DEGENERATIONS OF RATIONALLY CONNECTED VARIETIES
AND PAC FIELDS

JASON STARR

Abstract. A degeneration of a separably rationally connected variety over a field k contains a geometrically irreducible subscheme if k contains the algebraic closure of its subfield. If k is a perfect PAC field, the degeneration has a k-point. This generalizes [FJ05, Theorem 21.3.6(a)]: a degeneration of a Fano complete intersection over k has a k-point if k is a perfect PAC field containing the algebraic closure of its prime subfield.

1. Statement of results

Recently, a number of fields long known to be C_1 were proved to satisfy an a priori stronger property related to rationally connected varieties.

(i) Every rationally connected variety defined over the function field of a curve over a characteristic 0 algebraically closed field has a rational point, [GHS03].

(ii) Every separably rationally connected variety defined over the function field of a curve over an algebraically closed field of arbitrary characteristic has a closed point, [dJS03].

(iii) Every smooth, rationally chain connected variety over a finite field has a rational point, [Esn03].

Moreover, in each of these cases, degenerations of these varieties also have rational points, at least under some mild hypotheses on the degeneration.

This article considers the same problem for perfect PAC fields containing an algebraically closed field. Such fields are known to be C_1, [FJ05, Theorem 21.3.6(a)]. The main theorem is the following.

Theorem 1.1. Let k be a perfect PAC field containing the algebraic closure of its prime subfield. Let X_k be a k-scheme which is the closed fiber of a proper, flat scheme over a DVR whose geometric generic fiber is separably rationally connected (in the sense of [dJS03]). Then X_k has a k-point.

Remark 1.2. This gives a new proof of [FJ05, Theorem 21.3.6(a)], i.e., every perfect PAC field containing an algebraically closed field is C_1.

This should be compared to the following theorems of Kollár and de Jong respectively.

Theorem 1.3. [Ko05] Let k be a characteristic 0 PAC field. Let X_k be a k-scheme whose base-change $X \otimes_k \bar{k}$ is the closed fiber of a proper, flat scheme over a DVR whose geometric generic fiber is a Fano manifold. Then X_k has a k-point. In particular, k is C_1.

Theorem 1.4 (de Jong). Let k be a characteristic 0 field having a point in every rationally connected k-scheme and containing \mathbb{Q}. Let X_k be a k-scheme which is
the closed fiber of a proper, flat scheme over a DVR whose geometric generic fiber is rationally connected. Then \(X_k \) has a \(k \)-point. In particular, \(k \) is \(C_1 \).

Theorem 1.1 is a consequence of the following more precise result.

Theorem 1.5. Let \(k \) be a field containing the algebraic closure of its prime subfield. Let \(X \) be a proper \(k \)-scheme which is the closed fiber of a proper, flat scheme over a DVR whose geometric generic fiber is separably rationally connected (in the sense of [CLIS08]). There exists a closed subscheme \(Y \) of \(X \) such that \(Y \otimes k \) is irreducible.

Acknowledgments. I thank A. J. de Jong for explaining his proof of Theorem 1.4 some years ago. I thank János Kollár for encouraging me to write-up this article and pointing out [FJ05, Theorem 21.3.6(a)].

2. Proofs

Definition 2.1. Let \(R \) be a DVR and let \(X_R \) be an \(R \)-scheme. A finite type model of \((R, X_R)\) consists of a datum

\[
((P, D) \to (S, s), \text{Spec } R \to P, X_P)
\]

such that the inverse image of \(D \) equals \(m_R \) and the base change of \(X_P \) equals \(X_R \).

Lemma 2.2. If \(X_R \) is a finite type \(R \)-scheme, there exists a finite type model such that \(X_P \) is of finite type over \(P \).

If \(X_R \) is proper, resp. projective, there exists a finite type model such that \(X_P \) is proper, resp. projective.

Proof. This follows easily from [Gro63, §8], results about normalization, e.g., [Gro67, Scholie 7.8.3], and Nagata compactification, [Lüt93]. \(\square \)

Let \(B \) be a scheme. As in [Jou83], for each integer \(e \) denote by \(\text{Gr}(e, N) \) the Grassmannian over \(B \) parametrizing codimension-\(e \) linear subspaces of fibers of \(\mathbb{P}^N_B \). Denote by \(\Lambda_e \) the universal codimension-\(e \) linear subscheme of \(\text{Gr}(e, N) \times_B \mathbb{P}^N_B \).

