lemma precisely, there is some setup.

Let
π : U → B, $ : V → B

be two good morphisms with respective log divisors Dπ,log and E$,log. Let b be a
closed point of B. Let D be a prime divisor of U in Supp(Dπ,log) ∩ π−1(b), and
let E be a prime divisor of V in Supp(E$,log) ∩$−1(b). Denote by mD − 1, resp.
mE − 1, the coefficient of D in Dπ,log, resp. the coefficient of E in E$,log. The
normalized fiber product of U and V along D and E is the normalization ˜U ×B V
of U ×B V along D ×{b} E. Denote by

prU : U ×B V → U, prV : U ×B V → V

the two projections, and denote by

p̃rU : ˜U ×B V → U, p̃rV : ˜U ×B V → V

the compositions with the blowdown morphism. Denote by Exc the exceptional
locus of the morphism, i.e.,

Exc := (p̃r−1
U (D) ∩ p̃r−1

V (E))reduced.

From this point forward we explicitly assume that char(k) equals 0.
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Hypothesis 3.24. The algebraically closed ground field k has characteristic 0.

The sheaves Ωπ and Ωπ,log agree on a dense open subset of U , namely U−Supp(Dπ,log).
Because p̃rV and prV are isomorphic over a dense open subset of V (namely V −E)
also Ω eprV

agrees with p̃r∗V Ωπ on a dense open subset of ˜U ×B V . Therefore also

Ω$ agrees with p̃r∗V Ωπ,log on a dense open subset of ˜U ×B V .

Lemma 3.25. The morphism

p̃rV : ˜U ×B V → V

is smooth at every point of Exc if and only if mD divides mE. In this case the
reduced normalization equals the blowing up of U ×B V along the closed subscheme
pr−1

U (D)× pr−1
V ((mE/mD)E) and Exc is contained in the maximal open neighbor-

hood of ˜U ×B V on which Ωeπ agrees with (p̃rV )∗Ωπ,log.

Proof. This is proved in much the same way as the second part of Lemma 3.23. For
every closed point x of U and y of V with common image point b = π(x) =
$(y), there exist a regular system of parameters (r, r2, . . . , rn) for ÔU,x, resp.
(s, s2, . . . , sp) for ÔV,y, and a regular parameter t for ÔB,b such that

π∗t = rmD and $∗t = smE ,

and thus,

ÔU×BV,(x,y) = k [[r, r2, . . . , rn, s, s2, . . . , sp]] /〈rmD − smE 〉.
Denoting by m the greatest common factor of mD and mE , the stalk of the nor-
malization equals

k [[u, r, r2, . . . , rn, s, s2, . . . , sp]] /〈r − umE/m, s− umD/m〉.
Thus it is formally smooth as a k [[s, s2, . . . , sp]]-algebra if and only if mD/m equals 1,
i.e., if and only if mD divides mE . In this case it is easy to see that the normalization
is the blowing up at the ideal 〈s, tmE/mD 〉 and it is easy to see that the module
of relative differentials is the free module generated by dr2, . . . , drn, i.e., it is the
pullback of Ωπ,log. �

Definition 3.26. A log preflexible curve is a connected, smooth, proper curve
C ⊂ U such that

(i) C intersects the very free locus Uπ,v.f. of πU ,
(ii) πU (C) equals B,
(iii) and every intersection point of C with supp(Dπ,log) is transverse, i.e., the

tangent direction of C at the intersection point is not contained in the
tangent space of supp(Dπ,log).

A linked log preflexible curve is a B-morphism from a linked curve j : Clink → U
such that the handle C is log preflexible and for every link Li the image in B of Li

is disjoint from the image in B of Dπ,log.

A log preflexible curve C is a log flexible curve if

h1(C, Tπ,log|C) equals 0, where Tπ,log := HomOU
(Ωπ,log,OU ).

A linked log preflexible curve is a linked log flexible curve if

h1(Clink, j
∗Tπ,log) equals 0.
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Lemma 3.27. There exists a log preflexible curve C. In fact, every intersection of
X with dim(X)− 1 general hyperplanes is a log preflexible curve.

Proof. Because X − U has codimension 2 in X, a general complete intersection
curve in X is disjoint from X−U , i.e., it is contained in U . By hypothesis, Uπ,v.f. is
a dense open subset of U and thus a general complete intersection curve intersects
this open. Finally, by Bertini’s theorem a general complete intersection curve in U
is smooth and intersects supp(Dπ,log) transversally. �

An important consequence of the smoothing combs technique is the following result.

Proposition 3.28. There exists a log flexible curve in X. In fact, for every comb
in X with log preflexible handle C and with sufficiently many very free teeth in
fibers of πU attached at general points of C and with general tangent directions,
there exists a one-parameter deformation of the comb whose general member is a
log flexible curve.

Proof. By hypothesis, C intersects the very free locus Uπ,v.f. of the morphism πU .
By the same argument as in the proof of Proposition 3.18, Uπ,v.f. is open. Therefore
all but finitely many points of C are contained in Uπ,v.f.. By Proposition 3.18 applied
to 1-jets, i.e., to tangent directions, for each such point c there exists a very free
rational curve in UπU (c) containing c and whose tangent direction at c is a general
tangent direction in UπU (c).

