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Abstract

We prove that for suitable dimension n and degree d, a general complex
hypersurface X ⊂ Pn of degree d has the property that for each integer
e the space Re(X) of degree e rational curves on X is an integral, local
complete intersection scheme of dimension (n+ 1− d)e+ (n− 4).

We also prove that for any smooth cubic hypersurface X ⊂ P4, for each
integer e the space Re(X) is an integral, local complete intersection scheme
of dimension 2e.

The techniques used in the proof include:
(1) Classical results about lines on hypersurfaces including a new re-

sult about flatness of the projection map from the space of pointed
lines.

(2) The Kontsevich moduli space of stable maps, M0,r(X, e). In par-
ticular we use the deformation theory of stable maps, the decom-
position of M0,r(X, e) described in [Behrend-Manin96], and the
fact that the coarse moduli space is a projective scheme.

(3) A version of Mori’s bend-and-break lemma.
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CHAPTER 1

Rational Curves on Hypersurfaces

1.1. Introduction

All schemes we consider will be C-schemes and all morphisms will be
morphisms of C-schemes. All (absolute) products will be over C.

For a projective scheme X over C along with an ample line bundle L we
defineRe(X) to be the open subscheme of the Hilbert scheme Hilbet+1(X/k)
which parametrizes smooth rational curves of degree e lying in X.

Theorem 1. Let n ≥ 6 be an integer and let d be an integer such that
1 ≤ d ≤ n+1

2
. For a general hypersurface X ⊂ Pn of degree d and for every

integer e ≥ 1, the scheme Re(X) is an integral local complete intersection
scheme of dimension (n+ 1− d)e+ (n− 4).

The idea of the proof is as follows. There is an embedding of Re(X)
into the smooth scheme Re(Pn). Denote by π : Ue(Pn) → Re(Pn) the
universal family of rational curves in Pn and by ρ : Ue(Pn) → Pn the
evaluation morphism. Then Re(X) is the scheme of zeroes of a section
of the locally free sheaf π∗ρ

∗OPn(d). Thus to prove that Re(X) is a local
complete intersection scheme, it suffices to prove that the codimension of
Re(X) in Re(Pn) equals the rank of π∗ρ

∗OPn(d).

The remainder of the proof is a “deformation and specialization” argu-
ment: we embed the non-proper scheme Re(X) as an open subscheme of a
proper scheme which is still modular, i.e. we choose a “modular compact-
ification”. Then we show that any point in Re(X) specializes to a point
in the “boundary” of the compactification. We use deformation theory to
study the irreducible components of the boundary of the compactification.
In particular we show that a general point of each irreducible component
of the boundary is a unibranch point of the compactification whose local
ring is reduced and has the expected dimension. This reduces the proof to
a combinatorial argument.
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1.2. Detailed Summary

In the next few paragraphs we will give a detailed summary of the
proof. Our compactification consists of the embedding of Re(X) as an open
subscheme in the Kontsevich moduli space M0,0(X, e) parametrizing stable
maps to X. We partition M0,0(X, e) into locally closed subsets according
to the ”combinatorial type” of the stable map. In particular, the image
of Re(X) is a dense open subset of a component of this partition. We
identify certain basic components as those components of the partition
parametrizing stable maps such that each irreducible component of the
domain curve is mapped to a line in X. We prove a new result about lines
on X. We define the incidence correspondence of pointed lines in X:

F0,1(X) = {(p, l)|p a point, l a line, p ∈ l ⊂ X}.
We prove that for a general hypersurface X ⊂ Pn of degree d ≤ n −
3, the projection morphism F0,1(X) → X is flat of relative dimension
n − d − 1 From this it easily follows that each basic component B is an
integral scheme whose general point is a unibranch point of M0,0(X, e) at
which M0,0(X, e) is reduced of dimension (n+ 1− d)e+ (n− 4). Thus for
each basic component B there is a unique irreducible component M(B)
of M0,0(X, e) which contains B, and M(B) is reduced and has dimension
(n+ 1− d)e+ (n− 4).

Next we consider almost basic components : the components of our par-
tition which parametrize stable maps such that one irreducible component
of the domain maps to a conic in X, and every other irreducible compo-
nent is mapped to a line in X. These components arise when we consider
smoothings of a node on one of the basic stable maps. By showing the al-
most basic components are irreducible, we prove that all of the irreducible
components M(B) for the different basic components B are actually equal.
So we produce an irreducible component M of M0,0(X, e) with the property
that if N is any irreducible component of M0,0(X, e) which contains a basic
component B, then N = M .

Finally we are reduced to proving that every irreducible component
N of M0,0(X, e) contains a basic component B. To do this we identify a
family of nice, simple components of our partition. This family contains the
component corresponding to Re(X) and all the basic components. Using
the bend-and-break lemma of Mori we prove the following theorem: for
any nice, simple component D which isn’t basic, and for each irreducible
component Di of this component, there is a nice, simple component E and
an irreducible component Ej of E which is contained in Di such that Ej has
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codimension 1 in the closure of Di and such that the expected dimension
of Ej is one less than the expected dimension of Di. We conclude by
induction on the expected dimension that Di has the expected dimension
and contains a basic component in its closure. Thus every irreducible
component of M0,0(X, e) contains a basic component in its closure, i.e. M
is the unique irreducible component of M0,0(X, e). This shows that M is
an integral scheme of dimension (n+ 1− d)e+ (n− 4).

1.3. Notation

In order to reduce possible confusion in performing constructions on Pn,
we shall sometimes choose a k-vector space V of dimension n+ 1 and work
with the projective space PV instead of Pn (for example, this convention
allows us to distinguish a projective space PV from its dual projective space
PV ∨).

If X is a scheme, if E is a locally free sheaf on X of rank m, and if r
is an integer 0 ≤ r ≤ m, we shall denote by GX(r, E) the Grassmannian
bundle over X parametrizing rank r subspaces of the fibers of E. Given a
vector space V over C, we will also denote GSpec C(r, V ) by G(r, V ).

Our notation regarding stacks is taken from [LM-B]. In particular we
follow the practice of treating stacks as fibered categories for which there
is always some distinguished functor of base change. Recall that a scheme
X also determines a Yoneda functor from the category of schemes to the
category of sets as well as a groupoid in stacks (which is just the Yoneda
functor after we identify the category of sets with the category of small
discrete groupoids). We will denote by X the scheme of X as well as the
Yoneda functor and stack determined by X.

While we are discussing stacks, we shall need the following simple fact
about stacks.

Lemma 2. Let S be a scheme and let f : X → Y be a 1-morphism of
S-stacks (i.e. stacks in groupoids over S). Suppose that Y is an algebraic
stack (resp. Deligne-Mumford stack). Suppose also that for every affine S-
scheme U and every 1-morphism g : U → Y the fiber product U ×g,Y,f X is
an algebraic stack (resp. Deligne-Mumford stack). Then X is an algebraic
stack (resp. Deligne-Mumford stack).

Proof. We need to prove that the diagonal morphism

∆X : X → X ×S X
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is representable, separated and quasi-compact and we need to produce an
affine S-scheme X and a 1-morphism X → X which is surjective and
smooth (resp. surjective and étale).

Since Y is an algebraic stack (resp. Deligne-Mumford stack), we can
find an affine S-scheme Y and a surjective, smooth (resp. surjective, étale)
1-morphism p : Y → Y . The base-change morphism p′ : Y ×p,Y,f X → X is
also surjective and smooth (resp. surjective and étale). Moreover the fiber
product Y ×p,Y,f X is an algebraic stack (resp. Deligne-Mumford stack).
Therefore there exists an affine S-scheme X and a surjective, smooth (resp.
surjective, étale) 1-morphism q : X → Y ×p,Y,f X . Since the composition
of surjective, smooth (resp. surjective, étale) morphisms is again surjective
and smooth (resp. surjective and étale), we conclude that p′ ◦ q : X → X
is surjective and smooth (resp. surjective and étale).

The diagonal morphism ∆X factors as a composition:

X
∆f−→ X ×Y X

i−→ X ×S X .
Also we have a 2-Cartesian diagram:

X ×Y X
i−−−→ X ×S Xy yf×f

Y ∆Y−−−→ Y ×S Y

.

Since ∆Y is representable, separated and quasi-compact, we conclude that
i is representable, separated and quasi-compact by base-change. So we are
reduced to proving that ∆f is representable, separated and quasi-compact.

Suppose that T is an affine scheme and g : T → X ×Y X is a 1-
morphism. Define h : T → Y to be the composition of g with either of the
two canonical morphisms

c : X ×Y X :→ Y .
Define XT = T ×h,Y,f X . Then XT is an algebraic stack (resp. Deligne-
Mumford stack) so that the diagonal ∆XT : XT → XT ×T XT is repre-
sentable, separated and quasi-compact. Notice that XT ×T XT is canoni-
cally isomorphic to (X ×Y X )×c,Y,h T. Therefore the pair g : T → X ×Y X
and idT : T → T induces a 1-morphism k : T → XT ×T XT . And we have
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a 2-Cartesian diagram:

X ×∆,X×YX ,g T
pr2−−−→ Ty yk

X ×f,Y,h T
∆×idT−−−−→ (X ×Y X )×c,Y,h T

.

By base-change pr2 is representable, separated and quasi-compact (i.e.
X×∆,X×YX ,fT is an algebraic space which is separated and quasi-compact).
This proves that ∆f : X → X ×Y X is representable, separated and
quasi-compact. Therefore X is an algebraic stack (resp. Deligne-Mumford
stack). �

1.4. Lines on Hypersurfaces

The projective variety PSymdV ∨ can be thought of as parametrizing
homogeneous polynomials Φ of degree d on V , and can also be thought of
as parametrizing degree d hypersurfaces X in PV via the association

[Φ]↔ X = {[v] ∈ PV |Φ(v) = 0}.
We will often talk of the hypersurface X ⊂ PV as being a point of
PSymdV ∨.

Recall our notation that G(2, V ) is the Grassmannian parametrizing
2 dimensional subspaces of V , or equivalently lines L ⊂ PV . Given a
degree d hypersurface X ⊂ PV we denote by F1(X) the subscheme of
G(2, V ) which parametrizes lines in X, i.e. F1(X) is the Fano scheme
of lines in X. We will also denote by G((1, 2), V ) the projective bundle
over G(2, V ) associated to the universal rank 2 locally free subsheaf S of
V ⊗C O. We can think of this as the space of partial flags V1 ⊂ V2 ⊂ V
with dim(V1) = 1, dim(V2) = 2. Alternatively we can think of this as the
space of pointed lines in Pn, i.e.

G((1, 2), V ) = {(p, L) ∈ PV ×G(2, V )|p ∈ L}.
We denote the canonical projection morphisms by

π1 : G((1, 2), V )→ PV, π1(p, L) = p

π2 : G((1, 2), V )→ G(2, V ), π2(p, L) = L.

We denote by F0,1(X) the inverse image of F1(X) under π1, i.e. F0,1(X) is
the space of pointed lines in X

F0,1(X) = {(p, L) ∈ PV ×G(2, V )|p ∈ L ⊂ X}.

We shall prove the following theorem:
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Theorem 3. Let d be an integer with 1 ≤ d ≤ n − 3. For a general
hypersurface X ∈ PSymdV ∨ the morphism F0,1(X)→ X is flat of relative
dimension n− d− 1.

Let us denote the universal family of degree d hypersurfaces in PV as:

X ⊂ PSymdV ∨ × PV
Let us denote by

F1(X ) ⊂ PSymdV ∨ ×G(2, V )

the family of Fano schemes F1(X) of the fibers X of the universal family
X → PSymdV ∨. Let us denote by

F0,1(X ) ⊂ PSymdV ∨ ×G((1, 2), V )

the family of schemes F0,1(X) of the fibers X of X → PSymdV ∨. Let us
denote by OF the pushforward to PSymdV ∨×G((1, 2), V ) of the structure
sheaf of F0,1(X ). Let O simply denote the structure sheaf of
PSymdV ∨ × G((1, 2), V ). Let S2 denote the pullback to
PSymdV ∨ × G((1, 2), V ) of the universal rank 2 subbundle of V ⊗C O.
And let O(−1) denote the pullback to PSymdV ∨×G((1, 2), V ) of the uni-
versal rank 1 subbundle of SymdV ∨ on PSymdV ∨. Having set our notation,
notice that there is a partial resolution of coherent sheaves:

Symd(S2)⊗O O(−1) −−−→ O −−−→ OF −−−→ 0.

where the map
Symd(S2)⊗O O(−1) −−−→ O

is adjoint to the unique map of coherent sheaves O(−1) → Symd(S2)∨

obtained by composing the canonical maps

O(−1) −−−→ SymdV ∨ ⊗C O −−−→ Symd(S2)∨.

By the Hauptidealsatz every fiber of π1 : F0,1(X ) → X has dimension
at least n−d−1. It follows by upper semicontinuity of the fiber dimension
that the subset

U = {p ∈ X |dim(π−1
1 (p)) ≤ n− d− 1}

is open. A priori U might contain points for which the fiber is empty (this
is why U is defined by an inequality instead of an equality), but in fact
π1 is surjective. We can form the Koszul complex associated to the par-
tial resolution above. It is a result of commutative algebra (theorem 17.4
(iii)(4) of [Matsumura86]) that over U the Koszul complex is exact. In
particular the Hilbert polynomials of all fibers over U are equal. It follows
that π1 is flat over U (theorem II.9.9 of [Hartshorne77]). Let Y denote the
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reduced, closed subscheme of X which is the complement of U . Then theo-
rem 3 is equivalent to the statement that Y does not dominate PSymdV ∨.
Denote by e the codimension of Y in X . Since the fiber dimension of
X → PSymdV ∨ is n − 1, to prove that Y fails to dominate PSymdV ∨, it
suffices to prove that e > n− 1.

There is another way of thinking of the scheme X . On PV let F 1,d

be the locally free subsheaf of SymdV ∨ ×C O which is the image of the
multiplication map Symd−1V ∨⊗CQ

∨ → SymdV ∨×CO. Then the morphism
pr2 : X → PV is isomorphic to the projective bundle associated to F 1,d.
To prove that e > n−1 it suffices to prove that for each point x ∈ PV , the
intersection Y ∩ pr−1

2 (W )∩ pr−1
1 (x) has codimension greater than n− 1 in

pr−1
1 (x). This is what we shall prove.

On PV let Q denote the locally free quotient sheaf of V ⊗C O by
OPV (−1). The dual injection Q∨ ↪→ V ∨ ⊗C O can be considered as a
filtration of V ∨ ⊗C O. The dth symmetric product of this filtration is a
filtration of SymdV ∨ ⊗C O:

SymdV ∨ ⊗C O = F 0,d ⊃ F 1,d ⊃ · · · ⊃ F d,d ⊃ F d+1,d = 0.

Here F i,d is the locally free subsheaf of SymdV ∨ ⊗C O which is the image
of the multiplication map Symd−iV ∨ ⊗C SymiQ∨ → SymdV ∨. The asso-
ciated graded sheaves of this filtration Gi,d = F i,d/F i+1,d are canonically
isomorphic to the sheaves OPV (d− i)⊗O SymiQ∨.

This filtration is not split on PV . But we can find a covering of PV by
open affine subschemes G ⊂ PV over which we do have a splitting. Here
by splitting we mean an isomorphism of bundles over G

α : SymdV ∨ ⊗C O −−−→ ⊕dj=0OPV (d− j)⊗O SymjQ∨

which maps F i,d to the subbundle ⊕dj=iOPV (d−j)⊗OSymjQ∨ and such that

the induced isomorphism Gi,d → OPV (d−i)⊗OSymiQ∨ is the isomorphism
from above. Given an open affine G ⊂ PV we can form the projective
bundle PG(F 1,d|G) over G. Given a splitting α on G, denote by

∆j(α) ⊂ PG(F 1,d|G)

the closed subscheme which parametrizes pairs (x, [Φ]), x ∈ G,Φ ∈ F 1,d|x
such that the jth component of α(Φ) is zero. Thus ∆0(α) is all of PG(F 1,d|G).
And, considering PG(F 1,d|G) as an open subscheme of X , ∆1(α) is the in-
tersection of PG(F 1,d|G) with the singular locus of the projection morphism
X → PSymdV ∨ (although ∆0(α) and ∆1(α) are independent of α, the same
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is not true of the higher ∆i(α)’s). The next result follows immediately from
the definition of the ∆j(α)’s.

Lemma 4. For j > 0 the codimension of ∆j(α) in PG(F 1,d|G) equals

rank
(
OPV (d− j)⊗O SymjQ∨

)
=

(
n− 1 + j
n− 1

)
.

In particular, for j > 0 the codimension of ∆j(α) in PG(F 1,d|G) is at
least n− 1 + j > n− 1. So to establish that e > n− 1 it suffices to prove
that for each open subscheme G ⊂ PV , each splitting α, and each point
x ∈ G, the locally closed subscheme

Yx,α :=
(
Y ∩ pr−1

1 (x)
)
− ∪dj=1

(
∆j(α) ∩ pr−1

1 (x)
)

of pr−1
1 (x) has codimension > n− 1.

Now on the complement of the closed subset ∆(α) := ∪dj=1 (∆j(α))
there is a morphism

PG
(
F 1,d|G

)
−∆(α)

β−−−→
∏d

j=1 PG
(
OPV (d− j)⊗O SymjQ∨

)
|G.

