Name:

Problem 1: ______ /40

Problem 1(40 points) Let $W = \mathbb{R}^3$ with the standard Euclidean inner product. For the following vectors \vec{v}_1 and \vec{v}_2 , denote span (\vec{v}_1) by U and span (\vec{v}_1, \vec{v}_2) by V.

$$\vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 9 \\ 0 \\ 9 \end{bmatrix},$$

(a)(25 points) Find orthonormal vectors \vec{b}_1 and \vec{b}_2 such that U equals span (\vec{b}_1, \vec{b}_2) .

(b)(15 points) Compute the matrix M_V of the orthogonal projection to V (with respect to the standard ordered basis of \mathbb{R}^3).

Problem 2(60 points) Consider the following initial value problem

$$\left\{ \begin{array}{cccc} dx/dt &=& x &+& y \\ d^2y/dt^2 &=&& + & dy/dt \end{array} \right.$$

$$x(0) = 0, \ y(0) = 0, \ \frac{dy}{dt}(0) = 1.$$

(a)(5 points) Find a 3×3 -matrix A with real entries such that for every $(b_0, c_0, c_1)^{\dagger} \in \mathbb{R}^3$, the solution of the 1st order IVP

$$\frac{d\vec{x}}{dt} = A\vec{x}, \quad \vec{x}(t_0) = \begin{bmatrix} b_0 \\ c_0 \\ c_1 \end{bmatrix}, \quad \vec{x}(t) = \begin{bmatrix} x_0(t) \\ y_0(t) \\ y_1(t) \end{bmatrix}$$

gives a solution of the IVP

$$\begin{cases} dx/dt = x + y \\ d^2y/dt^2 = + dy/dt \end{cases}$$

$$x(0) = b_0, \ y(0) = c_0, \ \frac{dy}{dt}(0) = c_1.$$

by $x(t) = x_0(t)$ and $y(t) = y_0(t)$.

(b)(10 points) Find the characteristic polynomial of A, find the factorization into a product of linear factors (each of which will be real), and find all eigenvalues of A.

(c)(25 points) Find an invertible 3×3 matrix U, a diagonal 3×3 matrix \tilde{S} , and a 3×3 matrix \tilde{N} which is upper triangular (or lower triangular if you prefer) such that $\tilde{S}\tilde{N} = \tilde{N}\tilde{S}$ and such that $AU = U(\tilde{S} + \tilde{N})$.

(d)(10 points) Compute $\exp(\tilde{S}t)$, $\exp(\tilde{N}t)$ and $\exp(At)$. In your answer, write out each entry of the matrix; do not leave matrix multiplications unevaluated. All entries of your matrices should involve only polynomials in t and exponentials in t, no unevaluated power series.

(e) (10 points) Find the general solution $\vec{x}(t)$ of the 1st order IVP above. Write out each component of $\vec{x}(t)$; do not leave matrix multiplications unevaluated. Both components should involve only polynomials in t and exponentials in t.

Bonus problem (5 bonus points) Solve the following inhomogeneous IVP.

$$\begin{cases} dx/dt &= x + y \\ d^2y/dt^2 &= + dy/dt \end{cases} + e^t \quad x(0) = 0, \ y(0) = 0, \ \frac{dy}{dt}(0) = 0.$$

$$(a) \overrightarrow{X}(t) = \begin{bmatrix} x_{o}(t) \\ y_{o}(t) \end{bmatrix} = \begin{bmatrix} x(t) \\ y(t) \\ y_{i}(t) \end{bmatrix}, \quad d\overrightarrow{X} = \begin{bmatrix} dx \\ dx \\ dx \\ dx \end{bmatrix} = \begin{bmatrix} x + y \\ dy/dt \end{bmatrix} = \begin{bmatrix} 1x_{o}(t) + 1y_{o}(t) + 0y_{o}(t) + 1y_{o}(t) \\ 0x_{o}(t) + 0y_{o}(t) + 1y_{o}(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{o}(t) + y_{o}(t) \\ y_{o}(t) \\ y_{o}(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{o}(t) \\ y_{o}(t) \\ y_{o}(t) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Name:

(b) Det (
$$\lambda Td_{355} - A$$
) = Det $\lambda - 1 - 1 - 0$ | = $|\lambda(\lambda - 1)^2|$ | Eigenvalues, $\lambda_0 = 0$ with (elegabraic) multiplicity $e_0 = 1$ | $\lambda_1 = 1$ with (elegabraic) multiplicity $e_0 =$

Name:	Pro

Problem 3: ______ /35

Problem 3(35 points) Let (X, \mathcal{M}, μ) be a complete measure space.