Let Ccomb be a comb obtained by attaching to C a number of teeth L1, . . . , LN as in
the previous paragraph at general points of C (in particular, points where C → B is
unramified) and with general tangent directions in UπU (c). These tangent directions
are the same as normal directions to C in U . By the same argument as in the proof
of Proposition 3.19, if N is sufficiently large there is a one-parameter deformation

C ⊂ Π×k U

of Ccomb such that Ct is smooth for general t in Π. The properties (i), (ii) and (iii)
of Definition 3.26 are all open properties and hold for C0 = Ccomb, thus also hold
for Ct so long as t is general.

For each tooth Li in a fiber Ubi
, Tπ,log|Li

equals TUbi
|Li

. Since Li is very free, this
is an ample locally free sheaf. Thus, by Lemma 3.21 with the pullback of Tπ,log in
the place of E , the restriction h1(Ct, Tπ,log|Ct

) equals 0 for t a general point of Π.
Therefore, for t a general point of Π, Ct is a log flexible curve. �

Because the fibers of π are rationally connected, every log preflexible curve, resp.
log flexible curve, extends to a linked log preflexible curve, resp. linked log flexible
curve.

Lemma 3.29. For every linked curve Clink such that each point bi = πC,link(Li)
is disjoint from πU (Dπ,log), and for every B-morphism j0 : C → X mapping C
isomorphically to a log preflexible curve, resp. log flexible curve, and mapping
each fiber Cbi into the very free locus Uπ,v.f. of πU , there exists a B-morphism
j : Clink → X which is linked log preflexible, resp. linked log flexible, and restricting
to jC on C.
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Proof. Let Li be a link of Clink. Let Li intersect C in m points t1, . . . , tm con-
tained in the fiber over a general point bi of B. Let x1, . . . , xm be the images
j(t1), . . . , j(tm) in Ubi,v.f.. By Corollary 3.20, there exists a morphism

ji : (Li, t1, . . . , tm) → ((Ubi,v.f., x1, . . . , xm)

such that

j∗i TUbi

∼= OP1(a1)⊕ · · · ⊕ OP1(an) for integers a1, . . . , an ≥ m− 1.

Because of this,
h1(Li, j

∗
i TUbi

(−(t1 + · · ·+ tm))) equals 0.

Define j : Clink → U to be the unique morphism such restricting to j0 on C and
restricting to ji on each link Li. Because ji(tk) = j0(tk) for every link Li and for
every node tk contained in Li, this morphism is defined. It is clearly log preflexible.

Next assume that j0 is log flexible. The claim is that j is also log flexible. To see
this, consider the short exact sequence

0 −−−−→ ⊕ij
∗
i TUbi

(−Cbi
) −−−−→ j∗Tπ,log −−−−→ j∗0Tπ,log −−−−→ 0.

By the hypothesis that j0 is log flexible, the third term has vanishing h1. And by
the construction of ji, j∗i TUbi

(−Cbi), i.e., j∗i TUbi
(−(t1 + · · · + tm)), has vanishing

h1. Thus, by the long exact sequence of cohomology, also h1(Clink, j
∗Tπ,log) equals

0. Therefore j : Ccomb → U is a linked log flexible curve. �

3.4. Existence of log deformations. There is a definition of one-parameter de-
formation that takes the divisor Dπ,log into account. Unfortunately, not every curve
over B admits a log deformation specializing to a section curve, e.g., étale covers of
B are rigid. However, after attaching a sufficient number of links, the linked curve
does admit a log deformation specializing to a section curve.

Definition 3.30. Let (Clink, πC,link) be a linked curve with handle C. Let DC ⊂ C
be an effective, reduced, Cartier divisor contained in the smooth locus of Clink. A
one-parameter log deformation of (Clink, πC,link, DC) is a one-parameter deforma-
tion of (Clink, πC,link),

(ρ, πC) : C → Π×k B

together with an effective Cartier divisor DC ⊂ C such that
(i) the pullback of DC to C0 = Clink equals DC

(ii) and πC(DC) equals πC(DC), i.e., DC is vertical over B.

Lemma 3.31. For every finite morphism of smooth, projective curves πC : C → B
and for every effective, reduced, Cartier divisor DC of C, after attaching suffi-
ciently many links to C over general points of B, there exists a one-parameter log
deformation specializing to a section curve.

Proof. For all sufficiently positive integers e, for a general morphism g : C → P1 of
degree e, the induced morphism (πC , g) : C → B×k P1 is unramified and is injective
except for finitely many double points, none of which intersect the image of DC .
Denote by Σ → B ×k P1 the blowing up along the finitely many double points of
(πC , g)(C). Then there is a B-morphism h : C → Σ which is an embedding.