Up to a twist, we may identify the space

PG
(
Od−j ⊗O SymjQ∨

)
|G

with the space of degree j hypersurfaces in fibers of the projection mor-
phism PGQ|G→ G. Thus β assigns to each suitable pair (x, [Φ]) a sequence
of hypersurfaces in PQ|x. We denote this sequence by (X1, . . . , Xj, . . . , Xd).

Lemma 5. If we denote by X the hypersurface in PV corresponding to
Φ, then X1 ∩ · · · ∩Xd is the fiber of F0,1(X) over x ∈ X.

Proof. This is most easily seen by passing to local coordinates. Let
(x0, . . . , xn) be a system of homogeneous coordinates on PV (i.e. a basis for
V ∨) and let x be the point with homogeneous coordinates [0, . . . , 0, 1]. We
define a splitting α as follows: for each degree d homogeneous polynomial
Φ in (x0, . . . , xn) we have a unique decomposition

Φ = Φd + Φd−1xn + · · ·+ Φd−ix
i
n + · · ·+ Φ0x

d
n

where each Φi is a homogeneous polynomial of degree i in (x0, . . . , xn−1).
Then the fiber of F 1,d at x consists of those polynomials such that Φ0 = 0
and β(Φ) = (Φd, . . . ,Φ1). On any line L passing through x there is a unique
point of the form y = (a0, . . . , an−1, 0). Let P1 → PV be the morphism
given by

(t0, t1) 7→ (t1a0, t1a1, . . . , t1an−1, t0 + t1an).
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The image of this morphism is just L. Substituting into Φ yields the
polynomial on P1 given by

td0Φd(a0, . . . , an−1)+· · ·+td−i0 ti1Φd−i(a0, . . . , an−1)+· · ·+t0td−1
1 Φ1(a0, . . . , an−1).

The line L is contained in X iff this polynomial is identically zero iff each
of the terms Φi(a0, . . . , an) is zero. It is easy to convince oneself that
the homogeneous ideal generated by the terms Φi is independent of our
particular splitting. �

In particular, we conclude that every fiber of β which intersects Y is
contained in Y . Therefore the codimension of Yx,α in pr−1

1 (x) equals the
codimension of the subvariety

β(Y) ⊂
d∏
j=1

P
(
OPV (d− j)⊗O SymjQ∨

)
|x.

By construction, β(Y) is the locus parametrizing sequences of hypersur-
faces in PQ|x, (X1, . . . , Xd), of degrees 1, . . . , d respectively such that the
intersection

X(1,...,d) := X1 ∩ · · · ∩Xd

has dimension greater than n − d − 1. So we have reduced theorem 3 to
the following theorem:

Theorem 6. Let Q be a vector space over C of dimension n and let
d be an integer such that 1 ≤ d ≤ n − 3. Let Pd denote the scheme∏d

j=1 PSymjQ∨. Denote by Dd the closed subscheme of Pd which parametrizes

sequences (X1, . . . , Xd) such that

dim
(
X(1,...,d)

)
> n− d− 1.

The codimension of Dd in Pd is greater than n− 1.

Proof. We will prove this by induction on d. Since D1 = ∅ and the
dimension of Pd = PQ∨ is n− 1, the result is true for d = 1.

Let Ud denote the open subscheme of Pd which is the complement of
Dd. Then for 1 ≤ d ≤ n − 4, Ud+1 is contained in Ud × PSymd+1Q∨.
To see this, note that if X(1,...,d) has dimension larger than n − d − 1,
then X1,...,d+1 is nonempty and has dimension greater than n − d − 2: it
is nonempty since Xd+1 is ample, it has dimension larger than n − d − 1
by the Hauptidealsatz. So we see that the codimension of Dd+1 in Pd+1

is the minimum of the codimension of Dd in Pd and the codimension of
Dd+1 ∩ (Ud × PSymd+1Q∨) in Ud × PSymd+1Q∨. So by induction we are
reduced to showing that the codimension of Dd+1 ∩ (Ud × PSymd+1Q∨) in
Ud × PSymd+1Q∨ is larger than n− 1.
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Now suppose that (X1, . . . , Xd, Xd+1) is a point in

Dd+1 ∩ (Ud × PSymd+1Q∨).

By assumption every irreducible component of X(1,...,d) has dimension n−
d − 1. Since also X(1,...,d+1) has dimension n − d − 1, we conclude that
there is an irreducible component C ⊂ X(1,...,d) such that C ⊂ Xd+1. If
X(1,...,d) = C1 ∪ · · · ∪ Cr is the irreducible decomposition, then the fiber

of Dd+1 ∩ (Ud × PSymd+1Q∨) over (X1, . . . , Xd) (which we consider as a
subscheme of PSymd+1Q∨) is just the union of i = 1, . . . , r of the set
Bi ⊂ PSymd+1Q∨ parametrizing hypersurfaces Xd+1 such that Ci ⊂ Xd+1.
We are reduced to showing that the codimension of each Bi in PSymd+1Q∨

is greater than n− 1. We prove this in a lemma:

Lemma 7. Let Y ⊂ PQ be an irreducible subscheme such that dimY =
n−d−1. Let B(Y ) ⊂ PSymd+1Q∨ be the locus of hypersurfaces Xd+1 such
that Y ⊂ Xd+1. The codimension of B(Y ) is greater than n− 1.

Proof. Let Λ ⊂ PQ be a (d−1)-plane disjoint from Y. Choose coordi-
nates on PQ, (x0, . . . , xn−1) with respect to which Λ = Z(xd, . . . , xn−1). Let
Gm denote the “multiplicative group” Spec C[t, t−1] whose closed points
correspond to the torus C∗. Let s : Gm × PQ → PQ be the torus action
given by

t · (x0, . . . , xd−1, xd, . . . , xn−1) = (t−1x0, . . . , t
−1xd−1, txd, . . . , txn−1).

Since the Hilbert scheme of PQ is proper, the valuative criterion implies
that the closed subscheme

s−1(Y ) ⊂ Gm × PQ
which is flat over Gm, extends over 0 to yield a closed subscheme

Y ⊂ A1 × PQ
which is flat over A1. It is easy to see that the fiber of Y over 0 is a scheme
whose reduced scheme is just

Z(x0, . . . , xd−1) ⊂ PQ.

Now we can form the family

B ⊂ A1 × PSymd+1Q∨,Bt = B(Yt).
Over Gm the fibers of B are isomorphic. It follows by upper semicontinuity
that for t 6= 0 we have dim(Bt) ≤ dim(B0). And of course we have

B0 = B(Y0) ⊂ B (Z(x0, . . . , xd−1)) .
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So we are reduced to proving the lemma for the special case Y = Z(x0, . . . , xd−1).
The set B of hypersurfaces Xd+1 ⊂ PQ which contain Z(x0, . . . , xd−1) is
just the projectivization of the kernel of the surjective linear map

H0(PQ,OPQ(d+ 1))→ H0(Y,OY (d+ 1)).

So the codimension of B in PQ equals

dimCH
0(Y,OY (d+ 1)) =

(
n

d+ 1

)
.

For d + 1 ≤ n − 1 (which is one of our hypotheses) we see that
(
n
d+1

)
≥

n > n − 1. We conclude that the codimension of B(Y ) in PSymd+1Q∨ is
greater than n− 1. This proves the lemma. �

This completes the proof of theorem 6. �

This completes the proof of theorem 3. While we are discussing lines,
let us mention two other results about lines on hypersurfaces.

Lemma 8 ( [Kollár96). , Exercise V.4.4.2] For general X and a general
line L ⊂ X, the normal bundle NL/X is of the form O⊕d−1

L ⊕OL(1)⊕n−1−d.

Theorem 9 ( [Kollár96). , Theorem V.4.3.2] For general X, the Fano
scheme F1(X) is smooth. Therefore F0,1(X) is smooth. By generic smooth-
ness, the general fiber of F0,1(X)→ X is smooth.

1.5. Stable A-graphs and Stable Maps

We follow the notation from [Behrend-Manin95] regarding stable A-
graphs. However, we shall only need to use genus 0 trees.

Remark For the purposes of this paper, we shall define stable A-graphs
to be stable A-graphs whose underlying modular graph is a genus 0 tree.

Definition 10. A graph τ is a 4-tuple (Fτ ,Wτ , jτ , ∂τ ) defined as fol-
lows:

(1) Fτ is a finite set called the set of flags
(2) Wτ is a finite set called the set of vertices
(3) jτ : Fτ → Fτ is an involution
(4) ∂τ : Fτ → Wτ is a map called the evaluation map.

In addition we have the auxiliary definitions

(1) the set of tails Sτ ⊂ Fτ is the set of fixed points of jτ
(2) the set of edges Eτ is the quotient of Fτ \ Sτ by jτ
(3) for a vertex v ∈ Wτ , the valence of v is defined to be val(v) =

#(∂−1(v)).
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We shall often write Flag(τ) in place of Fτ , Vertex(τ) in place of Wτ ,
Tail(τ) in place of Sτ , Edge(τ) in place of Eτ , and f in place of jτ (f).

We can associate to a graph its geometric realization |τ | which is a
simplicial complex defined as follows. The set of 0-simplices of |τ | is

|τ |0 = Vertex(τ) t Tail(τ).

The set of 1-simplices of |τ | is

|τ |1 = Edge(τ) t Tail(τ).

If [0, 1] is a 1-simplex associated to an edge
{
f, f
}

, the point 0 is glued to

the 0-simplex ∂f , and the point 1 is glued to the 0-simplex ∂f . If [0, 1] is
the 1-simplex associated to a tail f , the point 0 is glued to the 0-simplex
∂f , and the point 1 is glued to the 0-simplex f .

Example:
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f f
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f
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f
f

f

f

f
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12

13

2

2
w w

w

w

w

Diagram 1

In the example the vertex set is W = {w1, . . . , w5} and the flag set is
F = {f1, . . . , f13}. The only tail is f1. For all other flags f the opposite
flag j(f) is obtained by reflecting through the midpoint of the edge. Notice
that there are two edges joining w2 and w3, there is an edge joining w4 to
itself, and there are no flags attached to w5.

Definition 11. A tree is a graph such that H1(|τ |,Z) = 0

We shall use several graphs repeatedly in the proof of theorem 3, so
we introduce them now. Of course the most important graph is the empty
graph λ∅, i.e. the unique graph such that Vertex(λ∅) = ∅. The second
graph will be called λ0 and is defined to be the graph with one vertex, u0,
and no flags. The third graph will be called λ1 and is defined to be the
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graph with one vertex, u0, one tail, e0, and no edges. The fourth graph
will be called λ2 and is defined to be the graph with two vertices, u0 and
u1, no tails, and one edge {e0, e1} such that ∂ei = ui. The final graph will
be called λ3 and is defined to be the graph with one vertex, u0, two tails,
e0 and e1, and no edges. Notice that all of these graphs are trees.

u
0

λ :
0

u
0 e

0

λ :
1

1
ue

0
e
1

u
0

λ :
2

u
0e

0
e
1

λ :
3

Diagram 2

As mentioned above, we shall only consider graphs which are trees.
Trees arise in the study of prestable curves with arithmetic genus 0.

Definition 12. A prestable curve with n marked points (C, x1, . . . , xn)
is defined to be a datum where C is a complete, reduced, at worst nodal
curve and xi ∈ C, i = 1, . . . , n are distinct, nonsingular points of C.

Suppose that (C, x1, . . . , xn) is a connected, prestable curve whose arith-
metic genus is 0. One associates to (C, x1, . . . , xn) a dual graph, ∆. The
dual graph of (C, x1, . . . , xn) is a tree whose vertices {v1, v2, . . . } cor-
respond to the irreducible components {C1, C2, . . . } of C, whose edges
{{f1, f1}, {f2, f2}, . . . } correspond to the nodes {q1, q2, . . . } of C, and whose
tails {g1, . . . , gn} correspond to the marked points {p1, . . . , pn} of C. Given
an edge {fi, fi} corresponding to a node qi, the two vertices ∂f1, ∂f1 are
simply the vertices vj, vk corresponding to the two (possibly equal) compo-
nents Cj, Ck making up the branches of the node. A tail gi corresponding
to a marked point pi is attached to the vertex vj associated to the (unique)
irreducible component Cj containing pi.
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Now suppose X is a projective variety with a fixed ample line bundle
L.

Definition 13. An A-graph is a pair (τ, βτ ) where τ is a tree and

β : Vertex(τ)→ Z≥0

is a map called the A-structure. We shall often abbreviate (τ, βτ ) by just
writing τ . We say that an A-graph τ is stable if for each vertex v ∈
Vertex(τ) such that βτ (v) = 0, there are at least 3 distinct flags f ∈ Flag(τ)
such that ∂f = v (i.e. the valence of v is at least 3).

Convention We define τ∅ to be the unique stable A-graph whose un-
derlying graph is λ∅.

One can form a category whose objects are the stable A-graphs. Every
morphism in this category is a composition of two basic types of mor-
phisms: contractions and combinatorial morphisms. The reader is referred
to [Behrend-Manin95] for the precise definitions. Essentially a contraction
of A-graphs φ : τ → σ is a map from the set of vertices of τ onto the
set of vertices of σ which maps adjacent vertices to adjacent vertices (here
two vertices are adjacent if they are equal or if they are connected by an
edge). And a combinatorial morphism τ ←↩ σ is the inclusion of a sub-
graph σ into a graph τ . The functor which associates to a stable A-graph
the corresponding Behrend-Manin stack is covariant for contractions. But
it is contravariant for combinatorial morphisms. Therefore we think of a
combinatorial morphism τ ←↩ σ as a morphism from τ to σ (which explains
our terminology τ ←↩ σ for combinatorial morphisms).

Of special importance for us will be morphisms of graphs which corre-
spond to removing tails. For each stable A-graph τ we define r1(τ) to be
the stable A-graph obtained by removing every tail f ∈ Tail(τ) such that
α(f) > 0. We define τ ←↩ r1(τ) to be the canonical combinatorial mor-
phism. For each stable A-graph τ we define r2(τ) to be the stabilization of
the A-graph obtained by removing all tails f ∈ Tail(τ) such that α(f) = 0.
Technically the canonical morphism of graphs from τ to r2(τ) consists of
both a combinatorial morphism and a contraction. But we shall denote
it by τ ←↩ r2(τ) just as if it were a combinatorial morphism. Finally, we
define r(τ) := r1(r2(τ)) = r2(r1(τ)).

Just as one associates to a connected prestable curve

(C, x1, . . . , xn)
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of arithmetic genus 0 a tree ∆(C, x), one can associate to a prestable map

((C, x1, . . . , xn), C
h−→ X)

an A-graph ∆(C, x, h).

Definition 14. A prestable map is a pair

((C, x1, . . . , xn), C
h−→ X)

where (C, x1, . . . , xn) is a prestable curve, and where C
h−→ X is a morphism

of C-schemes.

Let us suppose that

(C, x1, . . . , xn), (C
h−→ X)

is a prestable map such that C is connected and such that the arithmetic
genus of C is 0. The underlying tree of ∆(C, x, h) is simply ∆(C, x). And,
given a component Ci of C with corresponding vertex vi ∈ Vertex(∆(C, x)),
one defines

β(vi) =

∫
Ci

h∗i (c1(L)).

The A-graph ∆(C, x, h) is a stable A-graph iff (C, x, h) is a stable map.

1.6. Behrend-Manin stacks and the Behrend-Manin
decomposition

We refer the reader to [Behrend-Manin96] for the definition of the stacks
M(X, τ). These are proper Deligne-Mumford stacks which parametrize
stable maps along with some extra data. We shall occasionally deal with
these stacks, but more often we shall deal with associated stacks of strict
maps M(X, τ) which we now define.

Definition 15. Let X be a variety, L a line bundle on X, and let τ
be a stable A-graph. A strict τ -map is a datum

((Cv), (hv : Cv → X), (qf ))

defined as follows:

(1) (Cv) is a set parametrized by v ∈ Vertex(τ) of rational curves, i.e.
each Cv ∼= P1

(2) (hv : Cv → X) is a set parametrized by v ∈ Vertex(τ) of mor-
phisms of C-schemes,

(3) (qf ) is a set parametrized by f ∈ Flag(τ) of closed points qf ∈ C∂f
and satisfying the following conditions

(1) for v ∈ Vertex(τ), the degree of h∗v(L) as a line bundle on Cv is
βτ (v),
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(2) for f1, f2 ∈ Flag(τ) distinct flags with ∂f1 = ∂f2, qf1 6= qf2,
(3) for f ∈ Flag(τ), we have h∂f (qf ) = h∂f (qf ).

Convention If τ = τ∅, we define a strict τ -map to simply be a point
in X. Thus the set of strict τ -maps is simply X.

Definition 16. If T is a C-scheme, then a family of strict τ -maps
over T is a datum

((πv : Cv → T ), (hv : Cv → X), (qf : T → C∂f ))
defined as follows:

(1) (πv : Cv → T ) is a set parametrized by v ∈ Vertex(τ) of smooth,
proper morphisms whose geometric fibers are rational curves

(2) (hv : Cv → X) is a set parametrized by v ∈ Vertex(τ) of morphisms
of C-schemes

(3) (qf : T → C∂f ) is a set parametrized by f ∈ Flag(τ) of morphisms
of schemes such that π∂f ◦ qf = idT

and satisfying the following conditions

(1) for v ∈ Vertex(τ), the degree of h∗v(L) on each geometric fiber of
Cv → S is βτ (v)

(2) for f1, f2 ∈ Flag(τ) distinct flags with ∂f1 = ∂f2, qf1 and qf2 are
disjoint sections

(3) for f ∈ Flag(τ), we have h∂f ◦ qf = h∂f ◦ qf .

