Remark. If you are comfortable with all of the following problems, you will be well prepared for Midterm 1.

Exam Policies. You must show up on time for all exams. Please bring your student ID card: ID cards may be checked, and students may be asked to sign a picture sheet when turning in exams. Other policies for exams will be announced / repeated at the beginning of the exam.

If you have a university-approved reason for taking an exam at a time different than the scheduled exam (because of a religious observance, a student-athlete event, etc.), please contact your instructor as soon as possible. Similarly, if you have a documented medical emergency which prevents you from showing up for an exam, again contact your instructor as soon as possible.

All exams are closed notes and closed book. Once the exam has begun, having notes or books on the desk or in view will be considered cheating and will be referred to the Academic Judiciary.

It is not permitted to use cell phones, calculators, laptops, MP3 players, Blackberries or other such electronic devices at any time during exams. If you use a hearing aid or other such device, you should make your instructor aware of this before the exam begins. You must turn off your cell phone, etc., prior to the beginning of the exam. If you need to leave the exam room for any reason before the end of the exam, it is still not permitted to use such devices. Once the exam has begun, use of such devices or having such devices in view will be considered cheating and will be referred to the Academic Judiciary. Similarly, once the exam has begun any communication with a person other than the instructor or proctor will be considered cheating and will be referred to the Academic Judiciary.

Mastery Review Topics.

In addition to the Core Competency Exam, each midterm and final will include mastery questions. Students who have already passed the Core Competency Exam need not repeat the Core Competency Exam: those students may devote all of their time and energy to the mastery questions.

For Midterm 2, these are the mastery topics.

(1) For a given equation of an ellipse, find the center of the ellipse, and find the horizontal and vertical distances from the center to points on the ellipse (the semimajor / semiminor axes).

(2) Find points on a given conic section satisfying specified conditions, e.g., lying on a given line.
(3) Solve problems that are applications of the quadratic formula, i.e., find a pair of real numbers with given sum and product, solve problems involving distances in the plane, etc.

(4) For power functions and their variations, find the domain and range, say whether the function is invertible, and find an inverse when it exists.

(5) For a higher-degree polynomial, when the zeroes are given or are easy to find using only the quadratic formula, factoring, etc., give a rough sketch of the function illustrating the \(x\)-intercepts, the \(y\)-intercepts, and behavior at \(\pm\infty\).

(6) Perform algebraic manipulations with polynomial functions.

(7) For exponential and logarithm functions and their variations, find the domain and range, say whether the function is invertible, and find an inverse when it exists.

(8) Solve problems involving exponential growth / decay models, e.g., population growth and radioactive decay. Understand the doubling time for population growth, resp. half-life of radioactive decay.

(9) Solve problems involving logarithmic growth, e.g., number of digit problems, problems involving the Richter scale, and problems involving the Decibel scale.

Practice Problems.

(1) In each of the following cases, find the center of the given ellipse. Find the distances from the center to the point on the ellipse contained in the unique horizontal / vertical line containing the center.

\[
\begin{align*}
(a) & \quad 4x^2 + 8x + y^2 - 2y = 11, \\
(b) & \quad x^2 + 2x + 4y^2 + 24y = -36, \\
(c) & \quad 9x^2 + 36x + y^2 - 10y + 60 = 0, \\
(d) & \quad 9x^2 - 54x + 4y^2 + 8y + 49 = 0.
\end{align*}
\]

(2) In each of the following cases, find all intersection points of the given conic section and the given line.

\[
\begin{align*}
(a) & \quad 4x^2 + 8x + y^2 - 2y = 11, \quad y = 1, \\
(b) & \quad x^2 + y^2 = 1, \quad x + y = 1, \\
(c) & \quad y^2 - x^2 = 1, \quad y - x = 1, \\
(d) & \quad 2x + 4y^2 = 6, \quad y + x = 3, \\
(e) & \quad x^2 + 2x + 3y^2 + 18y = 15 \quad 3y + x = 3.
\end{align*}
\]

