Name: Problem 1: /40

~ Problem 1(40 points) Let W = R® with the standard Euclidean inner product. For the following
vectors ¥ and ¥, denote span(9;) by U and span(%;,7s) by V.
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(a)(25 points) Find orthonormal vectors by and by such that U equals span(b;) and V equals
span(by, bs).

(b)(15 points) Compute the matrix My of the orthogonal projection to V' (with respect to the
standard ordered basis of R?). l
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Name: Problem 2: /60

Problem 2(60 points) Consider the following initial value problem

dzfdt = = + y
d?y/dt? = + dy/dt

dy
2(0) = 0, y(0) =0, dt(O)—I.

(a)(5 points) Find a 3 x 3-matrix A with real entries such that for every (bo,co, 1)t € R3, the
solution of the 1st order IVP

di bo Qio(t)
= = A, )= | o |, i(t)=| ()
C1 yl(t)

gives a solution of the IVP

dz/dt = z + vy
Fyldi? = + dy/dt

7(0) = b, 3(0) = e, 2(0) = cr.

by 2(t) = zo(t) and y(t) = yo(?)-

(b)(10 points) Find the characteristic polynomial of A, find the factorization into a product of
linear factors (each of which will be real), and find all eigenvalues of A.

(c)(25 points) Find an invertible 3 x 3 matrix U, a diagonal 3 x 3 matrix S, and a 3 x 3 matrix
N which is upper triangular (or lower triangular if you prefer) such that SN = NS and such that
AU =U(S + N).

(d) (10 points) Compute exp(St), exp(Nt) and exp(At). In your answer, write out each entry of
the matrix; do not leave matrix multiplications unevaluated. All entries of your matrices should
involve only polynomials in ¢ and exponentials in £, no unevaluated power series.

(e)(10 points) Find the general solution Z(t) of the 1st order IVP above. Write out each component
of Z(¢); do not leave matrix multiplications unevaluated. Both components should involve only

polynomials in ¢ and exponentials in ¢.

Bonus problem(5 bonus points) Solve the following inhomogeneous IVP.

de/dt = =z + y 4+ et < dy,
{d2y/dt2 = + dy/dt z(0) =0, y(0) =0, —(0) =0.
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Name: Problem 2, continued
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Name: Problem 3:

Problem 3(35 points) Let (X, M, ) be a complete measure space. o
(a)(10 points) For every measurable g : (X, M) — [0, 00) with [, gdu finite, prove that the subset

Supp(g) = {r € X|g(z) # 0}

is o-finite, i.e., there exists a sequence of measurable subsets S; C Sy C ... such that u(S,) < 0o
for every n and U,S, equals Supp(g).

(b) (10 points) For g as above, prove that there exists a sequence (g,)%2, of measurable functions

gn : (X, M) — [0,00) with g, < gn41 for every n, with (g,(z))3, converging to g(z) for every
z € X, and with Supp(g,) a set of finite measure for every n.

(c)(15 points) For f in L{(X, M, u), prove that there exists a sequence (f;)32; of measurable
functions f, : (X, M) — C with Supp(f,) a set of finite measure for every n and with (f,)%,
convergent to f in L!. Therefore the set of functions with finite measure support are dense in L
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Name: Problem 4: /25

Problem 4(25 points) Let (X,dx) and (Y,dy) be separable metric spaces. Denote by Bx and

- By the corresponding Borel algebras. You may use without proof that the Borel algebra of

(X x Y,dxxy) is simply Bx ® By (this uses the hypothesis that X and Y are separable). Let
f: X =Y be a continous function.

(a)(5 points) Prove that the set I'; := {(z,y) € X x Y|y = f(z)} is in Bx ® By. (Hint. What
kind of set is I';? What kind of set is its complement?)

(b)(10 points) Let px : Bx — [0, 00] and py : By — [0,00] be o-finite measure functions. Assume
that py ({y}) equals 0 for every y € Y. Compute the measure of Iy with respect to the product
measure fixxy-

(c)(10 points) Prove that the set {y € Y| ux(f~*({y})) > 0} in Y has measure 0. (Hint. Compute
the measure from (b) in a second way.)
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~ Problem 5(40 points) Let (9n);2; be a sequence of Riemann integrable functions g, : [0,1] — Swealdd
[—c¢, ¢]. Define the sequence (f,); of functions on [0, 1] by 74
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where m is Lebesgue measure.

(a)(10 points) Prove that f, is c-Lipschitz. More generally, if L — € < g,(y) < L + € for every y in
(x — 6,z + d), prove that

|fn(y) — fn(2) — Ly — 2)| < €ly — 7|

for every y in (z — 9,z + 9).

(b)(10 points) Prove that f, is differentiable on the complement of a set of Lebesgue measure 0.
(c)(20 points) Prove that some subsequence (f,, )32, converges uniformly on [0, 1] to a c-Lipschitz
function f.

Bonus problem(5 bonus points) Find an example as above where no subsequence of (g,)%;
converges in measure. Not to be written up. For your example, what is the limit f7 On the set
where f is differentiable, what is the derivative g7 | :
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