Convention If τ = τ∅ we define a family of strict τ -maps over T to be
a morphism h : T → X.

Suppose given two families of strict τ -maps over S, say

η = ((πv : Cv → T ), (hv : Cv → X), (qf : T → C∂f )),
ζ = ((π′v : C ′v → T ), (h′v : C ′v → X), (q′f : T → C ′∂f )).

Definition 17. A morphism of families of strict τ -maps over S, φ :
η → ζ, is a collection of isomorphisms of S-schemes:

φ = (φv : Cv → C ′v)
indexed by v ∈ Vertex(τ) and satisfying

(1) for v ∈ Vertex(τ), h′v ◦ φv = hv
(2) for f ∈ Flag(τ), φ∂f ◦ qf = q′f .

One defines composition of morphisms in the obvious way. Notice that
every morphism is an isomorphism. Thus the category of families of strict
τ -maps over S is a groupoid. Given a morphism S ′

u−→ S and a family η
of strict τ -maps over S, one has the usual pullback u∗(η) which is a family
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of strict τ -maps over S ′. In this way we have the notion of a functor from
the category of C-schemes to the category of groupoids which associates
to each S the groupoid of families of strict τ -maps over S. We denote this
functor by M(X, τ).

In every case it is easy to see thatM(X, τ) is a stack in groupoids over
C. In many cases this is even a Deligne-Mumford stack:

Theorem 18. If X is projective and L is ample, the functor M(X, τ)
is a Deligne-Mumford stack which is separated and finite type over C.

Proof. There is a 1-morphism M(X, τ) →M(X, τ) where M(X, τ)
is the refined functor defined in [Behrend-Manin96]. In [Behrend-Manin96]
it is proved thatM(X, τ) is a proper Deligne-Mumford stack over C. And
it is clear that M(X, τ)→M(X, τ) is a representable morphism which is
an open immersion. Thus M(X, τ) is a Deligne-Mumford stack which is
separated and finite type over C. �

We shall also need to use a relative version of this construction. Suppose
that S is a scheme over C and f : X → S is a morphism of schemes. Let L
be a relatively ample bundle on X. DefineM(X/S, τ) (resp. M(X/S, τ))
to be the full substack of M(X, τ)× S (resp. M(X, τ)× S) such that for
each scheme T the objects ofM(X/S, τ)(T ) (resp. M(X/S, τ)(T )) consist
of pairs (η, g : T → S) where

η = ((πv : Cv → T ) , (hv : Cv → X) , (qf : T → C∂f ))

is a family of τ -maps (resp. strict τ -maps) and such that for each vertex
v ∈ Vertex(τ), the following diagram commutes:

Cv
hv−−−→ X

πv

y yf
T

g−−−→ S

.

It is easy to see that M(X/S, τ) (resp. M(X/S, τ)) is indeed a substack
of M(X, τ)× S (resp. M(X, τ)× S).

Proposition 19. If f : X → S is projective and L is relatively ample,
then M(X/S, τ) is a Deligne-Mumford stack and the 1-morphism pr2 :
M(X/S, τ) → S is proper. Therefore M(X/S, τ) is a Deligne-Mumford
stack and the 1-morphism pr2 : M(X/S, τ) → S is separated and finite
type.

Proof. Consider first the case that f : X → S is simply the pro-
jection PnC × S → S and L is simply pr∗1O(1). Then M(X/S, τ) is sim-
ply M(Pn, τ)× S which is obviously a Deligne-Mumford stack. Moreover
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M(X/S, τ)→ S is just the projection morphism which is proper by base-
change.

Now the statements that M(X/S, τ) is a Deligne-Mumford stack and
that M(X/S, τ)→ S is proper are both local on S. In particular, we may
suppose that S is affine, that there is an integer n such that L⊗n is very
ample, and that i : X → PN ×S is a closed immersion with i∗O(1) = L⊗n.
Now the ideal sheaf I of i(X) is coherent. So there is a positive integer m
such that I⊗O(m) is generated by global sections. Let I⊗O(m)→ O(m)
be the tensor product of O(m) with the canonical inclusion.

Define τ ′ to be the stable A-graph whose underlying modular graph is
the same as τ but such that α′(v) = nα(v). As we have seen,
M(PN × S/S, τ ′) is a Deligne-Mumford stack which is proper over S. Let
π : C → M(PN × S/S, τ ′) be the universal curve. Recall that this is a
representable 1-morphism of stacks which is proper and flat of relative di-
mension 1. Let h : C → PN × S denote the canonical 1-morphism. The
pullback under h of the morphism of coherent sheaves I⊗O(m)→ O(m) is
a morphism of coherent sheaves h∗(I⊗O(m))→ h∗O(m). Moreover, since
pr2 ◦ h = pr2 ◦ π, and since I ⊗ O(m) is generated by global sections, we
conclude that π∗π∗h

∗(I ⊗O(m))→ h∗(I ⊗O(m)) is surjective. Since π is
representable and proper, the pushforward π∗h

∗(I ⊗ O(m)) → π∗h
∗O(m)

is again a morphism of coherent sheaves. The claim is that the canoni-
cal 1-morphism M(X/S, τ) → M(PN × S/S, τ ′) is the zero locus of this
morphism of coherent sheaves. This is easy to see: the zero locus of
π∗h

∗(I ⊗ O(m)) → π∗h
∗O(m) is precisely the maximal closed substack

ofM(PN × S/S, τ ′) over which the morphism h∗(I ⊗O(m))→ h∗O(m) is
identically zero. Using the universal property of closed immersions, we see
that this is the maximal closed substack over which h : C → PN × S fac-
tors through i(X). By definition this is M(X/S, τ). So we conclude that
M(X/S, τ) is the zero locus of π∗h

∗(I⊗O(m))→ π∗h
∗O(m). In particular

M(X/S, τ) is a closed substack of the Deligne-MumfordM(PN ×S/S, τ ′).
Thus M(X/S, τ) is a Deligne-Mumford stack and M(X/S, τ) → S is
proper.

Given that M(X/S, τ) is a Deligne-Mumford stack and
M(X/S, τ) → S is proper, one proves that M(X/S, τ) is a Deligne-
Mumford stack and M(X/S, τ) → S is seperated and finite type just
as in theorem 18. �
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The most important A-graphs are the A-graphs τn(α) defined as follows:
the underlying graph of τn(α) has a single vertex Vertex(τn(α)) = {u1} and
n flags Flag(τn(α)) = {f1, . . . , fn} all of which are tails, and α(u0) = α.
The stack of Behrend-Manin associated to τn(α) is exactly the moduli space
of Kontsevich stable maps M0,n(X,α).

One important case to understand is when β(τ) = 0. We have already
defined M(X, τ) = M(X, τ) = X when τ is the empty graph. For any
stable A-graph τ such that β(τ) = 0 and such that #Tail(τ) = r, we have
M(X, τ) =X×M(∗, τ) where M(∗, τ) ⊂M0,r is the obvious substack.

Suppose that φ = (φW , φ
F ) : τ → τ ′ is a contraction of stable A-graphs.

There is a corresponding 1-morphism of proper Deligne-Mumford stacks

M(X,φ) :M(X, τ)→M(X, τ ′).

We will denote byM(X,φ) the restriction of this 1-morphism to the open
substack M(X, τ) of M(X, τ).

In the case that φ : τ → τ ′ is a contraction of stable A-graphs such
that β(τ) = β(τ ′) = 0, then M(X, τ) → M(X, τ ′) is simply the product
of idX : X → X with the 1-morphism M(∗, φ) : M(∗, τ) → M(∗, τ ′).
In particular, using the notation of [Behrend-Manin96], consider the case
that φ is an isogeny, i.e. φ is the morphism which removes some subset of
the set of tails from τ and then stabilizes the resulting (possibly unstable)
graph.

Lemma 20. Let τ, τ ′ be stable A-graphs such that β(τ) = β(τ ′) = 0
and let φ : τ → τ ′ be an isogeny. Then M(X,φ) : M(X, τ) → M(X, τ ′)
is smooth of relative dimension dim(X, τ)− dim(X, τ ′) with geometrically
connected fibers.

Proof. Of course it is equivalent to prove that

M(∗, φ) :M(∗, τ)→M(∗, τ ′)
is smooth of relative dimension dim(X, τ)− dim(X, τ ′) with geometrically
connected fibers. Now it follows by proposition 7.4 of [Behrend-Manin96]
that M(∗, τ) and M(∗, τ ′) have the expected dimension. Thus all we
really need to show is that M(∗, τ) → M(∗, τ ′) is smooth with geomet-
rically irreducible fibers. Moreover, since every isogeny is a composition
of morphisms obtained by stably removing one tail, we may suppose that
φ : τ → τ ′ corresponds to stably removing one tail f ∈ Tail(τ).
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There are two cases. Suppose first of all that when we remove f from τ ,
the resulting graph is unstable. But then ∂f = v is a vertex with valence
3. Since a rational curve with 3 marked points has no moduli, we conclude
that M(∗, τ)→M(∗, τ ′) is an open immersion.

The second case is that when we remove f from τ , the resulting graph is
stable, i.e. the resulting graph is just τ ′. But then if v = φ(∂f), we conclude
that φ :M(∗, τ)→M(∗, τ ′) is simply an open subset of the universal curve
overM(∗, τ ′) corresponding to the vertex v. In both cases we conclude that
M(∗, τ)→M(∗, τ ′) is smooth with geometrically connected fibers. �

For each stable A-graph τ define e = β(τ) and define r = #Tail(τ).
Then there is a contraction φ : τ → τr(e) which is unique up to a labeling of
the tails of τ . We will refer to this contraction as the canonical contraction
of τ . Corresponding to the canonical contraction we have the 1-morphism

M(X,φ) :M(X, τ)→M0,r(X, e),

which is unique up to an automorphism of M(X, τ) corresponding to re-
labeling the tails. In particular, the image of M(X,φ) as a subset of the
set |M0,r(X, e)| is well-defined.

Proposition 21. Let φ : τ → τ ′ be a contraction of stable A-graphs.
The image of the 1-morphism M(X,φ) is a locally closed subset of the
topological space |M(X, τ)|.

Proof. For notation’s sake let’s denote the continuous map of topo-
logical spaces

|M(X,φ)| : |M(X, τ)| → |M(X, τ ′)|
by

f : M →M ′

and let’s denote the open substack M(X, τ) of M(X, τ) by M o. Then
f : M →M ′ is a closed map. And it is easy to see that f−1(f(M o)) = M0.
Therefore f(M o) = f(M) − f(M −M o) is a difference of closed sets and
so is locally closed. �

We now fix n and α and consider the set S of all images

{Image(M(X,φ))}
as φ ranges over all contractions of stable A-graphs to τn(α). The set of
isomorphism classes of such contractions is clearly finite. The previous
lemma shows that S forms a locally closed decomposition of the topologi-
cal space |M0,n(X,α)|, i.e. a partition of |M0,n(X,α) into locally closed
subsets. This partition is what we call the Behrend-Manin decomposition.
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Definition 22. One defines certain numerical invariants of an A-
graph τ as follows:

(1) The class of τ is

β(τ) =
∑

v∈Vertex(τ)

β(v).

(2) The virtual dimension of τ is

dim(X, τ) = −KX .β(τ) + (dim(X)− 3) + #(Tail(τ))−#(Edge(τ)).

1.7. Naive Maps

The Behrend-Manin decomposition of the last section is not sufficient to
prove theorem 1. We shall define a new decomposition – the CD decomposi-
tion – which is better suited to our purposes. To define this decomposition
we shall need the following modification of the notion of stable map.

Definition 23. Let τ be a stable A-graph. A naive τ -map is a datum

((Cv), (hv : Cv → X), (qf ))

such that

(1) (Cv) is a set parametrized by v ∈ Vertex(τ) of rational curves Cv
(2) (hv : Cv → X) is a set parametrized by v ∈ Vertex(τ) of mor-

phisms of C-schemes,
(3) (qf ) is a set parametrized by f ∈ Flag(τ) of closed points qf ∈ C∂f

and satisfying the following conditions

(1) for v ∈ Vertex(τ), the degree of h∗v(L) as a line bundle on Cv is
βτ (v),

(2) if f1, f2 ∈ Flag(τ) are distinct flags with ∂f1 = ∂f2 = v and if
β(v) = 0, then qf1 6= qf2,

(3) for f ∈ Flag(τ), we have h∂f (qf ) = h∂f (qf ),
(4) for v ∈ Vertex(τ) with β(v) 6= 0, the map hv : Cv → hv(Cv) is

birational,
(5) and for distinct v, w ∈ Vertex(τ) such that β(v), β(w) 6= 0 and

such that v,w are adjacent (i.e. there exists {f, f} ∈ Edge(τ) with
∂(f) = v, ∂(f) = w) we have hv(Cv) 6= hw(Cw).

Convention If τ = τ∅ we define a naive τ -map to simply be a point of
X.

Given a k-scheme T , we define a family of naive τ -maps over T and a
morphism of families of naive τ -maps in the same manner as we defined a
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family of strict τ -maps. We define N (X, τ) to be the groupoid of families
of naive τ -maps.

Theorem 24. Let τ be a stable A-graph. The groupoid N (X, τ) is a
Deligne-Mumford stack which is separated and of finite type over C.

Proof. It is an easy exercise to see thatN (X, τ) is a stack in groupoids.
First we reduce to the case that τ = r2(τ). If τ = τ∅, then clearly
N (X, τ) = X which is a separated, finite type scheme over C. More gen-
erally, if τ is a stable A-graph such that every v ∈ Vertex(τ) has β(τ) = 0,
then N (X, τ) = M(X, τ). Now suppose that τ 6= r2(τ). Let V denote
the maximal subgraph of τ such that Vertex(V ) is the set of vertices
v ∈ Vertex(τ) which are contracted in r2(τ) or such that the valence of
v in r2(τ) is less than the valence of v in τ . We will prove by induction
on the size of V that N (X, τ) is a separated, finite type Deligne-Mumford
stack whenever N (X, r2(τ)) is a separated, finite type Deligne-Mumford
stack. Let V0 ⊂ V be a connected subgraph of V . Let W0 ⊂ r2(τ) be the
image of V0. Define τ ′ to be the graph intermediate between τ and r2(τ)
obtained by contracting V0 to W0. Now there are combinatorial morphisms
τ ←↩ V0 and τ ′ ←↩ W0. It is clear from the definition of naive maps that
the following diagram is Cartesian:

N (X, τ) −−−→ N (X, τ ′)y y
M(X, V0) −−−→ M(X,W0).

Now a fiber product of separated, finite type Deligne-Mumford stacks is
again a separated, finite type Deligne-Mumford stack. We conclude by
induction that N (X, τ) is a separated, finite type Deligne-Mumford stack
whenever N (X, r2(τ)) is. Thus we may assume that τ = r2(τ).

Suppose next that τ has a single vertex v, i.e. τ = τn(e) for some n
and e. For each flag f ∈ Flag(τ) we have the combinatorial morphism
τ ←↩ τ1(e) which is simply the subgraph whose only flag is f . Consider
the product indexed by all f ∈ Flag(τ) of the corresponding morphism
N (X, τ) → N (X, τ1(e)); for all f the composites with the forgetful map
N (X, τ1(e))→ N (X, τ0(e)) are equal. The product map

N (X, τ)→ N (X, τ1(e))×N (X,τ0(e)) · · · ×N (X,τ0(e)) N (X, τ1(e))

identifies N (X, τ) with an open substack of the n-fold fiber product. Thus
to prove that N (X, τ) is a finite type, separated Deligne-Mumford stack, it
suffices to consider the cases τ = τ0 and τ = τ1. But clearly N (X, τ0(e)) is
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simply the open substack of M(X, τ0(e)) which parametrizes stable maps
such that h : C → h(C) is birational (this is an open property of stable
maps). And N (X, τ1(e)) is simply the fiber product

N (X, τ0(e))×M(X,τ0(e))M(X, τ1(e)).

Thus N (X, τ0(e)) and N (X, τ1(e)) are both finite type, separated Deligne-
Mumford stacks.

Suppose now that τ has more than one vertex. We perform leaf induc-
tion: let v1 ∈ Vertex(τ) be a leaf. Since τ = r2(τ), we know β(v1) > 0.
Define τ ←↩ τ ′ and τ ←↩ τ ′′ to be the maximal subgraphs such that
Vertex(τ ′) = {v1} and Vertex(τ ′′) = Vertex(τ) − {v1}. Further, let us
denote by {f1, f2} the unique edge of τ such that ∂f1 = v1 and let us
denote v2 = ∂f2.

By the induction assumption we know that N (X, τ ′) and N (X, τ ′′)
are separated, finite type Deligne-Mumford stacks. Corresponding to the
flags f1 and f2 we have evaluation morphisms e′ : N (X, τ ′) → X and
e′′ : N (X, τ ′′) → X. The combinatorial morphisms τ ←↩ τ ′ and τ ←↩ τ ′′
induce 1-morphisms N (X, τ) → N (X, τ ′) and N (X, τ) → N (X, τ ′′). So
we have an induced 1-morphism N (X, τ)→ N (X, τ ′)×e′,X,e′′N (X, τ ′′). It
is clear from the definition of naive maps that this 1-morphism is an open
immersion of stacks. Since a fiber product of separated, finite type Deligne-
Mumford stacks is again a separated, finite type Deligne-Mumford stack,
we conclude that N (X, τ) is a separated, finite type Deligne-Mumford
stack. This completes the proof. �

Lemma 25. For each n ≥ 0 and each stable A-graph τ , the stack
N (Pn, τ) is a Deligne-Mumford stack over C which is smooth of relative
dimension dim(τ). Moreover, for each flag f ∈ Flag(τ) the evaluation
morphism ef : N (Pn, τ)→ X is smooth.