For each point p of DC , denote by mp the multiplicity of p in the Cartier divisor
π∗C(πC(p)). Denote by νp : Σ′p → Σ the mp-fold iterated blowup of Σ first at p,
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then at the image of p in the strict transform of h(C), etc. Denote by Ep the final
exceptional divisor of this sequence of blowups. The point of this construction is
that the strict transform of h(C) intersects Ep at p, and Ep occurs with multiplicity
mp in the Cartier divisor Σ′p ×B {πC(p)}. Denote by ν : Σ′ → Σ the fiber product
over all points p in DC of νp : Σ′p → Σ. Denote by E the Cartier divisor in Σ′

being the sum over all p of the pullback of Ep from Σ′p. Denote by πΣ′ : Σ′ → B

the composition of Σ′ → Σ → B ×k P1 with prB . Denote by h′ : C → Σ′ the strict
transform of h(C). The point of this construction is that E is a Cartier divisor in
Σ′ which is vertical over B and such that h∗E equals DC .

Denote by d the degree of πC and let t1, . . . , td be closed points of P1 such that
the Cartier divisor B×k {t1, . . . , td} of B×k P1 is disjoint from all double points of
(πC , g)(C) and disjoint from (πC , g)(D). Denote by T the strict transform of B×k

{t1, . . . , td} in Σ′. Form the invertible sheaf OΣ′(h′(C) − T ) and the pushforward
E := πΣ′,∗OΣ′(h′(C) − T ) on B. Because πΣ′ is flat and because OΣ′(h′(C) − T )
is locally free, E is torsion-free. For every point b B − πC(DC), Σ′b is isomorphic
to P1 (via the projection Σ′ → B ×k P1 → P1). And Σ′b ∩ h′(C) and Σ′b ∩ T are
divisors of the same degree d. Thus OΣ′(h′(C)−T )|Σ′

b
is isomorphic to OΣ′

b

∼= OP1 .
Therefore E|b is isomorphic to h0(Σ′b,OΣ′

b
), which is one-dimensional. Therefore E

is an invertible sheaf.

By Riemann-Roch and Serre duality, for every sufficiently large degree, for a gen-
eral effective divisor ∆ on B of that degree, E ⊗OB

OB(∆) is globally generated.
Choose ∆ to be disjoint from πC(DC) and from the image in B of the finitely many
intersection points of h′(C) and T . Since E ⊗OB

OB(∆) is globally generated, there
exists a section which is nonzero at every point of ∆. Of course a nonzero section
of this sheaf (up to scaling) is precisely the same thing as a divisor V on Σ′ such
that

h′(C) + π∗Σ′∆ ∼ T + V.

For b in B − πC(DC), if the section is nonzero at b then V does not intersect Σ′b.
The same does not necessarily hold for points b of πC(DC) since b may lie in the
support of R1πΣ′,∗OΣ′(h′(C)−T ). Therefore V is a sum of finitely many irreducible
components of fibers of πΣ′ (possibly with multiplicity) lying over points not in ∆.

The linked curve (Clink, πC,link) is h′(C) + π∗Σ′∆ together with the restriction of
πΣ′ . Denote by Π the pencil of divisors in Σ′ spanned by the divisors h′(C)+π∗Σ′∆
and T + V , with these two divisors marked as 0 and ∞ respectively. Denote by
C ⊂ Π×k Σ′ the corresponding family of divisors. By Bertini’s theorem, the general
member Ct is smooth away from the base locus. Now the only singular points
of h′(C) + π∗Σ′∆ are the points h′(π−1

C (∆)). Since V does not intersect π∗Σ′∆,
these singular points are not in the base locus. Since C0 is nonsingular at every
basepoint, the same is true for Ct for t general. Thus a general member Ct is smooth
everywhere.

Define DC to be the pullback to C of the Cartier divisor E in Σ′. Because E is
vertical over B and because h∗E equals DC , the deformation C together with the ef-
fective Cartier divisor DC is a one-parameter log deformation of (Clink, πC,link, DC).
And it specializes at t = ∞ to a union of section curves and vertical curves. �
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3.5. Completion of the proof. We are finally prepared for the proof of Theo-
rem 3.9.

Proof of Theorem 3.9. By Proposition 3.28, there exists a log flexible curve j0 :
C → U . Denote by DC the reduced scheme of the C ∩ Dπ,log. By Lemma 3.31,
after attaching finitely many links to C over the points of a general divisor ∆ of B,
the linked curve Clink together with DC admits a one-parameter log deformation

(ρ, πC) : C → Π×k B, DC ⊂ C
of (Clink, DC) specializing to a section curve (in fact C∞ is a union of section curves
and vertical curves).

By Proposition 3.18, the relative very free locus Uπ,v.f. is open in U . Thus C∩Uπ,v.f.

is open in C. So its complement is finitely many points in C. Thus a general divisor
∆ is disjoint from the finite set πU (Dπ,log) and from the finite set πC(C−C∩Uπ,v.f.).
Then, by Lemma 3.29, there exists an extension of j0 to a linked log flexible curve

j : Clink → U.

Form the fiber product
UC := C ×πC,B,πU

U.

Since πU is flat, also the projection

prC : UC → C
is flat. Since πC is surjective, the geometric generic fiber of prC equals the geometric
generic fiber of πU , which is integral. Since prC is flat with integral geometric generic
fiber, UC is integral. Define

ν : ŨC → UC

to be the blowing up of UC along the closed subscheme DC ×B Dπ,log. Since UC is
integral, also ŨC is integral. And the composition

ŨC → UC → C → Π

is surjective. Since Π is a smooth curve, the morphism

ρ̃ : ŨC → Π

is flat.