(a)(10 points) For every measurable $g:(X,\mathcal{M})\to[0,\infty)$ with $\int_X gd\mu$ finite, prove that the subset

$$\operatorname{Supp}(g) := \{ x \in X | g(x) \neq 0 \}$$

is σ -finite, i.e., there exists a sequence of measurable subsets $S_1 \subseteq S_2 \subseteq \ldots$ such that $\mu(S_n) < \infty$ for every n and $\bigcup_n S_n$ equals $\operatorname{Supp}(g)$.

(b)(10 points) For g as above, prove that there exists a sequence $(g_n)_{n=1}^{\infty}$ of measurable functions $g_n:(X,\mathcal{M})\to[0,\infty)$ with $g_n\leq g_{n+1}$ for every n, with $(g_n(x))_{n=1}^{\infty}$ converging to g(x) for every $x\in X$, and with $\mathrm{Supp}(g_n)$ a set of finite measure for every n.

(c)(15 points) For f in $L^1_{\mathbb{C}}(X, \mathcal{M}, \mu)$, prove that there exists a sequence $(f_n)_{n=1}^{\infty}$ of measurable functions $f_n:(X,\mathcal{M})\to\mathbb{C}$ with $\operatorname{Supp}(f_n)$ a set of finite measure for every n and with $(f_n)_{n=1}^{\infty}$ convergent to f in L^1 . Therefore the set of functions with finite measure support are dense in L^1 .

(a) For integers nood define Sn = {xeX 19(x) > 1 } . Since 9 is measurable, $S_n = g'([\frac{1}{n}, \infty))$ is in M_o Moreover, $\int_X g d\mu \geqslant \int_{S_n} \frac{1}{n} \chi_{S_n} d\mu = \frac{1}{n} \mu(S_n)$.

Therefore $\mu(S_n) \leqslant n \int_X g d\mu$ is finite monotoning monotoning in $\chi \approx S_n$ in $g \approx \frac{1}{n} \chi_{S_n}$.

Clearly $g'([\frac{1}{n}, \infty)) \subseteq g'([\frac{1}{n+1}, \infty))$ since $[\frac{1}{n}, \infty) \subseteq [\frac{1}{n+1}, \infty)$. Finally $(0, \infty) = U[\frac{1}{n}, \infty)$ So Sup (9) = U Soo (b) Define go = go 25n o Since S, = Sz cone S, = Sne cono, also g, < g < one < g < sque For every x e X \ Supply, both gix) and every gow equals 0, so lim go(x)=0=g(x). For every x & Supp(g), since Supp(g) = U.Sm, Im soto x & Sm. So Vnzm, x & Sn and thus gn(x)=g(x). Thus lin gn(x) = lin gn(x) = lin g(x) = g(x). Finally, Supplyin = Supplyin Supplies) equals Sn, which has finite measures (c). Define gov = Ifish. Then g is as in (a). Define for is for its ix. Each of these is measurable & \$\frac{1}{2} |f_n(x)| \leq g(x) = S_0 |f(x) - f_n(x)| \leq g(x) + g(x) = Z_0(x) \\ by the triangle inequality. By the same argument as in (b), for of pointwise, bies If-fal -> O pointwises Since all If-fol are dominated by 29, which is integrable, by the Dominated Convergence Theorem, lim [If-folder > Odpe = O, i.e. (fo) converges to fin L.

Name:	Problem 4:	/25
-------	------------	-----

Problem 4(25 points) Let (X, d_X) and (Y, d_Y) be separable metric spaces. Denote by \mathcal{B}_X and \mathcal{B}_Y the corresponding Borel algebras. You may use without proof that the Borel algebra of $(X \times Y, d_{X \times Y})$ is simply $\mathcal{B}_X \otimes \mathcal{B}_Y$ (this uses the hypothesis that X and Y are separable). Let $f: X \to Y$ be a continous function.

(a) (5 points) Prove that the set $\Gamma_f := \{(x,y) \in X \times Y | y = f(x)\}$ is in $\mathcal{B}_X \otimes \mathcal{B}_Y$. (Hint. What kind of set is Γ_f ? What kind of set is its complement?)

(b)(10 points) Let $\mu_X : \mathcal{B}_X \to [0, \infty]$ and $\mu_Y : \mathcal{B}_Y \to [0, \infty]$ be σ -finite measure functions. Assume that $\mu_Y(\{y\})$ equals 0 for every $y \in Y$. Compute the measure of Γ_f with respect to the product measure $\mu_{X \times Y}$.

(c)(10 points) Prove that the set $\{y \in Y | \mu_X(f^{-1}(\{y\})) > 0\}$ in Y has measure 0. (Hint. Compute the measure from (b) in a second way.)