Proof. First of all, if we prove that N (Pn, τ) is smooth, then it follows
by generic smoothness that the evalution morphism ef : N (Pn, τ)→ X is
smooth over a nonempty open subset. But then by homogeneity it follows
that ef : N (Pn, τ)→ X is smooth everywhere.

The remainder of the proof is just as in the last theorem, therefore we
will only indicate what needs to be added to that proof. In that proof
the morphism M(X, V0) →M(X,W0) is smooth – in fact it is simply an
open subset of the product X ×M(∗, V0) →X×M(∗,W0). Smoothness
of M(∗, V0) → M(∗,W0) is easy (it follows from the fact that each of
the spaces M0,d is smooth). By proposition 7.4 of [Behrend-Manin96],
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N (X, τ0(e)) is smooth. And N (X, τ1(e)) → N (X, τ0(e)) is simply the
universal curve so it is smooth. Thus, by induction, all of the spaces
N (X, τd(e)) are smooth. Finally, in the leaf induction argument notice
that the evaluation morphisms e′, e′′ are smooth. Thus the fiber product
N (X, τ ′) ×e′,X,e′′ N (X, τ ′′) is smooth. So N (X, τ) is an open subset of a
smooth stack, thus it is smooth. �

Let’s just formalize the first part of this proof. We define n′ = n′(τ)
to be the number of flags attached to vertices v with α(v) = 0, i.e. n′ =
#{f ∈ Flag(τ) : α(∂f) = 0}. Also we define c = c(τ) to be the number of
vertices v ∈ Vertex(τ) with α(v) = 0.

Suppose that η = ((Cv) , (hv) , (qf )) is a family of naive τ -maps over a
base T. By the same procedure as in [Behrend-Manin96], one can associate
to η a family r2(η) of naive r2(τ)-maps over T: The process of removing tails
from contracted components and then contracting unstable components
results in a family r2(η) which automatically satisfies condition 3. Using
the techniques in [Behrend-Manin96] it is trivial to verify the following:

Proposition 26. The 1-morphism r2 : N (X, τ)→ N (X, r2(τ)) which
associates to each family η the corresponding family r2(η) is a smooth mor-
phism of relative dimension n′−3c whose fibers are geometrically connected.

1.8. Combinatorial Data and the CD decomposition

In this section we will define a refinement of the Behrend-Manin de-
composition.

Definition 27. A combinatorial datum τ1
φ−→ τ2 is the following:

(1) a stable genus 0 tree τ1

(2) a stable genus 0 tree τ2

(3) a degree map d : Vert(τ1)→ Z>0

(4) a map φW : Vert(τ1)→ Vert(τ2)
(5) a map φF : Flag(τ1)→ Flag(τ2)

and satisfying the following conditions

(1) for each f ∈ Flag(τ1), ∂φF (f) = φW (∂f)

(2) for each f ∈ Flag(τ1), φF (f) = φF (f)
(3) the induced map φF : Edge(τ1) ∪ Tail(τ1)→ Edge(τ2) ∪ Tail(τ2) is

a bijection
(4) for each v ∈ Vertex(τ2) the preimage φ−1

W (v) is the set of vertices
of a connected subtree of τ1

(5) for each v ∈ Vertex(τ2) such that α2(v) = 0, the preimage φ−1
W (v)

consists of exactly one vertex
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(6) for each v ∈ Vertex(τ1) we have α1(v) = d(v)α2(φW (v))
(7) for each v ∈ Vertex(τ1) such that α1(v) = 0, we have d(v) = 1.

Note that one can recover the combinatorial datum τ1
φ−→ τ2 (or more

precisely its isomorphism class) from τ1, the degree map d, and the de-
composition of the graph α−1

1 (Z>0) into subtrees corresponding to the de-
composition {φ−1

W (v)|v ∈ α−1
2 (Z>0)}, subject only to the condition that for

each v ∈ α−1
1 (Z>0) d(v) divides α1(v).

Definition 28. One defines certain numerical invariants of a combi-
natorial datum φ as follows:

(1) The class of φ is β(φ) = β(τ1).
(2) The defect of φ is

δφ =
∑

v∈Vertex(τ1)

(2d(v)− 2) .

(3) The virtual dimension of φ is

dim(X,φ) = dim(τ2) + δ(φ).

Definition 29. If τ1
φ−→ τ2 is a combinatorial datum, then a strict

φ-map is the following:

(1) A strict τ1-map ((Cv), (hv : Cv → X), (qf )),
(2) a naive τ2-map ((C ′v), (h

′
v : C ′v → X), (q′f )),

(3) and for each v ∈ Vertex(τ1) a finite, flat morphism kv : Cv →
C ′φW (v) of degree d(v)

which satisfies the conditions

(1) for each v ∈ Vertex(τ1), hv = h′φW (v) ◦ kv,
(2) for each f ∈ Flag(τ1), k∂f (qf ) = q′φF (f),

Definition 30. If T is a C-scheme, then a family of strict φ-maps
over T is the following:

(1) A family of strict τ1-maps

((πv : Cv → T ), (hv : Cv → X), (qf : T → C∂f )),
(2) a family of naive τ2-maps

((π′v : C ′v → T ), (h′v : C ′v → X), (q′f : T → C ′∂f )),
(3) and for each v ∈ Vertex(τ1) a finite, flat morphism kv : Cv →
C ′φW (v) of degree d(v)

which satisfies the conditions

(1) for each v ∈ Vertex(τ1), hv = h′φW (v) ◦ kv,
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(2) for each f ∈ Flag(τ1), h∂f ◦ qf = q′φF (f),

Definition 31. Given strict φ-maps,

η =
(
((Cv) , (hv) , (qf )) ,

(
(C ′v) , (h

′
v) ,
(
q′f
))
, (kv)

)
,

ξ =
(
((Dv) , (iv) , (rf )) ,

(
(D′v) , (i

′
Ev) ,

(
r′f
))
, (jv)

)
,

a morphism of strict φ-maps α : η → ξ is a pair (u, u′)

(1) u : ((Cv) , (hv) , (qf )) → ((Dv) , (iv) , (rf )) is a morphism of strict
τ1-maps,

(2) u′ :
(
(C ′v) , (h

′
v) ,
(
q′f
))
→
(
(D′v) , (i

′
v) ,
(
r′f
))

is a morphism of naive
τ2-maps

and such that for each v ∈ Vertex(τ1), jv ◦ uv = u′φW (v) ◦ kv.

Definition 32. Given T and families of strict φ-maps,

η = (((πv : Cv → T ) , (hv : Cv → X) , (qf : T → Cv))(
(π′v : C ′v → T ) , (h′v : C ′v → X) ,

(
q′f : T → C ′v

))
,
(
kv : Cv → C ′φW (v)

))
,

ξ = (((ρv : Dv → T ) , (iv : Dv → X) , (rf : T → Dv)) ,(
(ρ′v : D′v → T ) , (i′v : D′v → X) ,

(
r′f : T → D′v

))
,
(
jv : Dv → D′φW (v)

))
,

a morphism of families of strict φ-maps α : η → ξ is a pair (u, u′) where u
is a morphism from the family of strict τ1-maps of η to the family of strict
τ1-maps of ξ, where u’ is a morphism from the family of naive τ2-maps of
η to the family of naive τ2-maps of ξ and such that for each v ∈ Vertex(τ1),
jv ◦ uv = u′φW (v) ◦ kv.

One composes morphisms of strict φ-maps in the obvious way. With
the obvious definition of morphism, the association to each scheme T of
the category of families of strict φ-maps over T is easily seen to be a stack
in groupoids. We denote byM(X,φ) the stack of families of strict φ-maps.
We denote by

F1 :M(X,φ)→M(X, τ1)

F2 :M(X,φ)→ N (X, τ2)

the canonical 1-morphisms. We will prove that M(X,φ) is a Deligne-
Mumford stack with the help of the following lemma.

Theorem 33. M(X,φ) is a separated, finite type Deligne-Mumford
stack over C. The 1-morphism F2 is flat of relative dimension δ(φ) (the
defect of φ).
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Proof. Consider the 1-morphism F2. We know by lemma 24 that
N (X, τ2) is a separated, finite-type Deligne-Mumford stack over C. By
lemma 2, to show that M(X,φ) is a Deligne-Mumford stack over C, it
suffices to show that for every 1-morphism of an affine scheme to N (X, τ2),
g : T → N (X, τ2), the fiber product X := T ×g,N (X,τ2),F2 M(X,φ) is a
Deligne-Mumford stack. To show that M(X,φ) is separated and finite
type over C, it suffices to show that the projection morphism pr1 : X → T
is separated and finite type. Moreover to show that F2 is flat of relative
dimension δ(φ) it suffices to show that pr1 is flat of relative dimension δφ.
So we are reduced to studying the 1-morphism of stacks pr1 : X → T .

The 1-morphism g : T → N (X, τ2) is equivalent to a family of naive
τ2-maps over T ,

η =
(
(π′v : C ′v → T ) , (h′v : C ′v → X) ,

(
q′f : T → C ′∂f

))
.

The fiber product X = T ×g,N (X,τ2),F2M(X,φ) is the stack which parame-
terizes the ways in which η can be completed to a strict family of φ-maps.

For each vertex v ∈ Vertex(τ1), define τv to be the subgraph of τ1 whose
only vertex is v and such that Flag(τv) = {f ∈ Flag(τ1)|∂f = v}. We make
this into a stable A-graph by defining β(v) = d(v). By proposition 19,
we know that M(C ′φ(v)/T, τv) is a Deligne-Mumford stack and that the 1-

morphism pr2 :M(C ′φ(v)/T, τv)→ T is separated and finite-type. For each

flag f ∈ Vertex(τv) we have a 1-morphism ef : M(C ′φ(v)/T, τv) → C ′φ(v)

obtained by “evaluating” the marked point corresponding to f. We have a
second 1-morphism M(C ′φ(v)/T, τv)→ C ′φ(v) which is the composition:

M(C ′φ(v)/T, τv)
pr2−−−→ T

q′
φ(f)−−−→ C ′φ(v)

.

Together these two morphisms define a 1-morphism

M(C ′φ(v)/T, τv)→ C ′φ(v) ×T C ′φ(v).

We define Yv,f →M(C ′φ(v)/T, τv) to be the base-change by this 1-morphism

of the diagonal morphism ∆ : C ′φ(v) → C ′φ(v) ×T C ′φ(v). Since the diagonal

morphism is a closed immersion, we conclude that Yv,f →M(C ′φ(v)/T, τv)
is a closed immersion. We define Yv to be the intersection over all f ∈
Flag(τv) of Yv. Since Yv → M(C ′φ(v)/T, τv) is a closed substack and

M(C ′φ(v)/T, τv) → T is a separated, finite type morphism of Deligne-
Mumford stacks, we conclude that Yv → T is a separated, finite type
morphism of Deligne-Mumford stacks.
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Define Y to be the fiber product over T

Y :=
∏

v∈Vertex(τ1)

Yv.

Then Y is a Deligne-Mumford stack which is separated and finite-type
over T . We will prove that the T -stack X is equivalent to the T -stack Y .
We begin by constructing a 1-morphism Y → X . Such a 1-morphism is
equivalent to a family of strict φ-maps over Y , i.e. a triple

(ζ, c∗η, (kv)) = (((Cv) , (hv : Cv → X) , (qf : Y → C∂f )) ,(
(C ′v) , (h′v : C ′v → X) ,

(
q′f : Y → C ′v

))
,
(
kv : Cv → C ′φ(v)

))
.

for which the πv : Cv → Y , π′v : C ′v → Y 1-morphisms are schematic, for
which the qf : Y → Cv, q′f : Y → C ′v 1-morphisms are closed immersions,
and which satisfy all the axioms analogous to those for a family of strict
φ-maps over a scheme. Of course the strict family of naive τ2-maps c∗η
is defined to be the pullback of the strict family of naive τ2-maps η over
T by the canonical 1-morphism c : Y → T (or more precisely one of the
canonical 1-morphisms Y → T ).

Now we define the family ζ and the morphisms kv. For each vertex
v ∈ Vertex(τ1), define πv : Cv → Y to be the pullback by the canonical
1-morphism to M(C ′φ(v)/T, τv) of the universal curve. And for each flag

f ∈ Flag(τ1), define qf : Y → C∂f to be the pullback of the universal
section. We define kv : Cv → C ′φ(v) to be the pullback of the universal

evaluation map from the universal curve over M(C ′φ(v)/T, τv) to C ′φ(v). By

construction we have that kv ◦ qf = q′φ(f). Finally, we define hv = h′φ(v) ◦kv.

The claim is that ζ, c∗η, and (kv) define a family of strict φ-maps. This
is easy to see. By construction c∗η is a family of naive τ2-maps. Also
by construction, the maps kv satisfy the axioms for a family of strict φ-
maps. The only thing left to check is that the maps hv make ζ a family
of strict τ1-maps. Again the strictness follows from the strictness of the
stacks M(C ′φ(v)/T, τv). The only thing that really needs to be checked is

the stability condition. But this follows from our demand that d(v) = 1
for each vertex v ∈ β−1

τ1
(0): for such a v we have kv : Cv → C ′φ(v) is an

isomorphism. So stability of the Cv component follows from stability of the
C ′φ(v) component. So we see that (ζ, c∗η, (kv)) do form a family of strict
φ-maps, i.e they define a 1-morphism Y → X .

One defines the inverse 1-morphism X → Y in an analogous way. It
is easy to check that these 1-morphisms yield an isomorphism of X and
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Y . From this it follows that X is a separated, finite-type Deligne-Mumford
stack over T.

It remains to prove that the morphism pr2 : X → T is flat of rel-
ative dimension δ(φ). Since pr2 is the fiber product of the morphisms
cv : Yv → T , it suffices to prove that each cv is flat of relative dimension
2d(v)− 2. If d(v) = 1, this is trivial: the morphism cv : Yv → T is an open
immersion. Therefore cv is flat of relative dimension 0 = 2d(v)− 2.

So, without loss of generality, we may suppose that d(v) > 1. As
usual, let r1(τv) be the reduced graph associated to τv, i.e. τv ←↩ r1(τv)
is the unique combinatorial morphism such that r1(τv) has no flags. Con-
sider the Deligne-Mumford stack M(C ′φ(v)/T, r1(τv)). Since the fibers of

π′φ(v) : C ′φ(v) → T are convex varieties, it follows from the proof of [Kont-

sevich95] theorem 1.3.2 that M(C ′φ(v)/T, r1(τv)) is smooth of relative di-

mension 2d(v) − 2 over T . Let Bv → M(C ′φ(v)/T, r1(τv)) be the universal

curve. For each f ∈ Flag(τv), let Df ⊂ Bv be the base-change of the section
q′φ(f) : T → C ′φ(v) by the evaluation morphism Bv → C ′φ(v). It isn’t hard to

see that Df →M(C ′φ(v)/T, r1(τv)) is flat of relative dimension 0. And the

canonical morphism Yv →M(C ′φ(v)/T, r1(τv)) is an open subscheme of the

fiber product over all f of the morphism Df →M(C ′φ(v)/T, (τv)r). Thus it
is flat of relative dimension 0. So we conclude that cv : Yv → T is flat of
relative dimension 2d(v)− 2.

�

The following smoothness result will simplify some arguments later:
Lemma 34. The 1-morphism F2 : M(X,φ) → N (X, τ2) is a smooth

1-morphism of relative dimension δ(φ). In particular, for each combina-
torial datum φ, the stack M(Pn, φ) is a smooth Deligne-Mumford stack of
dimension dim(Pn, φ).

Proof. This is straightforward so we will only sketch the proof. By
the usual fiber product argument one reduces to the problem: suppose
that φ : τr+s(de) → τr+s(e) is a combinatorial datum with d(v) = d
and let τr+s(e) ←↩ τr(d) be the combinatorial morphism which forgets
the last s tails. Define the 1-morphism G : M(X,φ) → N (X, τr(e)) to
be the composite of F2 : M(X,φ) → N (X, τr+s(e)) with the 1-morphism
N (X, τr+s(e))→ N (X, τr(e)) induced by the combinatorial morphism. We
need to prove that G is a smooth morphism.
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Of course we have an analogous combinatorial morphism
τr+s(de)←↩ τr(de) and a combinatorial datum ψ : τr(de)→ τr(e) such that
G factors as the composite of M(X,φ) → M(X,ψ) with
F2 :M(X,ψ)→ N (X, τr(e)). Clearly the morphismM(X,φ)→M(X,ψ)
is just an open substack of the r-fold fiber product of the universal curve
over M(X,ψ). Therefore M(X,φ) →M(X,ψ) is smooth. So we are re-
duced to showing that F2 : M(X,φ) → N (X, τr(e)) is smooth of relative
dimension 2d− 2.

Smoothness of F2 is a local property on M(X,φ). Let us denote the
universal family over N (X, τr(e)) as (C ′, h′, (q′i)). Now (étale) locally on
N (X, τr(e)) we can find a trivialization C ′ ∼= P1 × N (X, τr(e)), The sec-
tions (q′i) induce a 1-morphism q′ : N (X, τr(e)) → (P1)r). Now con-
sider the open substack M0,r(P1, d) ⊂ M0,r(P1, d) which parametrizes
stable maps with irreducible domain. There is an evaluation morphism
er : M0,r(P1, d) → (P1)r. And clearly the trivialization above induces a
local isomorphism of M(X,φ) with an open substack of

N (X, τr(e))×q′,(P1)r,erM0,r(P1, d)

such that F2 corresponds to projection on the first factor. Thus we are
reduced to proving that the 1-morphism er :M0,r(P1, d)→ (P1)r is smooth
of relative dimension 2d− 2.

