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MAT 544 Problem Set 1 Solutions

Problems.

Problem 1. Let (X, dX) and (Y, dY ) be metric spaces. Define a function

dX×Y : (X × Y )× (X × Y )→ R

by dX×Y ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

(a) Prove that this is a metric space.

(b) Denote by πX : X × Y → X and πY : X × Y → Y the two projections. Prove that these
functions are continuous, in fact even Lipschitz (hence uniformly continuous).

(c) If X and Y are each complete metric spaces, prove that also X × Y (with the above metric) is
a complete metric space.

(d) Let (Z, dZ) be a metric space and let (fX : Z → X, fY : Z → Y ) be a pair of continuous
functions. Prove that there exists a unique continuous function f : Z → X×Y such that fX equals
f ◦ πX and fY equals f ◦ πY .

(e) Give an example of metric spaces X and Y and a metric d′ on X × Y which is different from
dX×Y and which still satisfies the property from part (d). Conclude that this property does not
characterize dX×Y (however, it does characterize the topology induced by this metric).

Problem 2. Let (X, dX) be a metric space. Give X ×X the metric from Problem 1. Prove that
the function dX : X ×X → R is Lipschitz for this metric.

Problem 3. For a metric space (X, dX), an element x of X, and a real number r ≥ 0, the closed
ball is sometimes defined to be

B≤r(x) := {x′ ∈ X|dX(x, x′) ≤ r},

i.e., one uses “less than or equal to” rather than “less than” as in the definition of the open unit
ball.

(a) For r > 0, prove that the closure of the open unit ball Br(x) is contained in the closed unit
ball B≤r(x).
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(b) Give an example of a subset S of R2 (with the usual Euclidean metric), an element x of S and
a real number r > 0, such that for the subspace metric on S, the closure of Br(x) in S is strictly
contained in B≤r(x).

Problem 4. Define sequence of integers (an)n≥0 and (bn)n≥0 by the recursive relation a0 = 2,
b0 = 1 and for every n ≥ 0,

an+1 = a2n + 2b2n, bn+1 = 2anbn.

Prove that every bn 6= 0 so that (an/bn)n≥0 is a well-defined sequence in Q, prove that this sequence
is Cauchy, and prove that this sequence does not have a limit. Thus the Archimedean ordered field
Q is not complete.

Problem 5. This is Exercise 4.3.14 of Loomis-Sternberg. Let (X, dX), (Y, dY ) and (Z, dZ) be
metric spaces. Define the metric dX×Y on X × Y as in Problem 1. Let g : X × Y → Z be a
function such that for every x ∈ X the function

gx : Y → Z, y 7→ g(x, y)

is continuous and for every y ∈ Y the function

gy : X → Z, x 7→ g(x, y)

is continuous uniformly over y, i.e., for every x0 in X and for every ε > 0, there exists δ > 0 such
that

dX(x0, x) < δ ⇒ dZ(g(x0, y), g(x, y)) < ε

for all values y ∈ Y simultaneously. Prove that g is continuous.

Solutions to Problems.

Solution to (1)

Solution to (1a) We must verify the three axioms: positive definiteness, symmetry and the triangle
inequality. Let (x1, y1), (x2, y2) ∈ X × Y be elements. Since X is positive, dX(x1, x2) ≥ 0. Since Y
is positive, dY (y1, y2) ≥ 0. Thus dX×Y ((x1, y1), (x2, y2)) is the sum of two nonnegative real numbers,
dX(x1, x2) + dY (y1, y2). Therefore the sum is nonnegative. Moreover, the sum of two nonnegative
numbers equals 0 if and only if both summands equal 0. Therefore dX×Y ((x1, y1), (x2, y2)) equals
0 if and only if both dX(x1, x2) = 0 and dY (y1, y2) = 0. Since dX and dY are positive definite, this
holds if and only if x1 = x2 and y1 = y2, i.e., if and only if (x1, y1) = (x2, y2). Therefore dX×Y is
positive definite.

Next, since dX and dY are symmetric, dX(x2, x1) = dX(x1, x2) and dY (y2, y1) = dY (y1, y2). There-
fore we also have for the sum,

dX(x2, x1) + dY (y2, y1) = dX(x1, x2) + dY (y1, y2).