Notation 2.3. For every \(B \)-scheme \(T \) and \(B \)-morphism \(i : T \to \mathbb{P}^N_B \), denote by \(Z_{i,e} \) the fiber product \(T \times_{\mathbb{P}^N_B} \Lambda_e \). If \(i \) is inclusion of a subscheme, denote this by \(Z_{T,e} \). Observe that for a \(k \)-morphism \(j : U \to T \), \(Z_{i,j,e} \) equals \(U \times_T Z_{i,e} \). Denote by \(\text{pr}_G : Z_{i,e} \to \text{Gr}(e, N) \) and \(\text{pr}_T : Z_{i,e} \to T \) the 2 projections.

Denote by \(G_{i,e} \) the maximal open subscheme of \(\text{Gr}(e, N) \) such that \(G_{i,e} \times \text{Gr}(e, N) \) \(Z_{i,e} \) is flat. Denote by \(Z_{i,e,G} \to G_{i,e} \) the base change of \(\text{pr}_G \) to \(G_{i,e} \).

Let \(k \) be a field and let \(I \) be a geometrically irreducible, locally closed subscheme of \(\mathbb{P}^N_k \). Denote by \(d + 1 \) the dimension of \(I \). Denote \(G_{I,d} \) by \(G \) and denote \(Z_{I,d,G} \) by \(Z \). Denote by \(\text{pr}_G : Z \to G \) and \(\text{pr}_I : Z \to I \) the 2 projections.

Let \(H \) be a \(k \)-scheme and let \(f : H \to G \) be a morphism. Denote by \(Z_H \) the fiber product \(H \times_G Z \). Denote by \(\text{pr}_H : Z_H \to H \) and \(\text{pr}_Z : Z_H \to Z \) the 2 projections. Denote by \(p : Z_H \to I \) the composition \(\text{pr}_I \circ \text{pr}_Z \).
Lemma 2.4. If the dimension of I is positive, if H is geometrically irreducible and if f is dominant, then Z_H is geometrically irreducible, and the geometric generic fiber of p is irreducible.

Proof. By definition of G, Z is flat over G of relative dimension 1. By [Jou83, Théorème I.6.10.2], the geometric generic fiber of $Z 	o G$ is irreducible. Since f is dominant, $Z_H 	o H$ is flat of relative dimension 1 with irreducible geometric generic fiber. Since H is also geometrically irreducible, Z_H is geometrically irreducible.

Because f is dominant and p_I are dominant, also p_{Z}, and thus the composition p, is dominant. Thus, to prove the geometric generic fiber of p is irreducible, it suffices to prove the geometric generic fiber of

$$pr_1 : Z_H 	imes_I Z_H 	o Z_H$$

is irreducible.

The morphism $pr_H \circ pr_1 : Z_H \times_I Z_H \to H$ is the base-change of $Z_{p,d} \to \text{Gr}(d, N)$ by $H \to \text{Gr}(d, N)$. The image of p is dense in I, thus has dimension $d + 1$. Thus, by [Jou83, Théorème I.6.10.2], the geometric generic fiber of $pr_G : Z_{p,d} \to \text{Gr}(d, n)$ is irreducible. Since $H \to \text{Gr}(d, N)$ is dominant, also the geometric generic fiber of $pr_H \circ pr_1$ is irreducible. Denote the geometric generic fiber by X.

Denote by Y the geometric generic fiber of $pr_H : Z_H \to H$. By the argument above, Y is also irreducible. The morphism pr_1 induces a dominant morphism $q : X \to Y$. The geometric generic fiber of p is irreducible if and only if the geometric generic fiber of q is irreducible.

Denote by $\bar{q} : \bar{Y} \to Y_{\text{red}}$ the integral closure of Y_{red} in the fraction field of X_{red}. By the Noether normalization theorem, \bar{q} is finite. And the geometric generic fiber of $X_{\text{red}} \to \bar{Y}$ is integral. Thus the geometric generic fiber of p is irreducible if and only if the geometric generic fiber of \bar{q} is irreducible.

Because X is irreducible, also \bar{Y} is irreducible. The diagonal morphism $\Delta : Z_H \to Z_H \times_I Z_H$ gives a section of pr_1. This induces a section $s : Y \to X$ of q. This induces a section $\bar{s} : Y_{\text{red}} \to \bar{Y}$ of \bar{q}. Since \bar{q} is finite, $\text{dim}(\bar{Y})$ equals $\text{dim}(Y_{\text{red}})$. The image of \bar{s} is an irreducible closed subscheme of \bar{Y} whose dimension equals $\text{dim}(Y_{\text{red}})$, i.e., $\text{dim}(\bar{Y})$. Therefore, the image is an irreducible component of \bar{Y}. Since \bar{Y} is irreducible, the image of \bar{s} is all of \bar{Y}. Thus \bar{s} is an inverse of \bar{q}. Therefore the geometric generic fiber of \bar{q} is a point, which is irreducible. □

Proof of Theorem 1.3. Let R be a DVR whose residue field k contains the algebraic closure of its prime subfield. Let X_R be a proper R-scheme whose geometric generic fiber is separably rationally connected. By Lemma 2.2 there exists a finite type model with X_P proper. By hypothesis, k contains the algebraic closure of the residue field $\kappa(\bar{s})$.