Suppose that κ : (C, (q1, . . . , qr))→ P1 is an element ofM0,r(P1, d). We
partition the set of marked points into those points that are ramification
points and those that are not: say (q1, . . . , qk) are ramification points and
(qk+1, . . . , qr) are not ramification points. We have a commutative diagram
of 1-morphisms:

M0,r(P1, d)
er−−−→ (P1)ry y

M0,k(P1, d)
ek−−−→ (P1)k

whereM0,r(P1, d)→M0,k(P1, k) is the 1-morphism which forgets the sec-
tions qk+1, . . . , qr and where (P1)r → (P1)k is projection on the first k fac-
tors. And locally near our stable map, the induced morphismM0,r(P1, d)→
M0,k(P1, d) ×(P1)k (P1)r is unramified. So we are reduced to showing that

ek : M0,k(P1, d) → (P1)k is smooth of relative dimension 2d − 2 near the
point κ′ : (C, (q1, . . . , qk))→ P1.

Let q1, . . . , qk, p1, . . . , pl be the ramification points of κ′ and let the
corresponding ramification indices be ν1, . . . , νk, µ1, . . . , µl. The standard
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analytic description of the Hurwitz scheme Hd gives a local analytic iso-
morphism of a neighborhood of the point k : C → P1 in M0,0(P1, d) with
the product

∆1 × · · · ×∆k ×∆′1 × · · · ×∆′l.

Here ∆i = {(ci,1, ci,2, . . . , ci,νi)} is a polydisk of dimension νi parametrizing
divisors in the disk ∆ ⊂ C via

(ci,1, . . . , ci,νi) 7→ {t ∈ ∆ : gi(ci; t) = tνi + ci,1t
νi−1 + · · ·+ ci,νi = 0}

and similarly for the ∆′j. Then we have a local analytic isomorphism of a

neighborhood of f : (C, (q1, . . . , qk))→ P1 in M0,k(X, d) with the product

(∆1 ×∆)× (∆2 ×∆)× · · · × (∆k ×∆)×∆′1 × · · · ×∆′l.

Here the factor ∆i × ∆ parametrizes pairs ((ci,1, . . . , ci,νi), ti). And the
evaluation map ek : M0,k(P1, d) → (P1)k is locally determined (up to
translation of each of the factors P1) by sending a point in our product to
the point

(g1(c1; t1) =
(
tν11 + c1,1t

ν1−1
1 + · · ·+ c1,ν1

)
, . . . ,

gk(ck; tk) =
(
tνkk + ck,1t

νk−1
k + · · ·+ ck,νk

)
.

Since each of the partial derivatives ∂fi
∂ci,νi

is nonzero, we conclude that the

fiber over (0, 0, . . . , 0) is smooth of dimension ν1 + · · ·+νk +µ1 + · · ·+µl =
2d− 2. This proves the lemma.

�
Lemma 35. Let G2 :M(X,φ)→ N (X, r2(τ2)) denote the composition

of F2 : M(X,φ) → N (X, τ2) with the canonical 1-morphism
r2 : N (X, τ2) → N (X, r2(τ2)). Then G2 is a smooth morphism of rela-
tive dimension n′ − 3c.

Proof. This follows from lemma 34 and lemma 20. �

The main result about strict φ-maps is the following:
Theorem 36. Let τ1 be a stable genus 0 tree and let η = ((Cv), (hv :

Cv → X), (qf )) be a strict τ1-map. Then there is a combinatorial datum

τ1
φ−→ τ2 and a strict φ-map ξ whose associated strict τ1-map is η. Moreover

φ and the strict φ-map are unique up to unique isomorphism.

Proof. In all cases uniqueness is obvious (it is included as part of the
statement in order to simplify the induction argument). We only check
existence.

By the same type of argument as in theorem 24, we may reduce to
the case where r2(τ1) = τ1. Now we perform leaf induction. The base
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case is when there is a single vertex v ∈ Vertex(τ1). Since r2(τ1) = τ1,
we know β1(v) > 0. Let C ′v denote the normalization of hv(Cv) in X.
There is a natural map kv : Cv → C ′v. This is necessarily finite, define
d(v) to be the degree of this morphism. Define τ2 to be the stable A-

graph whose underlying tree is the tree of τ1 and such that β2(v) = β1(v)
d(v)

.

Define φ : τ1 → τ2 to be the combinatorial morphism which is the identity
map on underlying trees and with d(v) defined as above. The natural
morphism h′v : C ′v → X and the sections q′f := kv ◦ qf yield a naive τ2-
map ((C ′v), (h

′
v), (q

′
f )). So the data of ((Cv), (hv), (qf )), ((C ′v), (h

′
v), (q

′
f ))

and kv : Cv → C ′v is a strict φ-map.

Now suppose that τ1 has more than 1 vertex. First we fix some notation.
Let v1 ∈ Vertex(τ1) be a leaf. Since r2(τ) = τ , we know β1(v1) > 0. Now
define {f1, f2}, v2, τ

′ and τ ′′ as in the proof of theorem 24. Denote by η′

and η′′ the strict τ ′-map and strict τ ′′-map induced by the combinatorial
morphism τ ↪→ τ ′ and τ ↪→ τ ′′. There is a bifurcation depending on
whether or not hv1(Cv1) = hv2(Cv2).

Suppose first that either β1(v2) = 0 or that hv1(Cv1) 6= hv2(Cv2). By
induction there is a unique combinatorial datum φ′′ : τ ′′ → τ ′′2 and a strict
φ′′-map ξ′′ whose associated strict τ ′′-map is η′′. By the argument two
paragraphs above there is a unique τ ′2 whose underlying tree is the tree
of τ ′, a combinatorial datum φ′ : τ ′ → τ ′2 which is the identity on trees,
and a strict φ′-map ξ′ whose associated strict τ ′-map is η′. We define τ2

to be the stable A-graph obtained by attaching τ ′2 and τ ′′2 via φ′′W (f2) =
∂φ′W (f1). The two maps φ′ and φ′′ extend uniquely to a combinatorial
datum φ : τ1 → τ2. And by our assumption that either β1(v2) = 0 or
hv1(Cv1) 6= hv2(Cv2), we see that we can concatenate ξ′ and ξ′′ to form a
strict φ-map whose associated strict τ1-map is η.

Finally, suppose that hv1(Cv1) = hv2(Cv2). As in the last paragraph,
there is a unique combinatorial datum φ′′ : τ ′′ → τ ′′2 and strict φ′′-map
ξ′′ whose associated strict τ ′′-map is η′′. Let w2 = φ′′W (v2) and let C ′w2

be the corresponding curve. Since h′w2
: C ′w2

→ hv2(Cv2) is birational, we
conclude that C ′w2

is the normalization of hv2(Cv2). Since Cv1 is normal,
there is a natural morphism kv1 : Cv1 → C ′w2

factoring hv1 . This morphism
is necessarily finite. We define the stable A-graph τ2 to be the result of
attaching to τ ′′2 a flag for each f ∈ Flag(τ ′), f 6= f1 and such that ∂f = w2

in τ2. We extend φ′′ to be a combinatorial datum φ : τ1 → τ2 by mapping
v1 to w2, by mapping f1 to φ′′W (f2), by mapping each f ∈ Flag(τ ′), f 6= f1

to the same flag in τ2 and by defining d(v1) to be the degree of the finite
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morphism kv1 . We define a strict φ-map, ξ, by adding to ξ′′ each of the
sections q′f = kv1 ◦ qf , f ∈ Flag(τ ′), f 6= f1 and by defining kv1 : Cv1 → C ′w2

as above. This clearly is a strict φ-map, and the theorem is proved.
�

Corollary 37. The 1-morphism

F1 :M(X,φ)→M(X, τ1)

is a monomorphism whose image is locally closed in |M(X, τ1)|. The col-
lection of all such images as φ varies over all combinatorial data (τ1, τ2, φ)
forms a partition of |M(X, τ1)| into locally closed subsets.

Proof. The only step that needs to be checked is to show that the
image of F1 is locally closed. Since an injective morphism between irre-
ducible varieties has locally closed image, it suffices to check the follow-
ing: for any two distinct irreducible components A and B of M(X,φ),

we have F1(A) ∩ B ⊂ A ∩ B. This is equivalent to the following: Let
R be a discrete valuation ring with function field K and residue field k,
let η ∈ M(X, τ1)(Spec R) be a family of strict τ1-maps, suppose that
ηK ∈ F1(A) and ηk ∈ F1(B), then ηk ∈ F1(A). etc. (finish this later)

�

We define the partition in corollary 37 to be the CD decomposition
of |M(X, τ1)|. As we allow τ1 to vary among all stable A-graphs with
class β(τ1) = e and r tails, the images under the canonical morphism
M(X, τ1)→M(X, τ0,r(e)) =M0,r(X, e) of the CD decompositions of the
stacksM(X, τ1) form a partition of |M0,r(X, e)| into locally closed subsets
which we call the CD decomposition of |M0,r(X, e)|.

1.9. Flatness and Dimension Results

Remark For the remainder of the paper, Xd ⊂ Pn will be a fixed
hypersurface of degree d which is general in the sense that theorem 3 and
lemma 8 hold.

In this section and the next section we will state the basic properties of
the CD decomposition which allow us to prove theorem 1. In this section
we state the results having to do with the dimension of the components
M(X,φ) of the CD decomposition and flatness of the evaluation mor-
phisms ef :M(X,φ)→ X. We prove some simple lemmas which allow us
to reduce the proofs of these results to a manageable statement.

Theorem 38. For each combinatorial datum φ, M(X,φ) has pure
dimension dim(X,φ).
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Theorem 39. For each combinatorial datum φ, the stack M(X,φ) is
a local complete intersection.

Theorem 40. For each combinatorial datum φ : τ1 → τ2 and each
flag f ∈ Flag(τ1), the evaluation morphism ef : M(X,φ) → X is flat of
relative dimension dim(X,φ)− dim(X).

Now we prove some lemmas which begin the proofs of the previous
theorems.

Lemma 41. Theorem 38 implies theorem 39.

Proof. This is standard. We know by lemma 34 that M(Pn, φ) is
smooth of dimension dim(Pn, φ). Let π : C → M(Pn, φ) denote the uni-
versal curve and let h : C → Pn denote the universal strict φ-map. The
coherent sheaf E(d) := π∗h

∗(OPn(d)) is easily seen to be locally free of rank
dβ(φ) + 1 by cohomology and base change, [Mumford70]. A defining equa-
tion for X, s ∈ H0(Pn,OPn(d)) induces a section t ∈ H0(M(Pn, φ), E(d)).
And M(X,φ) ⊂ M(Pn, φ) is simply the zero locus of t. But we exactly
have dim(X,φ) = dim(Pn, φ)− (dβ(φ) + 1). Thus when dim(M(X,φ)) =
dim(X,φ), we conclude that t is a regular section of a locally free sheaf on
a smooth stack. Therefore M(X,φ) is a local complete intersection. �

Lemma 42. If theorem 38 is valid, then theorem 40 is equivalent to
the following: For each combinatorial datum φ : τ1 → τ2 and each flag
f ∈ Flag(τ1), the evaluation morphism ef : M(X,φ) → X has constant
fiber dimension dim(X,φ)− dim(X).

Proof. By lemma 41, we conclude that M(X,φ) is a local complete
intersection. And X is a smooth scheme. Thus by theorem 23.1 [Mat-
sumura86], ef is flat iff ef has constant fiber dimension. �

Lemma 43. Theorem 38 and theorem 40 are implied by the follow-
ing statement: For each stable A-graph τ , N (X, τ) has pure dimension
dim(X, τ) and for each flag f ∈ Flag(τ), the evaluation morphism ef :
N (X, τ) → X is flat of relative dimension dim(X, τ) − dim(X). For
theorem 38 it even suffices to consider only stable A-graphs τ such that
r1(τ) = τ .

Proof. This follows immediately from theorem 33 and lemma 34. �
Lemma 44. In the previous lemma, it suffices to consider τ such that

r2(τ) = τ .

Proof. This follows immediately from lemma 35. �
Lemma 45. The statement in lemma 43 is equivalent to the following

statement: For all nonnegative integers r and e, N (X, τr(e)) has dimension
dim(X, τr(e)) and for each flag f ∈ Flag(τr(e)), the evaluation morphism
ef : N (X, τr(e))→ X has constant fiber dimension dim(X, τr(e))−dim(X).
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Proof. One direction in the equivalence is obvious. We prove that the
statement above implies the statement in lemma 43.

By lemma 44, we may assume that τ = r2(τ). We perform leaf in-
duction. If τ has a single vertex then it is already of the form τr(e)
for some r and e, so there is nothing to prove. Suppose that τ has
more than 1 vertex. Let v1 ∈ Vertex(τ) be a leaf. Let {f1, f2}, v2,
τ ′, and τ ′′ be as in the proof of theorem 24 Let e′ : N (X, τ ′) → X,
e′′ : N (X, τ ′′) → X denote the evalution morphisms corresponding to
f1 and f2. We have seen that N (X, τ) is an open substack of the fiber
product N (X, τ ′)×e′,X,e′′ N (X, τ ′′). Now τ ′ is of the form τr(e) for some r
and e. By assumption dim(N (X, τ ′)) = dim(X, τ ′) and e′ : N (X, τ ′)→ X
is flat of relative dimension dim(X, τ ′)−dim(X). Therefore the projection
morphism N (X, τ ′)×e′,X,e′′N (X, τ ′′)→ N (X, τ ′′) is flat of relative dimen-
sion dim(X, τ ′) − dim(X). By the induction assumption, we also know
that dim(N (X, τ ′′)) = dim(X, τ ′′). By standard dimension theory (exer-
cise II.3.22 of [Hartshorne77]), we conclude that N (X, τ ′)×e′,X,e′′N (X, τ ′′)
is pure dimensional of dimension dim(X, τ ′′) + dim(X, τ ′)− dim(X). But
this is precisely dim(X, τ). Moreover, suppose that f ∈ Flag(τ) is a flag
of τ ′′. Then by the induction assumption ef : N (X, τ ′′) → X is flat
of relative dimension dim(X, τ ′′) − dim(X). Then ef : N (X, τ) → X is
the composition of the projection N (X, τ ′) ×e′,X,e′′ N (X, τ ′′) → N (X, τ ′′)
with ef : N (X, τ ′′) → X. Since a composition of flat morphisms is
flat, we conclude that ef : N (X, τ) → X is flat of relative dimension
(dim(X, τ ′′) − dim(X)) + (dim(X, τ) − dim(X)) = dim(X, τ) − dim(X).
But since τ has at least two vertices, and so has at least two leaves, we see
that we can always choose the leaf v1 so that f is a flag in τ ′′. Thus we
conclude that ef is always flat of relative dimension dim(X, τ)− dim(X).
So the lemma is proved by induction. �

Lemma 46. In the statement in the last lemma, it suffices to consider
only the stable A-graphs τ1(e) and τ0(e).

Proof. This is an obvious reduction. �

1.10. Specializations

The theorems in the last section describe the dimensions and evaluation
morphisms for the stacksM(X,φ). In this section we will discuss how the
components in the CD decomposition of M0,r(X, e) “fit together”. We
begin with a few definitions.

Definition 47. A stable A-graph τ is nonlinear if β(τ) 6= 1 (i.e.
M(X, τ) does not parametrize lines). A stable A-graph τ is very stable if
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each v ∈ Vertex(τ1) satisfies β1(f) > 0. A combinatorial datum φ : τ1 → τ2

is nice if τ2 is nonlinear and if τ1 is very stable.

Definition 48. A stable A-graph τ is basic if each v ∈ Vertex(τ1)
satisfies β(v) = 1. A combinatorial datum φ : τ1 → τ2 is basic if τ1 is
basic.

Definition 49. A combinatorial datum φ : τ1 → τ2 is elementary
if d(v) = 1 for all v ∈ Vertex(τ1). An elementary combinatorial datum
φ : τ1 → τ2 is simple if φ is an isomorphism of the underlying trees.

Lemma 50. Let us assume theorem 38 holds. Let τ be a nice stable A-
graph (whose canonical contraction is τ → τr(e)) and let φ : τ → τ be the
nice, simple combinatorial datum which is the identity map on underlying
trees. Then every irreducible component of M(X, τ) intersects M(X,φ).
Moreover, if ψ : σ1 → σ2 is a combinatorial datum, σ1 → τ is a contraction
which factors the canonical contraction σ1 → τr(e), and if the image of the
induced morphism M(X,ψ) → M(X, τ) has codimension 1, then ψ is
nonlinear and simple.

Proof. Recall that we have a CD decomposition ofM(X, τ) which is
a partition ofM(X, τ) into a union of the locally closed subsets which are
the images of all morphismsM(X,ψ)→M(X, τ). Here ψ : σ1 → σ2 varies
among combinatorial data such that the canonical contraction σ1 → τr(e)
factors through a contraction σ1 → τ and where M(X,ψ) →M(X, τ) is
the morphism associated to this contraction.