(a) The map $(f, Id_Y): X \times Y \to Y \times Y$ by $(x, y) \mapsto (fw, y)$ is continuous since f is continuous. Also the map $dy: Y \times Y \to IR$ is continuous. So the composition $dy \circ (f, Id_Y): X \times Y \to IR$ is continuous. The set Γ_f is the inverse image under this continuous map of the closed subset $\{0\} \subseteq IR$. Hence also Γ_f is closed in $X \times Y$. As the complement of an open set,

(b) Since \(\text{is a Borel set} \), the characteristic function \(\text{tr}_T: (\text{XxY}, \text{B}_{\text{XxY}}) \rightarrow [0, \infty) \)
is measurable. Thus, by Tonellis theorem,

MXXY (I) = SXXY X of dmxxx = SX (Sy 2 (x,y) dmx(y)) dmx(x).

For every $x \in X$, $\mathcal{X}_{\Gamma}(x, \circ): Y \to [o, \infty)$ is the characteristic function of the singleton set $\{f \in S\}$. So $\int_{Y} \mathcal{X}_{\Gamma}(x, y) d\mu_{\Gamma}(y)$ equals $\mu_{\Gamma}(\{f \in S\})$, which is O by hypothesis. Thus $\int_{X} (\int_{Y} \mathcal{X}_{\Gamma}(x, y) d\mu_{\Gamma}(y)) d\mu_{X}(x)$ equals $\int_{X} O d\mu_{X}(x) = O$. Therefore $\mu_{X,Y}(\Gamma_{\Gamma})$ equals O_{\bullet}

(C) Again by Tonelli's theorem, $\int_{X\times Y} \chi_{\Gamma_{\beta}} d\mu_{X\times Y} equals \int_{Y} \left(\int_{X} \chi_{\Gamma_{\alpha}} (x,y) d\mu_{X}(x) d\mu_{X}(x) d\mu_{X}(x) \right) d\mu_{Y}(x)$. For every integer n>0, setting $S_n=\{y\in Y\}$ $\mu_{X}(f'(x,y))>\frac{1}{n}\}$, we have S_n is measurable and $\alpha+\frac{1}{n}\mu_{Y}(S_n)=\int_{S_n} \frac{1}{n}\chi_{S_n} d\mu_{Y} \leq \sum_{n=1}^{n} \frac{1}{n}\chi_{S_n} d\mu_{Y} \leq \sum_{n=1}^{n}\chi_{S_n} d\mu_{Y} \leq \sum_{n=1}^{n}\chi_{$

Bonus. $g_n(x) = \sum_{\substack{k \text{ even}}} \chi_{[\frac{k}{2}n]} \chi_{[\frac{k}{2}n]} = \sum_{\substack{k \text{ even}}} \chi_{[\frac{k}{2}n]} = \sum_{\substack{k \text{ even}}} \chi_{[\frac{k}{2}n]} = \sum_{\substack{k \text{ even}}} \chi_{[\frac{k}{2}n]} \chi_{[\frac{k}{2}n]} = \sum_{\substack{k \text$

Problem 5(40 points) Let $(g_n)_{n=1}^{\infty}$ be a sequence of Riemann integrable functions $g_n:[0,1] \to \mathbb{Q}$ [-c, c]. Define the sequence $(f_n)_{n=1}^{\infty}$ of functions on [0, 1] by

$$f_n(x) = \int_{[0,x]} g_n dm,$$

where m is Lebesgue measure.

(a)(10 points) Prove that f_n is c-Lipschitz. More generally, if $L - \epsilon < g_n(y) < L + \epsilon$ for every y in $(x - \delta, x + \delta)$, prove that

$$|f_n(y) - f_n(x) - L(y - x)| \le \epsilon |y - x|$$

for every y in $(x - \delta, x + \delta)$.

(b)(10 points) Prove that f_n is differentiable on the complement of a set of Lebesgue measure 0.

(c)(20 points) Prove that some subsequence $(f_{n_k})_{k=1}^{\infty}$ converges uniformly on [0, 1] to a c-Lipschitz function f.

Bonus problem (5 bonus points) Find an example as above where no subsequence of $(g_n)_{n=1}^{\infty}$ converges in measure. Not to be written up. For your example, what is the limit f? On the set where f is differentiable, what is the derivative g?

(a) Since $g_n - L_{(x,d),x,d}$ is in $(-\varepsilon,\varepsilon)$, we have for $x \leq y < x + \delta$, by morotonical of S dm, $\int_{(x,y)} - \varepsilon \mathcal{X}_{(x,\delta),x+d}$ dm $\leq \int_{(x,y)} g_n \, dm - L \int_{(x,y)} \mathcal{X}_{(x-\delta),x+d} \, dm \leq \int_{(x,y)} \varepsilon \mathcal{X}_{(x-\delta),x+d} \, dm \leq \int_{(x,y)}$