If P has relative dimension 0 over S, then P equals S. Thus X_k is the base change of the proper $\kappa(\bar{s})$-scheme $X_\bar{s}$. Since $\kappa(\bar{s})$ is a finite extension of the prime subfield of k, the algebraic closure $\kappa(\bar{s})$ is contained in k. The base change \bar{Y} of any $\kappa(\bar{s})$-point of $X_\bar{s}$ is a geometrically irreducible subvariety of X_k.

Thus, assume the relative dimension of P over S is positive, $d + 1$. Let $P \hookrightarrow \mathbb{P}_S^N$ be a closed immersion. Denote by $G_{P,d}$ and $Z_{P,d,G}$ the schemes over S from Notation 2.3. By definition, the geometric generic fiber of P over S is normal. In
particular it is smooth in codimension 1 points. Therefore, by [Jou83 Théorème I.6.10.2], the geometric generic fiber of $Z_{P,d,G} \to G_{P,d}$ is smooth.

By [Art69 Theorem 6.1], there exists an algebraic space Π separated and locally of finite type over $G_{P,d}$, and a universal morphism

$$\sigma : \Pi \times_{G_{P,d}} Z_{P,d,G} \to X_P$$

whose composition with projection to P equals the composition $\text{pr}_P \circ \text{pr}_{Z_{P,d,G}}$. Since the geometric generic fiber of X_R is separably rationally connected, also the geometric generic fiber of $X_P \to P$ is separably rationally connected. Therefore, by [CJS03], the geometric generic fiber of $\Pi \to G_{P,d}$ is nonempty. Therefore some irreducible component Π_i of Π dominates $G_{P,d}$.

By [Knu71, Corollary 5.20], there exists a dense open subspace U of Π_i which is an affine scheme. There exists a dense open immersion of U in a projective $G_{P,d}$-scheme \overline{U}. The morphism σ induces a rational transformation

$$\sigma_U : \overline{U} \times_{G_{P,d}} Z_{P,d,G} \dashrightarrow X_P.$$

Denote by V the normalization of $\overline{U} \times_{G_{P,d}} Z_{P,d,G}$. Denote by V the maximal open subscheme of V over which σ_U extends to a regular morphism. By the valuative criterion of properness, the complement of V has codimension 2. In particular, some irreducible component of V_s dominates $(G_{P,d})_s$.

Since k contains $\kappa(s)$ and the function field $\kappa(D)$ of D, it contains the function field $\kappa(I)$ of one of the irreducible components I of $D \otimes_{\kappa(s)} \kappa(s)$. Let H denote an irreducible component of $V_s \otimes_{\kappa(s)} \kappa(s)$ dominating $(G_{P,d})_s \otimes_{\kappa(s)} \kappa(s)$. Let G, Z, etc., be as in Lemma 2.4. Denote by Z_k the base change $Z \otimes_{G} k$. Note that the base change $X_I \otimes_{O_I} k$ equals X_k by definition of a finite type model.

The transformation σ_U determines a morphism

$$\sigma_H : Z_H \to X_I.$$

The base change to k is a morphism of k-schemes,

$$\sigma_k : Z_k \to X_k.$$

Denote the closure of the image by Y. By Lemma 2.4, Z_H is geometrically irreducible and the geometric generic fiber of $Z_H \to I$ is irreducible. Thus $Z_k \otimes_k \overline{k}$ is irreducible. Therefore Y is a closed subscheme of X_k such that $Y \otimes_k \overline{k}$ is irreducible.

Proof of Theorem 1.1. If k is a perfect PAC field, then every geometrically irreducible k-scheme has a k-point. In particular, Y has a k-point. Therefore X_k has a k-point. □

Every field k is the closed fiber of a DVR R whose generic fiber has characteristic 0. Every complete intersection in \mathbb{P}^n_R is the closed fiber of a complete intersection in \mathbb{P}^n_R whose generic fiber is smooth. If the complete intersection satisfies the C_1 inequality, the generic fiber is a Fano manifold. By [KMM92], [Cam92], a Fano manifold in characteristic 0 is rationally connected. Therefore Theorem 1.1 implies the complete intersection in \mathbb{P}^n_k has a k-point if k is a perfect PAC field containing the algebraic closure of its prime subfield. In other words, every perfect PAC field containing an algebraically closed field is C_1, cf. [FJ05 Theorem 21.3.6(a)].
References