Every irreducible component ofM(X, τ) is a disjoint union of its inter-
sections with the locally closed subsetsM(X,ψ) in the CD decomposition.
Thus to show every irreducible component intersects M(X,φ), it suffices
to show that for each ψ other than φ, dim(X,ψ) < dim(X,φ) = dim(X, τ).
Moreover, if dim(X,ψ) = dim(X, τ) − 1 we will show that ψ is nice and
simple.

First we will show that if ψ : σ1 → σ2 is not simple, then the image
ofM(X,ψ) inM(X, σ1) has codimension at least 1. Now dim(X, σ1) sat-
isfies an obvious additivity with respect to decomposition into subgraphs:
namely the rule

dim(X, τ) = dim(X, τ ′) + dim(X, τ ′′)− dim(X)
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which we have used before. Thus it suffices to consider the case where
σ2 = τr′(e

′) for some r′ and e′. By definition the dimension dim(X, σ1) is∑
v∈Vertex(τ)

((n+ 1− d)β1(v)) + (dim(X)− 3) + #Tail(τ)−#Edge(τ).

By assumption, each β1(v) = d(v)e. And by definition the dimension
dim(X,ψ) is

(n+ 1− d)e+ (dim(X)− 3) + #Tail(τ) + #Edge(τ) +
∑

v∈Vertex(τ)

(2d(v)− 2).

Thus the difference dim(X, σ1)− dim(X,ψ) is simply∑
v∈Vertex(τ)

(((n+ 1− d)e− 2) d(v) + 2)− (n+ 1− d)e− 2#Edge(τ).

There are two cases to consider. The first case is when there is a single
vertex. Then the sum above simplifies to ((n+ 1− d)e− 2) (d(v)− 1).
Since (n+ 1− d)e− 2 ≥ n− 1− d ≥ 2, we conclude the codimension is at
least 2 unless d(v) = 1, i.e. unless ψ : σ1 → σ2 is simple.

The second case is when there are at least two vertices. Now our in-
equalities n ≥ 6, d ≤ n+1

2
imply that d ≤ n−3. Thus the term (n+1−d)e−2

is always positive. So the difference is minimized when all d(v) = 1 and
when e = 1. In this case the difference reduces to

(#Vertex(τ)− 1) (n+ 1− d)− 2#Edge(τ).

But of course #Edge(τ) = #Vertex(τ)− 1, so the difference is the simple
expression:

(#Vertex(τ)− 1) (n− 1− d).

If the number of vertices of τ is greater than 1, then we see the codimension
is at least n− 1− d ≥ 2 since d ≤ n− 3.

It is equally simple to prove that if σ1 → τ is a nontrivial contraction
(i.e. is not an isomorphism on trees), then the codimension of M(X, σ1)
inM(X, τ) is at least 1. Together with the last paragraph, this proves the
lemma.

�

The following is the main result about specializations of the components
of the CD decomposition.

Theorem 51. Let φ : τ1 → τ2 be a nice, simple combinatorial da-
tum which is not basic. Let τ1 → τr(e) be the canonical contraction and
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let F ′1 : M(X,φ) → M0,r(X, e) denote the composition of F1 with the 1-
morphism associated to the canonical contraction. Let A ⊂ M(X,φ) be
an irreducible component. There is a nice, simple combinatorial datum
ψ : σ1 → σ2 (possibly basic) such that σ1 contracts to τr(e), and an irre-

ducible component B ⊂ M(X,ψ) such that F ′1(B) ⊂ F ′1(A) is a codimen-
sion 1 closed subset.

As in the last section, we can reduce theorem 51 to a more manageable
statement.

Lemma 52. Assuming theorem 38 and theorem 40 to be proved, in the
proof of theorem 51 it suffices to restrict to φ such that τ1 = τ2 = τr(e) for
some r and e.

Proof. Suppose we know theorem 38, theorem 40, and suppose we
know theorem 51 whenever τ1 = τ2 = τr(e). Suppose now that φ : τ → τ is
a general combinatorial datum which is nice, simple and not basic (where
φ = id(τ)). Let A ⊂ M(X,φ) be an irreducible component. Actually,
to simplify things a bit, let’s replace A by the maximal open subset of A
which is also an open subset of M(X,φ). We will prove theorem 51 for
φ by leaf induction. For any leaf v1 ∈ Vertex(τ), let {f1, f2}, v2, τ ′ and
τ ′′ be as in the proof of theorem 24. Since τ is not basic, we can find a
leaf v1 such that τ ′′ is also not basic. Let τ ′′ → τr′′(e

′′) be the canonical
contraction. Let φ′′ : τ ′′ → τ ′′ be the unique nice, simple combinatorial
datum such that φ′′ = idτ ′′ . Let A′′ ⊂M(X,φ′′) ⊂M(X, τ ′′) be the image
of A ⊂ M(X,φ) ⊂ M(X, τ) under the morphism M(X, τ) → M(X, τ ′′)
induced by the combinatorial morphism τ ←↩ τ ′′. As we have seen before,
the morphism M(X, τ) → M(X, τ ′′) is flat. And M(X,φ) ⊂ M(X, τ)
is clearly an open substack. Thus A′′ is an open subset of M(X, τ ′′). It
easily follows that A′′ ⊂M(X,φ′′) is a dense open subset of an irreducible
component A′′ ⊂M(X,φ′′).

By the induction assumption, we can find a nice, simple combinatorial
datum ψ′′ : σ′′ → σ′′ and an irreducible component B′′ ⊂ M(X,ψ′′) such
that F ′1(B′′) ⊂ F ′1(A′′) is a codimension 1 subset. Now let Spec κ ∈ B′′

be the generic point and let ζκ ∈ M(X,ψ′′)(Spec κ) be the corresponding
strict ψ′′-map. For convenience sake, let’s replace κ by its algebraic closure
and let’s replace ζκ by its pullback to Spec κ. Similarly, let Spec K ∈ A′′ be
the algebraic closure of the generic point and let ζK be the corresponding
family. Since F ′1(B) ⊂ F ′1(A′′), we can find a (henselian) discrete valuation
ring R whose residue field is κ and whose field of fractions is K, and we can
find a family ξ = (C, h, (qf )) in M0,r′′(X, e

′′)(Spec R) whose special fiber
ξκ is the image of ζκ in F ′1(B′′) and whose general fiber ξK is the image of
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ζK in F ′1(A′′). Consider the section qf2 : Spec R→ C corresponding to the
tail of τr′′(e

′′) which on the general fiber ξK is the image of the section qf2
of ζK . Let us also denote by f2 the tail of σ′′ such that qf2 on ζκ maps to qf2
on the special fiber ξκ. We define σ to be the stable A-graph obtained by
attaching σ′′ and τ ′ by demanding f1 = f2, f2 = f1, i.e. that {f1, f2} is an
edge of σ. Let ψ : σ → σ be the nice, simple combinatorial datum which is
the identity map on trees. The canonical contraction of σ is σ → τr(e), just
as for τ . The claim is that there is an irreducible component B ⊂M(X,ψ)
such that F ′1(B) ⊂ F ′1(A).

Let p : Spec R → X be the map obtained by composing h : C → X
with the section qf2 : Spec R→ C. By theorem 40, we know that p factors
through the generic point of X, in particular we know p is flat. Consider the
fiber product S := Spec R×p,X,e′M(X, τ ′). Over S we have a τ -map (not
necessarily strict) obtained from the pullback of the universal τ ′-map and
the pullback of ξ considered as a τ ′′-map (necessarily not strict). In other
words we have a morphism S → M(X, τ). Let T be the fiber product
T := S ×M(X,τ) A. Then T is an open substack of S. Moreover, again
by theorem 40, we know that the fiber of e′ : A → X over the generic
point of X is nonempty. Therefore the projection morphism T → Spec R
is surjective. By construction the special fiber Tκ is in the image of the
contraction morphism M(X, σ) → M(X, τ). Let U be the fiber product
U := T ×M(X,τ)M(X, σ). By theorem 38 and theorem 40, it is easy to see

that U →M(X, σ) maps dominantly to a union of irreducible components
of M(X, σ). By lemma 50, we know that each irreducible component
of M(X, σ) intersects M(X,ψ). Let B ⊂ M(X,ψ) be any irreducible
component dominated by U . Then, by construction, F ′1(B) ⊂ F ′1(A).

�

1.11. Basic Components

The main result of this section is the following theorem.

Theorem 53. Let τ1
φ−→ τ2 be a very stable, basic datum (i.e. τ1 is a

very stable, basic datum).

(1) The Deligne-Mumford stack M(X,φ) is an integral scheme over
C of dimension dim(X,φ).

(2) For each f ∈ Flag(τ1) the evaluation map ef : M(X,φ) → X is
faithfully flat and the general fiber is an integral scheme of dimen-
sion dim(X,φ)− dim(X).

41



(3) For each contraction of stable genus 0 trees α : τ1 → σ the image
of M(X,φ) under the corresponding 1-morphism

M(X,α) :M(X, τ1)→M(X, σ)

has nonempty intersection with the smooth locus of M(X, σ).

Proof. For a very stable, basic datum φ the 1-morphism
G2 : M(X,φ) → N (X, r2(τ2)) is clearly an open immersion. So 1 and
2 above reduce to the following statement:

(1) The Deligne-Mumford stack N (X, r2(τ2)) is an integral scheme
over C of dimension dim(X, r2(τ2)).

(2) For each f ∈ Flag(τ2) the evaluation map ef : N (X, r2(τ2)) →
X is faithfully flat and the (scheme-theoretic) fibers are integral
schemes of dimension dim(X, r2(τ2))− dim(X).

For notational convenience, let’s replace τ2 by r1(τ2) (so we don’t have to
keep writing r1(τ2)).

We establish 1 and 2 by induction on #(Vertex(τ2)). If #Vertex(τ2) =
0, clearly there is nothing to prove. If #(Vertex(τ2)) = 1 and #(Flag(τ2)) =
r then we can identify N (X, τ2) with the r-fold fiber product

F0,1(X)×F1(X) · · · ×F1(X) F0,1(X).

This is a (P1)r-bundle over the integral scheme F1(X) and so is integral
of dimension r + dim(F1(X)) = r + 2n − d − 3 = dim(τ2). Also for each
i = 1, . . . , r, the evaluation map

efi : N (X, τ2)→ X

factors as

F0,1(X)×F1(X) · · · ×F1(X) F0,1(X)
pri−→ F0,1(X)→ X.

Now pri is faithfully flat with integral fibers since it is a (P1)r−1-bundle.
And by theorem 9 the morphism F0,1(X) → X is faithfully flat and the
general fiber is integral. Thus the general fiber of ef : N (X, τ2) → X is
integral. This establishes 1 and 2 when #(Vertex(τ2)) = 1.

Now assume that #(Vertex(τ2)) = s > 1. Let v1 ∈ Vertex(τ2) be a
leaf of τ2. Since τ2 is very stable, necessarily we have β2(v1) > 0. Let
{f1, f2}, v2, τ ′ and τ ′′ be as in the proof of theorem 24. The combinatorial
morphisms τ2 ←↩ τ ′ and τ2 ←↩ τ ′′ induce 1-morphismsN (X, τ2)→ N (X, τ ′)
and N (X, τ2)→ N (X, τ ′′) respectively. The flags f1, f2 induce evaluation
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morphisms e′ : N (X, τ ′) → X and e′′ : N (X, τ ′′) → X respectively. It is
clear from the definition that the following diagram is Cartesian:

N (X, τ2) −−−→ N (X, τ ′′)y y
N (X, τ ′) −−−→ X

By the induction assumption N (X, τ ′) and N (X, τ ′′) are schemes over C.
Thus we conclude that N (X, τ2) is also a scheme over C By the induction
assumption N (X, τ ′′) is integral of dimension dim(X, τ ′′). By the previous
paragraph N (X, τ ′)→ X is faithfully flat and the general fiber is integral
of relative dimension dim(X, τ ′) − dim(X). Thus N (X, τ2) → N (X, τ ′′)
is faithfully flat of relative dimension dim(X, τ ′) − dim(X). Since e′ is
surjective, we conclude that the general fiber of N (X, τ2) → N (X, τ ′′) is
integral of dimension dim(X, τ ′′) − dim(X). Thus N (X, τ2) is integral of
dimension dim(X, τ ′) + dim(X, τ ′′)− dim(X) = dim(X, τ2). This proves 1.

Now we consider f ∈ Flag(τ2). Since #(Vertex(τ2)) > 1, there is a leaf
v1 such that ∂f 6= v1. Thus, without loss of generality we may assume that
f ∈ Flag(τ ′′). So the evaluation morphism corresponding to f factors as

N (X, τ2)→ N (X, τ ′′)
ef−→ X.

By assumption N (X, τ ′′)
ef−→ X is faithfully flat and the general fiber is

integral of dimension dim(X, τ ′′)−dim(X). And, as established in the last
paragraph, N (X, τ2) → N (X, τ ′′) is faithfully flat and the general fiber
is integral of dimension dim(X, τ ′) − dim(X). Thus the general fiber of
the composite is integral of dimension dim(X, τ ′′)−dim(X)+dim(X, τ ′)−
dim(X) = dim(X, τ2)− dim(X). This proves 2.

To finish the proof of 1 and 2 in the statement of the theorem, we
should prove that the image of M(X,φ) in N (X, τ2) is nonempty. This
follows easily by an inductive argument similar to the ones above and is
left to the reader.

The proof of 3 is standard deformation theory. Given a strict φ-map
ξ, the obstruction group to deformations of the corresponding stable map
in M(X, σ) form a subgroup of the obstruction group to deformations
of the corresponding stable map in M0,r(X, d). And, by section 1.3.2 of
[Kontsevich95], this obstruction group vanishes if H1(C, h∗TX) vanishes.
We will show that for ξ a general point ofM(X,φ), H1(C, h∗TX) vanishes.
The proof is by induction on #Vertex(τ1). If τ1 has only one vertex, then
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we are reduced to showing that the normal bundle of the line h(C) in X
is generated by global sections. This follows from lemma 8.

Suppose that #Vertex(τ1) > 1. Let v1 be a leaf of τ1 and let v2, {f1, f2},
τ ′, and τ ′′ be as in the proof of theorem 24. Denote by C ′ (resp. C ′′) the
union of those components of C corresponding to vertices of τ ′ (resp. τ ′′).
Let q1 ∈ C ′ denote the marked point corresponding to f1. Then we have a
short exact sequence:

H1(C ′, (h∗TX)′) −−−→ H1(C, h∗TX) −−−→ H1(C ′′, h∗TX).

Here (h∗TX)′ is the subsheaf of the restriction of h∗TX to C ′ such that
the image of (h∗TX)′ in the normal bundle N of h(C∂f ) in X is exactly
N(−q1). By induction we know that H1(C ′′, h∗TX) = {0}. So the only
potential nonzero contribution to H1(C, h∗TX) is H1(C∂f , N(−qf )). But
we see by lemma 8, that for general choice of ξ, we have

H1(C∂f1 , N(−qf )) = H1(C∂f1 ,O(−1)⊕d−1 ⊕On−d−1) = {0}.
�

Corollary 54. For each nice, simple basic datum φ there is a unique
irreducible component Mφ of M0,r(X, e) such that Mφ contains the image
of M(X,φ). Moreover Mφ is generically smooth of dimension (n + 1 −
d)e+ (n− 4) + r.

Proof. The existence of a unique irreducible component Mφ contain-
ing M0,r(X, e) follows from theorem 53 parts 1 and 2. That Mφ is generi-
cally smooth of dimension (n+ 1− d)e+ (n− 4) follows from part 3. �

1.12. Almost Basic Components

In this section we will prove that all of the irreducible components Mφ

of M0,r(X, e) from the previous section are in fact equal. We begin by
proving thatM0,0(X, 2) is irreducible. The proof illustrates the basic idea
of the proof of theorem 1, but is much less technical.

Definition 55. A stable map (C, h, (q1, . . . , qr)) in M0,r(X, e) is un-
obstructed if H1(C, h∗TX) is trivial. We say M0,r(X, e) is generically
unobstructed if a general stable map is unobstructed.

Proposition 56. The stack M0,0(X, 2) is irreducible, generically un-
obstructed and has dimension 3n− 2d− 2.

Proof. First we consider the boundary of M0,0(X, 2). Let τ denote
the stable genus 0 tree whose modular graph is λ2 and such that α(u0) =

α(u1) = 1. Let φ1 be the combinatorial datum (τ
id−→ τ). Then M(X,φ1)
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parametrizes stable maps whose image is a pair of lines in X. Now φ1 is a
basic datum. Therefore by theorem 53 we see thatM(X,φ1) is irreducible
of dimension 3n − 2d − 3. Moreover the general point of the image of
M(X,φ1) in M0,0(X, 2) is an unobstructed point.

For the next boundary component, define τ2 to be the stable genus 0
tree whose modular graph is λ1 with α2(u0) = 1. Let τ1 be the stable
genus 0 tree whose modular graph is λ2 with α1(u0) = α1(u1) = 1. And let
φ2 : τ1 → τ2 be the obvious combinatorial datum (in fact there is only one
combinatorial datum τ1 → τ2). Then M(X,φ2) parametrizes stable maps
whose domain curve is reducible and whose image is just a line. Again this
is a basic datum. So by theorem 53 we see that M(X,φ2) is irreducible.
The dimension works out to be 2n− d− 2.

For the final boundary component, define τ2 to be the stable genus 0
tree whose modular graph is λ0 with α2(u0) = 1. Let τ1 be the stable genus
0 tree whose modular graph is λ0 with α1(u0) = 2. Let φ3 : τ1 → τ2 be
the obvious combinatorial datum (again there is a unique combinatorial
datum τ1 → τ2. Now M(X,φ3) parametrizes stable maps whose domain
curve is irreducible and which map 2-to-1 to a line in X. By lemma 34 and
theorem 53 we see that M(X,φ3) is irreducible of dimension 2n− d− 1.