Consider the graph,

Γj : Clink = C0 → C0 ×B U = UC,0.

Because the links of Clink do not intersect Dπ,log, the image of Γj is smooth at every
point of intersection with DC ×B Dπ,log. Since ν is birational, Γj gives a rational
transformation from Clink to ŨC,0. Since ν is proper, and since Clink is smooth at
every point of intersection with DC ×B Dπ,log, the valuative criterion of properness
implies this rational transformation is actually a regular morphism

Γ̃j : C0 → ŨC,0.

Clearly this is a section of the projection morphism

prC0
: ŨC,0 → C0.

For every point t in Clink − DC , the morphism πU : U → B is smooth at j(t).
Therefore also UC,0 → C0 is smooth at Γj(t). And since ν is an isomorphism over
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Γj(t), also prC0
: ŨC,0 → C0 is smooth at Γ̃j(t). Also the vertical tangent bundle

equals the pullback of the vertical tangent bundle of πU : U → B, which also equals
Tπ,log (since j(t) is not in Dπ,log).

Let t be a point of DC and let Dt be the unique irreducible component of Dπ,log

containing j(t). Give Dt the reduced structure. Because j0(C) is transverse to Dt

at j0(t), the ramification index mC − 1 of πC : C → B at t equals the ramification
index mD − 1 of πU along Dt. Therefore, by Lemma 3.25, the projection

prC0
: ŨC,0 → C0

is smooth over the preimage of {t}×Dt for every t and the vertical tangent bundle
equals the pullback of Tπ,log. Since Γj(t) is in {t} × Dt, this implies that prC0

is
smooth at every point of the image of Γ̃j and the vertical tangent bundle of prC0

equals the pullback of Tπ,log.

Since Γ̃j is a section with image in the smooth locus of prC0
, the normal sheaf

N equals the restriction of the vertical tangent bundle. Therefore Γ̃∗jN equals
j∗Tπ,log. Since j : Clink → U is log flexible, h1(Clink, j

∗Tπ,log) equals 0. Therefore,
by Proposition 3.13, the relative Hilbert scheme Hilb(ŨC/Π) is smooth over Π at
the point 0′ := [Image(Γ̃j)]. Thus for a general complete intersection curve Π′

containing 0′, the morphism Π′ → Π is smooth at 0′.

Replace Π′ by the unique irreducible component containing 0′, and then replace
this by its normalization. The result is that Π′ is a smooth, projective, connected
curve together with a morphism Π′ → Hilb(ŨC/Π) so that the induced morphism
Π′ → Π is smooth at 0′. In particular it is flat, so surjective. Let ∞′ denote a
closed point of Π′ mapping to ∞. Then (Π′, 0′,∞′) → (Π, 0,∞) is a flat morphism
of 2-pointed smooth curves. Thus, by Lemma 3.11, the base change Π′ ×Π C is a
one-parameter deformation of Clink over (Π′, 0′,∞′) specializing to a section curve.

Denote by

Z ⊂ Π′ ×Π ŨC

the pullback of the universal closed subscheme Univ(ŨC/Π) by the morphism Π′ →
Hilb(ŨC/Π). The composition with prC is a projective morphism

Z ⊂ Π′ ×Π ŨC → Π′ ×Π C

of flat Π′-schemes. Moreover, the fiber over 0′ ∈ Π′ is an isomorphism since the
projection Γ̃j(Cflex) → Cflex is an isomorphism. Therefore the morphism is an
isomorphism over N ×Π C for some open neighborhood N of 0′ in Π′. (This is well-
known; a complete proof is given in [dJS03, Lemma 4.7].) Invert this isomorphism
and compose it with the morphism

Π′ ×Π ŨC → ŨC → UC → U.

The result is precisely an extension

jN : N ×Π C → X

of j for the one-parameter deformation Π′ ×Π C. Therefore, by Lemma 3.12, there
exists a section s : B → X of πX . �
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3.6. Corollaries. There are a number of consequences of Theorem 3.9 and its
generalization to positive characteristic in [dJS03]. Many of these consequences
were recognized before Conjecture 3.8 was proved.

Corollary 3.32. [Kol96, Conjecture IV.5.6] Conjecture 3.7 is true. Moreover, for
every smooth, projective, irreducible variety X over an algebraically closed field
of characteristic 0, there exists a dense open X0 ⊂ X and a projective, smooth
morphism q0 : X0 → Q0 such that every fiber of q0 is rationally connected, and
every projective closure of Q0 is nonuniruled.

Corollary 3.33. [GHS03, Corollary 1.7] The uniruledness conjecture implies Mum-
ford’s conjecture. To be precise, assume that for every smooth, projective, irre-
ducible variety X over an algebraically closed field k of characteristic 0, if X is
nonuniruled then h0(X, ω⊗n

X ) is nonzero for some n > 0. Then for every smooth,
projective, irreducible variety X over k, if X is not rationally connected then
h0(X, Ω⊗n

X ) is nonzero for some n > 0.

The next corollary is a fixed point theorem. In characteristic 0 it can be proved
using the Atiyah-Bott fixed point theorem. But in positive characteristic it is a new
result. There are examples due to Shioda proving one cannot replace “separably
rationally connected” by “rationally connected”, cf. [Shi74].