In other words, dX×Y ((x2, y2), (x1, y1)) = dX×Y ((x1, y1), (x2, y2)). Therefore dX×Y is symmetric.
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Finally, let (x3, y3) ∈ X × Y be a third element. Since dX and dY satisfy the triangle inequality,
we have both

dX(x1, x3) ≤ dX(x1, x2) + dX(x2, x3), dY (y1, y3) ≤ dY (y1, y2) + dY (y2, y3).

Therefore, taking the sum gives

dX(x1, x3)+dY (y1, y3) ≤ (dX(x1, x2) + dX(x2, x3))+(dY (y1, y3) ≤ dY (y1, y2) + dY (y2, y3)) = (dX(x1, x2) + dY (y1, y2))+(dX(x2, x3) + dY (y2, y3)) ,

where we have used associativity of addition. In other words,

dX×Y ((x1, y1), (x3, y3)) ≤ dX×Y ((x1, y1), (x2, y2)) + dX×Y ((x2, y2), (x3, y3)).

Therefore dX×Y also satisfies the triangle inequality. Since it is positive definite, symmetric and
satisfies the triangle inequality, dX×Y is a metric function.

Solution to (1b) As above, let (x1, y1) and (x2, y2) be elements in X × Y . Then πX(xi, yi) equals
xi for i = 1, 2. Therefore, dX(πX(x1, y1), πX(x2, y2)) equals dX(x1, x2). Since dY is positive definite,
0 ≤ dY (y1, y2) so that

dX(x1, x2) ≤ dX(x1, x2) + dY (y1, y2) = dX×Y ((x1, y1), (x2, y2)).

Putting the pieces together,

dX(πX(x1, y1), πX(x2, y2)) ≤ dX×Y ((x1, y1), (x2, y2)).

Therefore πX is Lipschitz with Lipschitz constant 1. By an exactly similar argument, also πY is
Lipschitz with Lipschitz constant 1.

Solution to (1c) Let ((xn, yn))n∈Z>0 be a Cauchy sequence inX×Y . Since πX and πY are uniformly
continuous by (b), both (xn)n∈Z>0 is Cauchy in X and (yn)n∈Z>0 is Cauchy in Y . Since X and Y
are each complete, both sequences converge in their respective metric spaces. Call the limits x∞,
resp. y∞. Then for every real ε > 0, there exist integers NX > 0, respectively NY > 0, such that for
every integer n ≥ NX , resp. n ≥ NY , we have dX(xn, x∞) < ε/2, resp. dY (yn, y∞) < ε/2. Setting
N = max(NX , NY ), then for every integer n ≥ N , we have

dX×Y ((xn, yn), (x∞, y∞)) = dX(xn, x∞) + dY (yn, y∞) <
ε

2
+
ε

2
= ε.

Therefore the sequence ((xn, yn))n∈Z>0 converges to (x∞, y∞) in X×Y . Since every Cauchy sequence
converges, X × Y is complete.

Solution to (1d) First of all, there exists a unique function f : Z → X × Y such that both
πX ◦ f = fX and πY ◦ f = fY , namely f(z) = (fX(z), fY (z)). So the problem is to prove that f
is continuous. Let ε > 0 be a real number, and let z be an element in Z. Since fX is continuous
there exists a real number δX > 0 such that dZ(z, z′) < δX implies dX(fX(z), fX(z′)) < ε/2.
Similarly, since fY is continuous there exists a real number δY > 0 such that dZ(z, z′) < δY implies
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dY (fY (z), fY (z′)) < ε/2. Denote δ = min(δX , δY ), which is still a positive real number. Then
dZ(z, z′) < δ implies that

dX×Y (f(z), f(z′)) = dX(fX(z), fX(z′)) + dY (fY (z), fY (z′)) <
ε

2
+
ε

2
= ε.

Thus also f is continuous. In fact this argument also clearly implies that if fX and fY are both
uniformly continuous (so that δX and δY depend only on ε, not on z), then so is f . And if fX , resp.
fY , is KX-Lipschitz, resp. KY -Lipschitz, then also f is K-Lipschitz for K = KX +KY .