Let M ⊂M0,0(X, 2) be an irreducible component. Deformation theory
(theorem I.2.15 of [Kollár96]) yields an expected dimension of (n + 1 −
d)2 + (n − 4), which is always a lower bound for the actual dimension:
dim(M) ≥ 3n− 2d− 2. Moreover, if a general point of M is unobstructed,
then this inequality is an equality. By assumption d ≤ n − 3 so that
2n− d− 1 ≤ 3n− 2d− 4. Thus the intersection of M with the boundary
components M(X,φ2) and M(X,φ3) both have codimension at least 2.
We will show that M contains the boundary component M(X,φ1).

Define Z ⊂ X × X to be the set of pairs (x1, x2) such that there is a
stable map (f : C → X) in M with x1, x2 ∈ f(C). Denote by r ≤ 2n−2 the
dimension of Z. By dimension theory (exercise II.3.22 of [Hartshorne77]),
for a general point (x1, x2) ∈ Z the substack Mx1,x2 ⊂ M parametrizing
(f : C → X) with x1, x2 ∈ f(X) has dimension

dim(Mx1,x2) = dim(Z) + 2− r ≥ (3n− 2d− 2) + 2− (2n− 2) = n− 2d+ 2.

By assumption, d ≤ n+1
2

so that n − 2d + 2 ≥ 1. So the fiber of Z over
this point is a closed substack of dimension at least 1. Now by section 4.3
of [Fulton-Pandharipande96], we know the coarse moduli space of M is a
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projective scheme. And the intersections of M with M(X,φ2), M(X,φ3)
each have codimension at least 2. Therefore by choosing the pair (x1, x2)
to be general, we can find a complete curve in the coarse scheme of M
contained in the image of the fiber and which intersects neitherM(X,φ2)
nor M(X,φ3). Suppose by way of contradiction that the inersection of
the fiber and M(X,φ1) has codimension at least 2. Then we can find a
complete curve in the coarse scheme of M which doesn’t intersect any of
the boundary components. We can find a (possibly ramified) finite cover
B of this curve such that the morphism of B to the coarse scheme of M
factors through a 1-morphism η : B →Mx1,x2 and which intersects neither
M(X,φ1), M(X,φ2) nor M(X,φ3).

Now the 1-morphism η is really just a family of stable maps

η = (π : C → B, h : C → X) .

Since the image of B is disjoint fromM(X,φ2) andM(X,φ3), we see that
each fiber of π maps isomorphically to its image. Therefore the preimage
of the set {x1, x2} is a divisor in C which is an étale 2-to-1 cover of B. By
performing a base-change of B by a connected component of this 2-to-1
cover we may assume that the preimage of {x1, x2} is in fact the union of
two sections q1 : B → C and q2 : B → C. But now by corollary II.5.5.2 of
[Kollár96], we conclude that the image of B intersectsM(X,φ1),M(X,φ2)
or M(X,φ3). This contradiction proves that the intersection of the fiber
with M(X,φ1) is codimension 1. Since this holds for a general fiber, we
conclude that the intersection of M(X,φ1) with M has codimension 1.
Since dim(M) ≥ 3n−2d−2, and sinceM(X,φ1) is irreducible, we conclude
that M contains M(X,φ1) and that dim(M) = 3n− 2d− 2.

Since a general point in p ∈ M(X,φ1) is an unobstructed point of
M0,0(X, 2), we conclude that through a general point p there is a unique
irreducible component of M0,0(X, 2). By the last paragraph, every ir-
reducible component of M0,0(X, 2) contains every point of M(X,φ1), in
particular it contains a general point p. Therefore there is a unique ir-
reducible component of M0,0(X, 2), it has dimension 3n − 2d − 2, and a
general point is unobstructed. �

Corollary 57. Let τ be the stable genus 0 tree with underlying graph

λ1 such that α(u0) = 2. Let φ be the combinatorial datum τ
id−→ τ . The

Deligne-Mumford stackM(X,φ) is integral. Moreover the evalutation map
M(X,φ)→ X has dense image.

Proof. Since M(X,φ) → M0,0(X, 2) has dense image and smooth,
connected fibers, it follows from lemma 56 that M(X,φ) is irreducible.
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The fact that M(X,φ) → X has dense image follows from the proof of
lemma 56: a postiori we see the subvariety Z ⊂ X × X has dimension
2n− 2 and so is dense. �

Definition 58. We call a nice, simple combinatorial datum φ an
almost basic datum if there exists a vertex w ∈ Vertex(τ1) such that
α1(w) = 2 and for each vertex v ∈ Vertex(τ1) with v 6= w we have
α1(v) ≤ 1. We call w the distinguished vertex of φ.

Proposition 59. Let τ1
φ−→ τ2 be an almost basic datum.

(1) The Deligne-Mumford stack M(X,φ) is integral.
(2) For each flag f ∈ Flag(τ1), the evaluation map ef :M(X,φ)→ X

has dense image.

Proof. Using lemma 24 and lemma 35, we see that it suffices to prove
this for the stacks N (X, τ) for τ a stable genus 0 tree which is either basic
or almost basic. The basic case is covered by theorem 53. So we may
assume that τ is almost basic, i.e. there is a unique vertex w ∈ Vertex(τ)
such that β(w) = 2 and for every other vertex v ∈ Vertex(τ), we have
β(v) = 1.

We prove the result by induction on the number of vertices of τ . If w is
the only vertex of τ , the result follows from proposition 56 and corollary 57.
Thus we may suppose that τ has at least two vertices. We perform leaf
induction. Suppose that v1 is a leaf of τ such that β(v1) = 1. Let {f1, f2},
v2, τ ′ and τ ′′ be as in the proof of theorem 24. The combinatorial mor-
phisms τ ←↩ τ ′ and τ ←↩ τ ′′ induce 1-morphisms M(X, τ) ←↩ M(X, τ ′)
and M(X, τ ′′). Let e′ :M(X, τ ′) → X and e′′ :M(X, τ ′′) → X be the 1-
morphisms obtained by evaluation at f1 and f2 respectively. ThenM(X, τ)
is identified with an open substack of the fiber product M(X, τ ′) ×e′,X,e′′
M(X, τ ′′). Now by proposition 53 the 1-morphism e′ : M(X, τ ′) → X is
flat and the general fiber is irreducible. And by the induction assumption
e′′ :M(X, τ ′′) → X has dense image. Therefore the projection morphism
M(X, τ ′) ×e′,X,e′′ M(X, τ ′′) → M(X, τ ′′) is flat and the general fiber is
irreducible. But by the induction assumption,M(X, τ ′′) is irreducible. So
we conclude thatM(X, τ)×e′,X,e′′M(X, τ ′′) is irreducible. SinceM(X, τ)
is an open substack, we conclude that M(X, τ) is also irreducible.

It only remains to prove that for each flag f , the evaluation morphism
M(X, τ) → X has dense image. For this we appeal to lemma 56 which
shows that the space of conics is irreducible. From this it follows that
M(X, τ) is dense in the locally closed subvariety ofM(X, τ) parametrizing
stable maps for which no component is contracted. So it suffices to show
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that the image in X of this locally closed subvariety is dense. But it
is clear that by replacing w by a pair of vertices w1, w2 with β(w1) =
β(w2) = 1, we can find a basic stable graph σ and a contraction σ → τ
so that the corresponding 1-morphism M(X, σ)→M(X, τ) has image in
our locally closed subvariety. By theorem 53 we know that the evaluation
map M(X, σ)→ X induced by f is flat, and so has dense image. Thus it
follows that M(X, τ)→ X has dense image.

�
Theorem 60. For each r and e there is an irreducible component

M ⊂ M0,r(X, e) such that for every nice, simple, basic datum φ whose
canonical contraction is τ1 → τr(e), the image of M(X,φ) → M0,r(X, e)
is contained in M. We call M the distinguished component of M0,r(X, e).

Proof. Up to corollary 54, we need to show that for all nice, simple,
basic data φ contracting to τr(e), the irreducible components Mφ are equal.
First of all, it is clear that we may reduce to the case that r = 0, i.e. each
datum φ has no tails. So we will assume that r = 0.

This is a simple combinatorial argument. Suppose that φ1 and φ2 are
two basic data and suppose that ψ is an almost basic datum such that we
have contractions φ1 → ψ and φ2 → ψ. Then the images of M(X,φ1)
and M(X,φ2) in M0,0(X, e) are contained in the closure of the image of
M(X,ψ). By proposition 59, M(X,ψ) is irreducible. Thus we can find
an irreducible component M of M0,0(X, e) which contains the image of
M(X,ψ). Then M also contains the images of M(X,φ1) and M(X,φ2).
So we conclude that M = Mφ1 and also M = Mφ2 , i.e. Mφ1 = Mφ2 . So we
are reduced to the combinatorial statement that for any two nice, simple,
basic data there is a sequence of nice, simple, basic data φ1, . . . , φn (with
φ1 and φn the original two data), and a sequence of almost basic data
ψ1, . . . , ψn−1 such that we have contractions ψi → φi and ψi → φi+1. In
case such sequences exist, let’s say that φ1 and φn are linked. Also, let’s
say that φi and φi+1 are directly linked.

Let us define a tree τ to be a chain if every vertex has valence at most
2 (i.e. each vertex is attached to either 1 or 2 edges). To prove that any
two nice, simple, basic data are linked, it suffices to show that all the nice,
simple, basic data are linked to the unique basic datum σ whose underlying
tree is a chain. Let us define the length of a nice, simple, basic datum τ to
be the maximum of the number of vertices of all subgraphs of τ which are
chains. We will prove that τ is linked to σ by downward induction on the
length of τ .
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If the length of τ is equal to the length of σ then clearly τ = σ. Thus
suppose that τ has length less than σ. We will prove that τ is directly linked
to a nice, simple, basic datum σ′ whose length is 1 greater. Then the result
will follow by induction. Let τ1 be a chain in τ of maximal length. Since
the length of τ is less than the length of σ, we know that there is a vertex
v1 ∈ Vertex(τ1) whose valence in τ1 is 2 but whose valence in τ is at least
3. Let {f1, f2} be an edge in τ such that ∂f1 = v1 and such that f1 is not a
flag of τ1. Define v2 = ∂f2. Let τ ′ be the maximal (possibly disconnected)
subgraph of τ whose set of vertices is Vertex(τ ′) = Vertex(τ) − {v1, v2}.
We construct an almost basic datum τ ′′ as follows: The set of vertices is
Vertex(τ ′′) = Vertex(τ ′) ∪ {w}, where w is the distinguished vertex. Also
τ ′ is identified with the maximal subgraph of τ ′′ whose set of vertices is
Vertex(τ ′). Finally, for each tail f ∈ Tail(τ ′), there is an edge {f, f} such
that ∂f = w. There is an obvious contraction of τ to τ ′′. We construct
the nice, simple, basic datum σ′ as follows: The set of vertices is just
Vertex(σ) = Vertex(τ). Let {g1, h1}, {g2, h2} be the two edges in τ1 at-
tached to v1 and such that ∂h1 = v1, ∂g2 = v1. The set of flags of σ is
defined to be Flag(σ) = Flag(τ). And the operation f 7→ f is the same in
σ′ as in τ . For all flags f other than g2, we define ∂f to be as in τ . And
we define ∂g2 = v2. Clearly σ′ also contracts to τ ′′ in an obvious manner.
And there is a chain in σ′ whose set of vertices is Vertex(τ1) ∪ {v2}. Thus
σ′ has greater length than τ and τ is directly linked to σ′. This proves the
theorem.

�

1.13. Bend-and-break

Together theorem 51 and theorem 60 imply that M ⊂M0,r(X, e) is the
unique irreducible component ofM0,r(X, e), i.e. M0,r(X, e) is irreducible.
Moreover theorem 38 and theorem 39 imply that M0,r(X, e) is a local
complete intersection stack of dimension (n+ 1− d)e+ (n− 4) + r.

Using the lemmas from the sections on dimension, flatness, and special-
ization properties of the CD decomposition, all that remains to finish the
proofs of theorem 38, theorem 40 and theorem 51 is to prove that for each
τr(e) and corresponding nice, simple combinatorial datum φ : τr(e)→ τr(e)

(1) M(X,φ) has dimension dim(X,φ) = (n+ 1− d)e+ (n− 4) + r,
(2) each evaluation map e :M(X,φ)→ X has constant fiber dimen-

sion dim(X,φ)− dim(X), and
(3) for each irreducible component A ⊂M(X,φ) there is a nice, sim-

ple combinatorial datum ψ : σ1 → σ2 whose canonical contraction
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is σ1 → τr(e), and an irreducible component B ⊂ M(X,ψ) such
that F ′1(B) ⊂ F ′1(A) is a codimension 1 subvariety.

Of course proving this for τr(e) is clearly equivalent to proving this for
τ1(e). And when e = 2, this is the content of proposition 56 (along with
its proof). So we may suppose that e ≥ 3. Moreover, having reduced to
the case τ1(e), we are free to prove the result instead for τ2(e) (our reason
for doing this will become clear). Let φ : τ2(e)→ τ2(e) be the unique nice,
simple datum which is the identity map on underlying trees. We will prove
1, 2, and 3 above for each φ by induction on e (where e = 2 is the base
case).

Suppose that A ⊂M(X,φ) is an irreducible component. Without loss
of generality, identify A as an open subset of an irreducible component of
M0,2(X, e). Let E :M0,2(X, e)→X×X denote the evaluation map coming
from the two flags f1, f2 of τ2(e). Let Y ⊂ X × X denote the image of
A under E. Let (p, q) ∈ Y be any point such that p 6= q (since the stable
maps parametrized by A are non-constant, such a pair exists). Now the
virtual dimension dim(X,φ) is always a lower bound for the dimension of
A. Thus dim(A) ≥ dim(X,φ) = (n + 1− d)e + (n− 2). So the dimension
of the fiber E−1(p, q) ⊂ A is at least

dim(A)− dim(Y ) ≥ (n+ 1− d)e+ (n− 2)− (2n− 2) =

(n+ 1− d)e− n ≥ (n+ 1− d)3− n = 1 + (2n+ 2− 3d).

Since d ≤ n+1
2

, certainly d ≤ 2(n+1)
3

. We conclude that the dimension of
every irreducible component of the fiber of E−1(p, q) is at least 1.

Let D ⊂ E−1(p, q) be any irreducible component. The claim is that
D ∩ (A − A) ⊂ D is a codimension 1 subvariety. Now by section 4.3
of [Fulton-Pandharipande96], we know that the coarse moduli scheme of
M0,2(X, e) is projective, thus the coarse moduli scheme of D (with the
reduced induced structure) is projective. Therefore, to establish that D ∩
(A−A) ⊂ D is codimension 1, it suffices to establish that for any complete
curve K ⊂ D, K ∩ (A − A) 6= ∅. Suppose the contrary, i.e. suppose that
there is a complete curve K ⊂ D∩A. Now after replacing K by a ramified
cover of K, we may assume that K actually factors through the stack of
D and not just the coarse moduli scheme of D. We may also assume that
K is smooth. Let π : C → K be the pullback to K of the universal curve,
let s1, s2 : K → C be the two markings and let h : C → X be the map
to X. Since the image of K is contained in A, π is smooth. Now after
again replacing K by a ramified cover of K, we may suppose that there is
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a third section s3 : K → C such that h(s1(K)), h(s2(K)) and h(s3(K)) are
disjoint: simply take any hyperplane section H of X which contains neither
p nor q and replace K by the normalization of the multisection h−1(H) of π.
Since any rational curve with three distinct marked points is canonically
isomorphic to (P1, 0, 1,∞), we may identify (π : C → K, s1, s2, s3) with
(π1 : K × P1, t0, t1, t∞) where ti(x) = (x, i) ∈ K × P1 for all x ∈ K. But
then the morphism h : P1 ×K → X along with the sections t0, t1 satisfies
the hypothesis of a version of Mori’s bend-and-break lemma:

Theorem 61 (Corollary II.5.5, (Kollár95) ). Let C be an irreducible,
proper and smooth curve and X a proper variety. Let p1, . . . , pk ∈ C be k
distinct points g : {p1, . . . , pk} → X a morphism (i.e. a choice of k not
necessarily distinct points of X).

Assume that there is a smooth, irreducible, proper curve B, an open set
B0 ⊂ B and a morphism

[h0 : C ×B0 → X ×B0] ∈ Hom(C,X, g)(B0)

such that h0(C × B0) and pX ◦ h0(c × B0) are one dimensional for some
b ∈ B0 and c ∈ C where pX : X ×B → X is the natural projection.

There is a unique normal compactification S ⊃ C × B0 such that h0

extends to a finite morphism h : S →X×B. Let p : S → B denote the
natural projection.

If g(C) = 0, dim im(pX ◦h0) = 2 and k ≥ 2, then for some b ∈ B−B0

the 1-cycle h∗(p
−1(b)) is either reducible or nonreduced.