Corollary 3.34. [Kol03] Let Y be a smooth, projective, separably rationally con-
nected variety over a field k and let f : Y → Y be a k-automorphism. If char(k)
is positive, say p, assume in addition that f has finite order n not divisible by p2.
Then the fixed locus of f is nonempty.

Of course it suffices to prove the case when k is algebraically closed, since the fixed
locus of the base change equals the base change of the fixed locus. First assume f
has finite order n. If n is prime to char(k), let B′ denote P1 and let Z/nZ act on
P1 by multiplication by a primitive nth root of unity. Note this action fixes ∞ and
has trivial generic stabilizer. If char(k) = p is positive and if n = pm where m is
prime to p, let B′ be the normal, projective completion of the affine curve

V(ym − (xp − x)) ⊂ A2
k.

Let ζ be a primitive mth root of unity, and let a generator of Z/mZ act by (x, y) 7→
(x, ζy). Similarly, let a generator of Z/pZ act by (x, y) 7→ (x + 1, y). Clearly these
actions commute, thus define an action of Z/nZ on B′. Note this action fixes the
unique point ∞ not in the affine chart above, and the action has trivial generic
stabilizer.

Let Z/nZ act diagonally on Y ×k B′, and let X be the quotient. Also let B
the quotient of the Z/nZ-action on B′. The projection π : X → B satisfies the
hypotheses of Theorem 3.9 (or its generalization in [dJS03]). Therefore there exists
a section. This is the same as Z/nZ-equivariant k-morphism f : B′ → Y . In
particular, since ∞ is a fixed point in B′, f(∞) is a fixed point in Y .

Next assume k has characteristic 0. By general limit arguments there exists an
integral, finitely generated Z-algebra R, a ring homomorphism R ↪→ k, a smooth,
projective morphism YR → Spec R whose relative very free locus is all of YR, and
an R-automorphism fR : YR → XY R such that the base change YR ⊗R k equals Y
and the base change of fR equals f . Since the intersection of the graph of fR and
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the diagonal of YR×R YR is a proper scheme over Spec R, the image in Spec R is a
closed subscheme of Spec R. To prove this closed subscheme equals all of Spec R,
and thus contains the image of Spec k, it suffices to prove it contains a Zariski
dense set of closed points.

Choose an f -invariant very ample sheaf, choose a basis for the space of global
sections, and let A be the N ×N matrix with entries in R giving the action of f on
global sections with respect to this basis. The set of maximal ideal in Spec R with
residue field of characteristic p > N are Zariski dense in Spec R. Every invertible
matrix over a characteristic p field with order divisible by p2 has a Jordan block
with eigenvalue 1 and size divisible by p. Thus, since p > N , the finite order of
fR modulo the prime is not divisible by p2. Therefore, by the previous case, the
reduction of fR modulo the prime has nonempty fixed locus. Therefore the original
automorphism f has nonempty fixed locus.

Corollary 3.34 is particularly interesting in combination with a result which is
attributed to Campana.

Proposition 3.35 (Campana). Let Y be a quasi-projective, rationally chain con-
nected variety over an algebraically closed field k. The algebraic fundamental group
of Y is finite. Moreover, if k = C, then the topological fundamental group of Y is
finite.

The basic point is this: there exists a choice of u : M ×k Cn → Y such that the
induced morphism u(2) : M ×k Cn ×k Cn → Y ×k Y is generically finite. For a
general point y of Y , the fiber over {y}×Y has an irreducible component N which
is generically finite over Y . Thus there exists a morphism

v : N ×k Cn → Y

and two points 0,∞ ∈ Cn such that

v0 : N = N × {0} → Y

the constant map with image {Y } and

v∞ : N = N × {∞} → Y

is dominant and generically finite. Let w : Ỹ → Y be a connected, unramified,
cover in either the algebraic category or in the complex analytic category. Let ỹ
be a point over y. The morphism v0 lifts to a constant morphism ṽ0. Since Cn is
simply connected, this implies that there is a unique morphism

ṽ : N ×k Cn → Ỹ

whose restriction to N×{0} equals ṽ0 and which is compatible with v. In particular,
v factors through w. Therefore the degree of w is bounded by the degree of v so
that Y has fundamental group bounded by the degree of v.

Corollary 3.36. [Cam91] [Kol03] Let X be a smooth, projective, separably ratio-
nally connected variety over an algebraically closed field k. The algebraic funda-
mental group of X is trivial. If k = C, then the topological fundamental group of
X is also trivial.
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This was proved over C by Campana. The general case was proved by Kollár. By
Proposition 3.35, the universal cover X̃ → X is finite. Moreover, by the proof of the
proposition, X̃ is also smooth, projective and separably rationally connected. If the
fundamental group of X is nonzero, then it contains a cyclic subgroup Z/nZ such
that p2 does not divide n. Of course the action of this group on X̃ is fixed-point-free.
But Corollary 3.34 implies there exists a fixed point. Thus X is simply connected.
Kollár has generalized this considerably to prove a result for open subschemes of
rationally connected varieties.

Theorem 3.9 also plays an important role in the proof of a “converse” to Theo-
rem 3.9.

