S OLUTIONS

MAT 544 Fall 2011 Midterm 1

Name: SB ID number:

Problem 1: /45
Problem 2: /30
Problem 3: /50
Problem 4: /75
Total: /200

Instructions: Please write your name at the top of every page of the exam. This exam is closed
book, closed notes, calculators are not allowed, and all cellphones and other electronic devices must
be turned off for the duration of the exam. You will have approximately 80 minutes for this exam.
The point value of each problem is written next to the problem — use your time wisely. Please
show all work, unless instructed otherwise. Partial credit will be given only for work shown.
For results quoted from the text, state clearly and correctly the hypotheses and conclusions, and
give the “name” if the result has a famous name.

You may use either pencil or ink. If you have a question, need extra paper, need to use the restroom,
etc., raise your hand.
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Name: Problem 1: /45

Problem 1(45 points) In each of the following cases, state whether or not the given series > 7 an
in the given normed vector space (V, || e||) is convergent. If the series is convergent, give the limiting
value, and then say whether or not the series is absolutely convergent. Show all computations, but

you need not quote theorems to justify your answer.
(a)(15 points) (V, || e ||) is R with the absolute value norm and

{ —1/(n+1), nodd
=
1/n, n even

(b)(15 points) (V, ]| e||) is (¢*, || ® ||s) and each a, is the sequence (ank)k=12,. = (1/2"%)k=12.. .

(c)(15 points) (V|| e ||) is (BC([0,1),R), || ® |luniform), the vector space of bounded, continuous
functions from [0,1) (with its usual metric) to R and each a,(z) equals z™.
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Name: Problem 2: /30

Problem 2(30 points) In this exercise, an ezhaustion of a metric space (X,dx) is a sequence of
open subsets (Up)n=1,2.... such that U, C Up4; for every n =1,2,..., and such that X = U2, U,.
The exhaustion stabilizes if there exists n such that U, = X. Without quoting theorems from the
text, prove that for every sequentially compact metric space, every exhaustion stabilizes.
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Therefoce, by contradiction, every exhaustron stabilizes.




Name: Problem 3: /50

Problem 3(50 points) Let (X,dx) be a metric space. Let BC(X,R) be the vector space of
bounded, continuous functions with the uniform norm || @ ||uniform-

(a)(10 points) State carefully what it means for a subset 7 C BC(X,R) to be equicontinuous.
(b)(20 points) State carefully the Arzela-Ascoli theorem.

(c)(20 points) Give a sequence (fn(z))n=1,2,. of continuous functions f, : R — R (for the standard
metric) such that ||fu|lun < 1 for every n, and such that {f,|n = 1,2,...} is equicontinuous (or
even all 1-Lipschitz), yet no subsequence converges uniformly. Explain why your example does not
contradict the Arzela-Ascoli theorem.
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Name: Problem 4: /75

Problem 4(75 points) Let (V, (e, ®)) be a real inner product space. Let U C V and W C V be
linear subspaces which are closed. Let ny : V' — U and my : V' — W denote the corresponding
orthogonal projections.

(a)(15 points) Let V = R? with the standard Euclidean inner product. Give examples of proper,
nontrivial subspaces U and W and a vector ¥ € R? such that (7 o ) (¥) does not equal (my o

T U) (’17) 5
(b)(20 points) Again in the general case, assume that U C W. Prove that my o my equals 7y o 7.

(c)(40 points) Let V = R3 with the standard Euclidean inner product. For the following vectors
01 and Uy, let U = span(v)) and let W = span(}, ).

Find orthonormal vectors (51, b, 53) such that U = span(gl) and W = span(l;l, 52) Then give the
matrices My and My, for the linear operators my : V. — U C V and 1y : V. — W C V (with
respect to the standard basis of R3). For fun, contemplate computing My My — My My, directly
(without a calculator). v

Nota bene. Every coordinate or matrix entry in (c) will be a rational number or a rational number
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