Solution to (1e) For any positive real number c, the function (cdX×Y )((x1, y1), (x2, y2)) = c ·
dX×Y ((x1, y1), (x2, y2)) is another metric which satisfies (d). For a less trivial example, for X =
Y = R with the usual metric, the Euclidean metric on X × Y = R2 satisfies (d).

Solution to (2) Let (x1, y1) and (x2, y2) be elements in X × X. By the triangle inequality, we
have

dX(x2, y2) ≤ dX(x2, x1) + dX(x1, y1) + dX(y1, y2).

Using symmetry of dX , this says that

dX(x2, y2)− dX(x1, y1) ≤ dX(x1, x2) + dX(y1, y2).

By permuting x1 with x2 and y1 with y2, the same argument also implies that

dX(x1, y1)− dX(x2, y2) ≤ dX(x2, x1) + dX(y2, y1) = dX(x1, x2) + dX(y1, y2).

Therefore we have,

|dX(x2, y2)− dX(x1, y1)| ≤ dX(x1, x2) + dX(y1, y2) = dX×X((x1, y1), (x2, y2)).

Therefore dX is Lipschitz with Lipschitz constant 1.

Solution to (3) Define the function dX,x : X → R by dX,x(x
′) := dX(x, x′). Observe that the

open unit ball B<r(x) is simply the inverse image of the open interval (−r, r) under the continuous
function dX,x. Similarly, the closed unit ball is the inverse image of the closed unit interval [−r, r].
Since dX is continuous by Problem 2, also dX,x is continuous. Therefore the inverse image of
the closed subset [−r, r] of R is a closed subset of X, i.e., B≤r(x) is a closed subset of X. And it
contains the open unit ball B<r(x). Since B≤r(x) is one closed set containing B<r(x), it contains
the smallest closed set containing B<r(x), i.e., it contains the closure of B<r(x).

On the other hand, the closed unit ball need not equal the closure of the open unit ball. For
instance, for any metric space X and any positive real number ε, define a new metric function on
X by

d′X(x, y) = min(dX(x, y), ε).

It is straightforward to verify that d′ is still a metric function. For every real number r ≤ ε, the open
ball B′<r(x) for this new metric equals the open ball B<r(x) for the original metric. In particular,
both metrics give the same convergent sequences, and thus the same topology. So the closure of
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B′<ε(x) equals the closure of B<ε(x). And by part (a), this is contained in B≤ε(x). On the other
hand, the closed ball B′≤ε(x) is the entire metric space X. So if B≤ε(x) is properly contained in X,
e.g., if X is unbounded as is X = R, then B′≤ε(x) strictly contains the closure of B′<ε(x).

For a similar example with S a subset of R2, consider the complement S of the open annulus
A := {(x, y) ∈ R2|1 < x2 + y2 < 4}. Then B<2(0, 0) ∩ S equals B≤1(0, 0), which is already closed.
Hence the closure equals B≤1(0, 0). On the other hand, B≤2(0, 0) ∩ S contains the circle of radius
2 centered at (0, 0). So it strictly contains the closure of B<2(0, 0) ∩ S.

Solution to (4) The solution to this exercise was discussed in lecture.

Solution to (5) Let ε be a positive real number. Let (x0, y0) be an element of X × Y . Since
gx0 : Y → Z is continuous, there exists a positive real δY such that dY (y0, y1) < δY implies
that dZ(g(x0, y0), g(x0, y1)) < ε/2. And since gy1 : X → Z is equicontinuous at x0, there ex-
ists a positive real δX such that for all y1 ∈ Y simultaneously, dX(x0, x1) < δX implies that
dZ(g(x0, y1), g(x1, y1)) < ε/2. Therefore, by the triangle inequality, for all (x1, y1) with dX(x0, x1) <
δX and with dY (y0, y1) < δY , we have

dZ(g(x0, y0), g(x1, y1)) ≤ dZ(g(x0, y0), g(x0, y1)) + dZ(g(x0, y1), g(x1, y1)) <
ε

2
+
ε

2
= ε.

Finally, choosing δ = min(δX , δY ), then dX×Y ((x0, y0), (x1, y1)) < δ implies that both dX(x0, x1) <
δX and dY (y0, y1) < δY , and thus dZ(g(x0, y0), g(x1, y1)) < ε. So g is continuous at (x0, y0).
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