Theorem 3.37. [GHMS05] Let π : X → B be a surjective morphism of normal,
projective, irreducible varieties over an algebraically closed field k of characteristic
zero. Assume that for some sufficiently large, algebraically closed field extension
K/k, for every k-morphism C → B from a smooth, projective, K-curve to X, the
pullback πC : C×B X → C has a section. Then there exists a closed subvariety Y ⊂
X such that the geometric generic fiber of π|Y : Y → B is nonempty, irreducible
and rationally connected.

One corollary of this theorem, in fact the motivation for proving it, was to answer
a question first asked by Serre and left unresolved by Theorem 3.9: could it be
that a smooth, projective variety X over the function field of a curve has a rational
point if it is O-acyclic, i.e., if hi(X,OX) equals 0 for all i > 0? One reason to ask
this is that the corresponding question has a positive answer if “function field” is
replaced by “finite field” (thanks to N. Katz’s positive characteristic analogue of
the Atiyah-Bott fixed point theorem).

Corollary 3.38. [GHMS05] There exists a surjective morphism π : X → B of
smooth, projective varieties over C such that B is a curve and the geometric generic
fiber of π is an Enriques surface, but π has no section. Thus, to guarantee a fibration
over a curve has a section, it is not sufficient to assume the geometric generic fiber
is O-acyclic.

In fact G. Lafon found an explicit morphism π as in Corollary 3.38 where B is P1
C,

or in fact P1
k for any field k with char(k) 6= 2, and there does not even exist a power

series section near 0 ∈ P1
k, cf. [Laf04].

4. The Period-Index theorem

Theorem 3.9 is a generalization of Tsen’s theorem, Corollary 2.15, because a suf-
ficiently general complete intersection V(F1, . . . , Fr) ⊂ Pn with d1 + · · · + dr ≤ n
is smooth, projective and separably rationally connected (the proof of this is non-
trivial, as is the specialization argument reducing Tsen’s theorem to the case of
complete intersections which are sufficiently general). Is there a similar generaliza-
tion of the Tsen-Lang theorem?

Joint work with Harris, [HS05], proves the spaces of rational curves on general low
degree hypersurfaces are rationally connected. This was later generalized in joint
work with A. J. de Jong: complete intersections X = V(F1, . . . , Fr) ⊂ Pn with
d2
1 + · · ·+ d2

r ≤ n + 1 are rationally simply connected in the sense that the space of
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“good” rational curves in X containing two fixed, general points is itself a rationally
connected variety. This is analogous to simple connectedness in topology: a path
connected topological space is simply connected if the space of paths connecting
two fixed points is itself path connected.

Moreover, de Jong gave a heuristic argument suggesting that for a rationally simply
connected fibration over a surface, the only obstruction to existence of a rational
section is the elementary obstruction. Given a geometrically integral scheme X
defined over a field K, the elementary obstruction to existence of a K-point is
the existence of a Gal(K/K)-invariant splitting of the homomorphism of Abelian
Galois modules,

K
∗

↪→ Frac(X ⊗K K)∗,
where K is the separable closure of K and Frac is the function field. If there exists
a K-point of X, evaluation at this point gives a Galois-invariant splitting. The
elementary obstruction was introduced by Colliot-Thélène and Sansuc, [CTS87].
Its vanishing implies the vanishing of other known obstructions. In particular, it
implies the vanishing of a Brauer obstruction

δ : Pic(X ⊗K K)Gal(K/K) → Br(K)

measuring whether or not a Galois-invariant invertible sheaf L on X ⊗K K is the
pullback of an invertible sheaf L on X.

At the moment, in order to give a rigorous proof, de Jong’s heuristic argument
requires several additional hypotheses on the rationally simply connected fibration.
One case where the hypotheses hold is when all fibers of the fibration are Grass-
mannian varieties. Although this is very special, it is also quite interesting since it
gives a second proof of de Jong’s period-index theorem.

Theorem 4.1. [dJS05] Let K be the function field of a surface over an algebraically
closed field k. Let (X,L) be a pair of a K-scheme and an invertible OX-module L.
If (X⊗K K,L⊗K K) is isomorphic to (Grass(r, K

n
),O(1)), then X has a K-point.

Corollary 4.2 (de Jong’s Period-Index theorem). [dJ04] Let A be a central simple
K-algebra with A ⊗K K ∼= Matn×n(K). Let r < n be an integer such that r[A]
equals 0 in Br(K). Then there exists a left ideal I ⊂ A such that dimK(I) = rn.
In particular, if A = D is a division algebra then [D] has order n in Br(K), i.e.,
the period of D equals the index of D.

Corollary 4.2 follows from Theorem 4.1 by setting X to be the generalized Brauer-
Severi variety parameterizing left ideals in A of rank rn. Since A ⊗K K equals
Matn×n(K), X⊗K K equals Grass(r, K

n
). The Brauer obstruction to the existence

of an invertible sheaf L with L⊗K K ∼= O(1) is precisely the element r[A] in Br(K).

The first reduction is “discriminant avoidance”, i.e., reduction to the case that the
variety X is the generic fiber of a smooth, projective morphism over a smooth,
projective surface. Let T be a quasi-compact, integral scheme and let G be a
smooth, affine group scheme over T whose geometric fibers are reductive.