(3) In each of the following cases, find a pair of real numbers \((x, y)\) with the given sum and the given product.

\[
\begin{align*}
(a) & \quad x + y = 2, \quad x \cdot y = -1, \\
(b) & \quad x + y = 10, \quad x \cdot y = 1, \\
(c) & \quad x + y = 1, \quad x \cdot y = -1.
\end{align*}
\]

(4) Find all points on the line \(y + x = 2\) whose distance from the origin equals \(3/2\).
(5) For each of the following functions, state the maximal domain and range of the function. For the
given interval, state whether the restriction of the function to that interval is invertible. Whenever
the restriction function is invertible, find a formula for the inverse function, and state the domain
and range of the inverse function.

\((a) \ f(x) = 2x^{1/2} + 1, \ [0, 4], \ \ (b) \ g(x) = 7x^3 - 7, \ (-2, +2), \)
\((c) \ h(x) = 3x^{2/3} - 6x^{1/3}, \ [0, 1], \ \ (d) \ k(x) = 3x^{2/3} - 6x^{1/3}, \ [0, 8]. \)

(6) In each of the following cases, find all zeroes of the given polynomial function, determine the
sign of the function between the zeroes, and find the behavior at \(\pm \infty \). Also, find the \(y \)-intercept,
and say whether the function is even, odd or neither. Give a rough sketch of the graph illustrating
all of these features.

\((a) \ f(x) = x(x^2-1), \ (b) \ g(x) = x^3-9x, \ (c) \ h(x) = x^4-1, \ (d) \ k(x) = x^4-5x^2+4, \ (e) \ l(x) = x^4-5x^3+4x^2. \)

(7) Perform each of the following computations.

\((a) f(x) = x^3 + 2x, \ (f(x + 1) - f(1))/x = ?, \ (b) f(x) = x^2 + 1, \ g(x) = x^2 - 1, \ f(g(x)) = ?, \)
\((c) f(x) = x^2 + 1, \ g(x) = x^2 - 1, \ g(f(x)) = ?, \ (d) f(x) = 2x + 1, \ (f(x))^3 = ?. \)

(8) In each of the following cases, state the maximal domain and range of the given function. For
the restriction of the function to the specified interval, state whether or not the restricted function
is invertible. If the restricted function is invertible, find the inverse function. State the domain
and range of the inverse function.

\((a) \ f(x) = 8(2^x) - 1, \ [-3, 3], \ (b) \ f(x) = (8(2^x) - 1)^{-1}, \ (-3, 3), \)
\((c) \ f(x) = 3^{2x} - 2(3^x) + 1, \ [0, 2], \ (d) \ f(x) = 3^{2x} - 2(3^x) + 1, \ [-1, 2]. \)
\((e) \ f(x) = \log_5(x-1), \ [2, 26], \ (f) \ f(x) = \log_5(x^2 - 2x + 1), \ [2, 26], \)
\((g) \ f(x) = 1/\log_5(x-1), \ [2, 26], \ (h) \ f(x) = \log_2(x + 1) - \log_2(x - 1), \ (1, 3). \)

(9) A sample of bacteria grows from one milligram to eight milligrams in nine hours. Assuming the
bacteria follows an exponential growth model, determine the doubling time. Also determine the
total amount of time necessary for the sample to grow from one milligram to sixty-four milligrams.

(9) The half-life of a certain radioactive isotope is 5000 years. Assuming the radioactive decay
follows an exponential decay model, how long is necessary for a quantity of 24 kilograms of the
isotope to decay to 6 kilograms? How long is necessary for the quantity to decay to 3/4 of a
kilogram?

(9) Recall that measurements on the Richter scale are a common logarithm of the amplitude \(S \) of
vibration divided by a calibration amplitude \(S_0 \). If a seismic event ranks 6 on the Richter scale
and an aftershock ranks 2 on the Richter scale, how much stronger is the amplitude of the original
event than the amplitude of the aftershock?