Lemma 4.3. For every integer c there exists a datum (U,U, TU ) of a projective, flat
T -scheme U with integral geometric fibers, an open subset U of U and a G-torsor
TU over U such that

(i) U is smooth over T ,
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(ii) the complement U − U has codimension ≥ c in U ,
(iii) and for every G-torsor Tk over an infinite field K over T , there exists a

T -morphism i : Spec K → U and an isomorphism of G-torsors over K,
i∗TU

∼= TK .

The idea is to form the GIT quotient U of a linear action of G on (PN
T ,O(1)). If

the linear representation is “sufficiently large”, then G acts properly and freely on
an open subset V of PN

T of codimension ≥ c. Take U to be the quotient of V . Then
U is smooth over T and U −U has codimension ≥ c. Finally, for every field K over
OT and for every G-torsor TK over K, the twist PN

T ×T TK/G is isomorphic to PN
K .

Thus there exists a K-point. If K is infinite, then the set of K-points is Zariski
dense so that there exists a point in the image of V . This point is only well-defined
up to the action of G, but the associated morphism i : Spec K → U is well-defined.
Chasing definitions, i∗TU is isomorphic to TK .

Proposition 4.4. Let k be an algebraically closed field of characteristic 0, let S be a
smooth, projective surface over k, let π : X → S be a smooth, projective morphism,
and let L be an invertible OX -module. Let K/k be the fraction field of S and let X
be the generic fiber of π.

(i) If (X ⊗K K,L⊗K K) is isomorphic to (Grass(r, K
n
),O(1)), then X has a

K-point.
(ii) Item (i) implies Theorem 4.1

The point of this proposition is Item (ii), i.e., to prove Theorem 4.1 it suffices to
assume that X is the generic fiber of a proper and everywhere smooth morphism.
The point is that for every algebraically closed field k, there exists the spectrum of a
DVR, T , whose residue field is k and whose fraction field has characteristic 0. Now
let G be the automorphism group scheme of (Grass(r,On

T ),O(1)). This satisfies
the hypotheses of Lemma 4.3. Taking c = 3, there exists a datum (U,U, TU )
as in Lemma 4.3 such that U − U has codimension ≥ 3. For the original field
K/k, there exists a morphism i : Spec K → U inducing the pair (X,L). Because
tr.deg.(K/k) = 2, the closure of Image(i) in U has dimension ≤ 2. Because U − U
has codimension ≥ 3, there exists a locally closed subscheme S of U such that

(i) S → T is flat,
(ii) the closed fiber S0 of S is irreducible with generic point i(Spec K),
(iii) and the generic fiber Sη of S is a closed subscheme of Uη completely con-

tained in Uη.
Using specialization arguments, to prove Theorem 4.1 for the restriction of TU

to the generic point of the closed fiber S0, it suffices to prove Theorem 4.1 for
the restriction of TU to the generic point of the geometric generic fiber Sη. By
construction, this satisfies the additional hypotheses in Proposition 4.4.

Thus, assume the additional hypotheses of Proposition 4.4 are satisfies. After
replacing S by the blowing up at the base locus of a Lefschetz pencil of divisors,
and replacing X by its base change, assume there exists a flat, proper morphism
ρ : S → B with smooth, connected generic fiber. Denote by B0 the maximal
open subscheme of B over which ρ is smooth, and denote S0 = B0 ×B S and
X 0 = B0 ×B X . There is a pair

(ρSect : Section(X 0/S0/B0) → B0, σ : Section(X 0/S0/B0)×B0 S0 → X 0)
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which is universal among all pairs (T, σT ) of a B0-scheme T and an S0-morphism
σT : T ×B0 S0 → X 0. The universal pair can be constructed in terms of the
relative Hilbert scheme. In Grothendieck’s terminology, it is ΠS0/B0X0, cf. [Gro62,
p. 195-13].

There is a relative Picard scheme Pic(S0/B0) of S0 over B0. Associated to the
invertible sheaf L on X 0, there is an invertible sheaf σ∗L on Section(X 0/S0/B0)×B0

S0. This induces an Abel morphism

α : Section(X 0/S0/B0) → Pic(S0/B0).

Of course Pic(S0/B0) breaks up according the relative degree of the line bundle,

Pic(S0/B0) = td∈ZPicd(S0/B0).

Pulling this back via the Abel morphism gives a decomposition

Section(X 0/S0/B0) = td∈ZSectiond(X 0/S0/B0)

together with Abel morphisms

αd : Sectiond(X 0/S0/B0) → Picd(S0/B0).

For all d ≥ 0, there are sections of the projection Picd(S0/B0) → B0. The image
of this section is a curve B′

0 isomorphic to the smooth curve B0. If the generic
fiber of αd is a dense open subset of a rationally connected variety, then Theo-
rem 3.9 together with the generic version of weak approximation, Proposition 3.19,
implies there exists a rational section of the restriction of αd over B′

0 (this uses a
slight specialization argument, because the restriction of αd may not be a rationally
connected fibration). Thus it suffices to prove that for d � 0,

(i) the fiber of αd over the geometric generic point of Picd(S0/B0) is nonempty,
(ii) the fiber is also irreducible,
(iii) the fiber is also isomorphic to an open subset of a rationally connected

variety.

Moreover, and this will be important, it suffices to prove there exists a canonically
defined open subscheme W ⊂ Sectiond(X 0/S0/B0) such that (i)–(iii) hold for αd|W .

Note that (i)–(iii) are really statements about the morphism XηB
→ SηB

of fibers
over the geometric generic point of B. Thus, it is again a question about a fibration
over a projective curve, namely the curve C = SηB

over the algebraically closed
field κ = k(B). So Proposition 4.4 (i) follows from.

Proposition 4.5. Let κ be an algebraically closed field of characteristic 0. Let C be
a smooth, projective, connected curve over κ. Let π : XC → C be a smooth, projec-
tive morphism and let L be an invertible sheaf on XC . Assume the fiber of (XC ,L)
over the geometric generic point of C is isomorphic to (Grass(r, κ(C)),O(1)). Then
for d � 0 there exists a canonically defined open subset Wd ⊂ Sectiond(XC/C/Spec κ)
such that the geometric generic fiber of

αd : Wd ↪→ Sectiond(XC/C/Spec κ) → Picd(C/Spec κ)

satisfies (i), (ii) and (iii) above.
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In order to prove Corollary 4.2, it suffices to prove this in the special case that
XC → C is the parameter scheme for rank rn left ideals in an Azumaya algebra A
over C with A⊗OC

κ(C) ∼= Matn×n(κ(C)). An Azumaya algebra over a scheme T
is a coherent OT -algebra which is étale locally isomorphic to Matn×n(OT ) for some
integer n.

Because of Tsen’s theorem, Corollary 2.15, and Proposition 2.16(i), there exists
a locally free OC-module E of rank n such that A ∼= End(E). The locally free
sheaf E is only well-defined up to the operation E 7→ E ⊗OC

N , for any invertible
sheaf N . The choice of a locally free sheaf E and an isomorphism of algebras gives
an isomorphism of Sect(XC/C/Spec κ) with the parameter scheme of locally free
quotients E � Q of rank r. To see this, associate to each quotient the left ideal of
endomorphisms that factor as

E � Q φ−→ E
as φ varies over all OC-module homomorphisms. Replacing E by E ⊗OC

N gives a
new isomorphism sending the original quotient to the twist E ⊗OC

N � Q⊗OC
N .

The real effect of this change has to do with the Abel map. Up to a constant
translation by a point of Pic(C/Spec κ), which does not change (i)–(iii), the Abel
map is identified with the map sending a quotient to det(Q) in Pic(C/Spec κ).
After replacing E by E ⊗OC

N , the constant changes by adding [N⊗r]. Thus, it is
clear that the Abel map really should only be considered as well-defined up to an
additive constant.

If d is sufficiently large, there exist quotients such that Q is stable. Note that
Q is stable if and only if Q ⊗OC

N is stable. Therefore the open subset Wd of
Section(XC/C/Spec κ) parameterizing stable quotients is well-defined and canon-
ical. Fix an integer d0. For every integer e, the moduli space of stable, rank r
locally free sheaves on C of degree d0 is isomorphic to the moduli space for degree
d0 + re via the map sending Q to Q(D), where D is any fixed Cartier divisor of
degree e. For each fixed locally free sheaf Q of rank r < n, if e is sufficiently large,
there exists a surjection E � Q(D) for all Cartier divisors of degree e. Because
the moduli space of stable bundles is quasi-compact, it follows that there exists
a single integer e0 such that for every e ≥ e0 and every stable locally free sheaf
Q of rank r and degree d0, for every Cartier divisor D of degree e there exists a
surjection E � Q(D). By the same sort of argument, if e is sufficiently large then
h1(C,HomOC

(E ,Q(D))) equals 0.

Repeating this argument with d0 replaced by each of d0, d0+1, d0+2, . . . , d0+r−1,
there exists an integer d1 such that for every d ≥ d1 (i.e., d = d0 + re, etc.), for
every stable, locally free sheaf Q of rank r and degree d, there exists a surjection

E � Q

and also h1(C,HomOC
(E ,Q)) equals 0. In other words, the forgetful morphism

from the space of quotients E � Q to the space of stable sheaves Q is smooth and
surjective, and the geometric fibers are each isomorphic to an open subset of an
affine space HomOC

(E ,Q). Moreover, the fiber of the Abel map αd is the inverse
image of the space of stable sheaves with fixed determinant. As is well-known, the
moduli space of stable sheaves over C of fixed rank r and fixed determinant is a
unirational variety of dimension (r2−1)(g(C)−1). Thus the fiber of the Abel map
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fibers over a rationally connected variety and the fibers are rationally connected.
By Corollary 3.32, it follows that a general fiber of

αd|W : Wd ↪→ Sectiond(XC/C/Spec κ) → Picd(C/Spec κ)

is isomorphic to an open subset of a rationally connected variety, i.e., (i), (ii) and
(iii) hold. Therefore Corollary 4.2 is true.
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Séminaire Bourbaki, 1957–1962.]. Secrétariat mathématique, Paris, 1962.
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