This contradicts that K ⊂ M(X,φ). So we conclude that D ∩ (A −
A) ⊂ D is a codimension 1 subvariety. Since this is true for every ir-
reducible component, we conclude that A − A ⊂ A is a codimension 1
subvariety. By the proof of corollary 37, we know that A − A is con-
tained in M0,2(X, e) −M(X,φ). Let us consider the other components
of the CD decomposition of M0,2(X, e). One of the combinatorial data
we have to consider is the simple combinatorial datum φ′ : τ → τ where
the underlying tree of τ is the tree with two vertices v1, v2, one edge
{f1, f2}, ∂f1 = v1, ∂f2 = v2 and two tails ∂f3 = v2, ∂f4 = v4 and such that
β(v1) = e, β(v2) = 0. But clearly M(X,φ′) will not intersect any of the
fibers E−1(p, q) with p 6= q. But, by the induction assumption that theo-
rem 38 has been proved for all e′ < e, and by the lemmas in the section
on dimension and flatness, for every combinatorial datum ψ : σ1 → σ2

with canonical contraction σ1 → τ2(e) and ψ 6= φ, φ′, we know that
dim(M(X,ψ)) = dim(X,ψ). Moreover, by lemma 50 we conclude that
the only ψ such that dim(X,ψ) ≥ dim(X,φ) − 1 is simple and nonlinear.
It easy to check that it must also be nice. Since A − A is the union of
its (locally closed) intersections with each of the componentsM(X,ψ), we
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conclude that there is a nice, simple combinatorial datum ψ and an irre-
ducible component B ⊂M(X,ψ) such that B ⊂ (A−A) is an irreducible
component, i.e. B ⊂ A is a codimension 1 subvariety. But then we conclude
dim(A) = dim(B) + 1 = dim(X,ψ) + 1 ≤ (dim(X,φ)−1) + 1 = dim(X,φ).
This proves theorem 38 and theorem 51 for τ2(e).

Finally we prove that the evaluation morphism e1 : A→ X has constant
fiber dimension dim(X,φ) − dim(X). Since e1 : B → X is flat, we know
that e1 : A → X is dominant. Let p ∈ e1(A) be any point. Then the
preimage e−1

1 (p) is simply Ap := E−1({p} × X). Moreover, clearly the
preimage of {p} × (X − {p}) is dense in Ap. So let us replace Ap by this
preimage. Consider the evaluation morphism e2 : Ap → X. We have shown
that for each q ∈ e2(Ap), and for every irreducible component D of the fiber
e−1

2 (q), D ∩ (A−A) has codimension 1 in D. But this implies that Ap ∩B
has codimension one in Ap. Since we know that e1 : B → X is flat of
relative dimension dim(X,ψ)− dim(X), we conclude that the fiber Ap has
dimension 1 + dim(X,ψ)−dim(X) = dim(X,φ)−dim(X). So theorem 40
is also proved for τ2(e).

This finishes the proof thatM0,r(X, e) is an irreducible, local complete
intersection stack of dimension (n + 1 − d)e + (n − 4) + r. Moreover, we
conclude that M(X,φ) is a dense open subset of M0,r(X, e).

Finally, we know by corollary 54, we know that the general point of
M0,r(X, e) has trivial obstruction group. It is an easy exercise in deforma-
tion theory to conclude that for any h : C → X inM0,r(X, e) for which the
obstruction group vanishes, a general first order deformation of h : C → X
is actually an embedding and not just birational. Since the obstruction
group vanishes, we conclude that h : C → X admits deformations which
are embeddings. Thus Re(X) ⊂M0,0(X, e) is a nonempty, therefore dense,
open set. This proves theorem 1.
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CHAPTER 2

Rational Curves on Cubic Threefolds

2.1. Introduction

In the last chapter we proved that for n ≥ 6 and d ≤ n+1
2

, for a general
hypersurface Xd ⊂ Pn of degree d, and for each e the space Re(X) is an
integral scheme of dimension (n+ 1− d)e+ (n− 4) and is a local complete
intersection scheme. In this chapter we shall prove the following theorem:

Theorem 62. Let X ⊂ P4 be any smooth cubic hypersurface. For each
integer e > 1, the scheme Re(X) is an integral, local complete intersection
scheme of dimension 2e.

The basic proof is exactly the same as in the last chapter. We again
embed Re(X) into the Kontsevich moduli space M0,0(X, e). We again
study the CD decomposition of M0,0(X, e). We again study the special-
izations of nice components of the CD decomposition and prove that in the
boundary of every nice component there is a nice basic component (i.e. a
nonlinear basic component). And we again show that there is a unique ir-
reducible component M ofM0,0(X, e) such that for every basic component
B of M0,0(X, e), M contains B and M is the unique irreducible compo-
nent which contains B. As before, the general point of M is smooth and
dim(M) = 2e. Finally Re(X) is a (nonempty) open subset of M , which
proves that Re(X) is irreducible of dimension 2e.

Having outlined the similarities to the last chapter, let us outline the
new complications of this chapter. The first complication is thatM0,0(X, e)
is reducible. Indeed M0,0(X, e) has two irreducible components: the irre-
ducible component M from the last paragraph and a new irreducible com-
ponentN . The general point ofN parametrizes a stable map f : C−− > X
which is an e − to − 1 map to a line in X, i.e. f is linear (this is why we
include nonlinearity in the definition of nice). We have to take special care
in our specialization arguments to avoid the component N .

The second complication comes from the fact that there are smooth
cubic threefolds X such that the projection map π1 : F0,1(X) → X is not
flat. However, we know the flattening stratification of π1: there is a finite
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subset E ⊂ X consisting of the classical Eckardt points of a cubic threefold.
Define the flat locus Xf to be X−E. Then π1 is flat over Xf . Moreover the
fiber dimension of π1 only increases by 1 over E. By an induction argument
as in the last chapter, we conclude that for all (appropriate) combinatorial
data φ and evaluation morphisms ef : M(X,φ) → X, ef is flat over Xf

and the fiber dimension of ef increases by at most 1 over E. This allows
us to perform a refined version of “leaf induction”.

2.2. Classical Results

The standard reference for results about cubic threefolds are [Clemens-
Griffiths] and [Tjurin]. The classical results we need all have to do with
the Fano scheme F1(X) parametrizing lines on X. Suppose that L ⊂ X is
a line. The normal bundle of L in P4 is simply NL/P4 = OL(1) ⊕ OL(1).
We have a normal bundle sequence

0 −−−→ NL/X −−−→ NL/P4 −−−→ NX/P4|L −−−→ 0.

Since NX/P4 |L = OL(3), we see that the only possibilities for NL/X are
OL ⊕OL and OL(−1)⊕OL(1). Both of these possibilities occur for some
points [L] ∈ F1(X). A line is said to be of type I if NL/X = OL⊕OL and is
said to be of type II if NL/X = OL(−1)⊕OL(1). Notice that in both cases,
H1(L,NL/X) = 0. Since H1(L,NL/X) is the obstruction space to extending
first order deformations of L to higher order, we conclude that the scheme
F1(X) is smooth of dimension h0(L,NL/X) = 2. This is classically called
the Fano surface of X.

Inside F1(X) the locus D ⊂ F1(X) parametrizing lines L of type II
form a divisor, i.e. a general point of F1(X) is a line of type I. The surface
F1(X) ⊂ G(2, 5) ⊂ P9 is canonically embedded. Moreover, there is an
abelian variety J = J3(X) canonically associated to X which is isomorphic
to the Albanese variety of F1(X). In fact the Albanese map F1(X)→ J is
an embedding.

Finally, for a general X we know F0,1(X) → X is flat. But there are
smooth X such that F0,1(X) → X is not flat – for example the Fermat
cubic X = {[x0, . . . , x4]|x3

0 + . . . x3
4 = 0}. But F0,1(X)→ X is flat over an

open set Xf ⊂ X whose complement E is a finite set. The points p ∈ E
are called Eckardt points. They are characterized as those points p ∈ X
such that the intersection of X with the osculating 3-plane Hp to X at p,
Hp∩X is a cone over a smooth plane cubic curve inside of Hp. For p ∈ Xf

a general point, there are 6 lines passing through p.
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2.3. Flatness and Dimension Results

In this section we state the results having to do with the dimensions
of the components M(X,φ) of the CD decomposition and flatness of the
evaluation morphisms ef : M(X,φ) → X. We prove some simple lem-
mas which allow us to reduce the proofs of these results to a manageable
statement. We give one new definition:

Definition 63. A stable A-graph τ is moderate if r2(τ) is very stable
(here the empty graph is considered very stable). A combinatorial datum
φ : τ1 → τ2 is moderate if τ2 is moderate.

Using lemma 35, we see that being moderate is essentially the same as
being very stable. We begin with the statement of the main results about
moderate data:

Theorem 64. For each moderate combinatorial datum φ, M(X,φ)
has pure dimension dim(M(X,φ)) = dim(X,φ).

Theorem 65. For each moderate combinatorial datum φ, M(X,φ) is
a local complete intersection.

Theorem 66. For each moderate combinatorial datum φ : τ1 → τ2

and each tail f ∈ Tail(τ1) such that β(∂f) > 0, the evaluation morphism
ef : M(X,φ) → X is flat over Xf of relative dimension dim(X,φ) − 3.
For each Eckardt point p ∈ E, every irreducible component A ⊂ e−1

f (p) has
dimension dim(A) ≤ dim(X,φ)− 2.

In the proof of theorem 62 we will largely ignore combinatorial data
which are not very stable. The following result justifies this:

Theorem 67. Suppose that φ : τ1 → τ2 is a combinatorial datum
which is not moderate. For each irreducible component A ⊂ M(X,φ), we
have dim(A) ≤ 2β(τ1)− 3 + #Tails(τ1).

Now we prove some lemmas which begin the proofs of the previous
theorems.

Lemma 68. Theorem 64 implies theorem 65.

Proof. The proof is exactly the same here as the proof of lemma 41.
�

Lemma 69. If theorem 64 is valid, then theorem 66 is equivalent to
the following: For each moderate combinatorial datum φ : τ1 → τ2 and
each tail f ∈ Flag(τ1) such that β(∂f) > 0, the evaluation morphism
ef :M(X,φ)→ X has constant fiber dimension dim(X,φ)−3 over Xf and
has fiber dimension at most dim(X,φ)− 2 over each Eckardt point p ∈ E.

Proof. The proof is exactly the same as the proof of lemma 42. �
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Lemma 70. Theorem 64 and theorem 66 are implied by the follow-
ing statement: For each very stable A-graph τ , N (X, τ) has pure dimen-
sion dim(X, τ) and for each tail f ∈ Tail(τ), the evaluation morphism
ef : N (X, τ)→ X is flat of relative dimension dim(X, τ)− 3 over Xf and
has fiber dimension at most dim(X, τ)− 2 over each Eckardt point p ∈ E.
For theorem 38 it even suffices to consider only stable A-graphs τ such that
r1(τ) = τ .

Proof. This follows immediately from theorem 33 and lemma 35. �
Lemma 71. The statement in lemma 70 is equivalent to the following

statement: For all nonnegative integers r and e, N (X, τr(e)) has dimension
dim(X, τr(e)) and for each tail f ∈ Tail(τr(e)), the evaluation morphism
ef : N (X, τr(e))→ X has constant fiber dimension dim(X, τr(e))− 3 over
Xf and has fiber dimension at most dim(X, τr(e)) − 2 over each Eckardt
point p ∈ E.

Proof. Suppose that the above statement has been proved for all r
and e. We will prove the statement in lemma 70 by our “refined leaf
induction”.

If τ has a single vertex then it is already of the form τr(e) for some r and
e, thus suppose that τ has more than 1 vertex. Let v1 ∈ Vertex(τ) be a leaf.
Let {f1, f2} be the unique edge attached to v1 and oriented so that ∂f1 = v1.
Let v2 = ∂f2. Define τ ′ to be the subgraph of τ such that Vertex(τ ′) =
{v1, v2}, and such that Flag(τ ′) = {f ∈ Flag(τ) : ∂f = v1} ∪ {f2}. Define
τ ′′ to be the subgraph of τ such that Vertex(τ ′′) = Vertex(τ)−{v1} and such
that Flag(τ ′′) = Flag(τ) − Flag(τ ′). Finally define τ0 to be the subgraph
of τ whose only vertex is v2 and which has no flags.

The combinatorial morphisms τ ′ ←↩ τ0, τ ′′ ←↩ τ0 induce 1-morphisms
N (X, τ ′) → N (X, τ0) and N (X, τ ′′) → N (X, τ0). Let
N (X, τ ′) ×N (X,τ0) N (X, τ ′′) denote the fiber product of these morphisms.
The combinatorial morphisms τ ←↩ τ ′ and τ ←↩ τ ′′ induce 1-morphisms
N (X, τ) → N (X, τ ′) and N (X, τ) → N (X, τ ′′), i.e. they induce a mor-
phism N (X, τ)→ N (X, τ ′)×N (X,τ0) N (X, τ ′′). Moreover, from the defini-
tion of N (X, τ), we see this 1-morphism is an open immersion.

The claim is that N (X, τ ′) → N (X, τ0) has constant fiber dimension
2β(v1)− 1 + #Tail(τ ′). Since the expected dimension dim(X, τ ′) is always
a lower bound, every irreducible component of N (X, τ ′) has dimension
≥ dim(X, τ ′) = 2β(v1) + 2β(v2) − 1 + #Tail(τ ′). On the other hand,
by hypothesis we know that every irreducible component of N (X, τ0) has
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dimension 2β(v2). Therefore every irreducible component of every fiber
has dimension at least 2β(v1) − 1 + #Tail(τ ′); so we need to show every
irreducible component of very fiber has dimension at most 2β(v1) − 1 +
#Tail(τ ′).

To see this let us introduce the subgraph τ ′′′ of τ ′ which is the graph
whose only vertex is v1 and such that Flag(τ ′′′) = Flag(τ ′)− {f2}. Define
e1 : N (X, τ ′′′) → X to be the evaluation morphism associated to the tail
f1 ∈ Tail(τ ′′′). Suppose that h : C → X is a naive τ0-map. The fiber of
N (X, τ ′)→ N (X, τ0) over the moduli point [h : C → X] is an open subset
of the fiber product N (X, τ ′′′)×e1,X,hC. Now the general point of C maps
to a point in Xf . Since e1 is flat over Xf by theorem 66, we conclude that
every irreducible component of N (X, τ ′′′)×e1,X,h C over Xf has dimension
equal to the sum of the fiber dimension of e1 and the dimension of C,
i.e. 2β(v1) − 3 + #Tail(τ ′′′) + 1 = 2β(v1) − 1 + #Tail(τ ′). On the other
hand, there are only finitely many points of C which map to Eckardt points
p ∈ E, and for each such point the preimage e−1

1 (p) has dimension at most
2β(v1) − 2 + #Tail(τ ′′′) = 2β(v1) − 1 + #Tail(τ ′′′). Thus each irreducible
component of the fiber product N (X, τ ′′′)×e1,X,hC has dimension at most
2β(v1) − 1 + #Tail(τ ′′′). Thus every irreducible component of every fiber
of N (X, τ ′)→ N (X, τ0) has dimension at most 2β(v1)− 1 + #Tail(τ ′′′).

Since every irreducible component of every fiber ofN (X, τ ′)→ N (X, τ0)
has dimension 2β(v1)− 1 + #Tail(τ ′′′), we conclude by induction that ev-
ery irreducible component of the fiber product N (X, τ ′)×N (X,τ0)N (X, τ ′′)
has dimension 2β(v1) − 1 + #Tail(τ ′′′) + dim(X, τ ′′) = dim(X, τ). Thus
N (X, τ) has pure dimension dim(X, τ). Moreover suppose that f ∈ Tail(τ)
is a tail. Since τ has at least two tails, without loss of generality we may
suppose that f is attached to τ ′′. By induction ef : N (X, τ ′) → X has
constant fiber dimension dim(X, τ ′) − 3 over Xf and has fiber dimension
at most dim(X, τ ′)−2 over each Eckardt point p ∈ E. Since the projection
N (X, τ)→ N (X, τ ′′) has constant fiber dimension 2β(v1)− 1 + #Tail(τ ′),
and since 2β(v1) − 1 + #Tail(τ ′) + dim(X, τ ′) = dim(X, τ), we conclude
that ef : N (X, τ) → X has constant fiber dimension dim(X, τ ′) − 3 over
Xf and has fiber dimension at most dim(X, τ ′)−2 over each Eckardt point
p ∈ E. �

Lemma 72. In the statement in the last lemma, it suffices to consider
only stable A-graphs τ1(e) and τ0(e).

Proof. This is an obvious reduction. �
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Lemma 73. Theorem 67 is equivalent to the following statement: For
each stable A-graph τ which is not moderate, every irreducible component
of N (X, τ) has dimension at most 2β(τ)− 3 + #Tails(τ).

Proof. Suppose that φ : τ1 → τ2 is a combinatorial datum which
is not moderate. Then τ2 is not moderate. Therefore by hypothesis
dim(N (X, τ2)) ≤ 2β(τ1) − 3. By theorem 33, M(X,φ) → N (X, τ2) is
flat of relative dimension δ(φ). Now consider the difference

D = (2β(τ1)− 3 + #Tails(τv))− (2β(τ2)− 3 + #Tails(τ) + δ(φ)) .

Exactly what we need to prove is that D ≥ 0. But D satisfies an obvious
additivity: D is the sum over vertices v ∈ Vertex(τ2) of Dv where Dv is
the difference one gets above when we replace τ2 by the subgraph whose
only vertex is v and whose flags are the tails of τ2 attached to v and when
we replace τ1 by the preimage of τ2 under φ. Thus to establish D ≥ 0, it
suffices to consider the case when τ2 = τr(e) for some r and e.

In case τ2 = τr(e), we see that r = #Edge(τ1) + #Tail(τ1). And
β(τ1) =

∑
v∈Vertex(τ1) d(v)e. Thus D is simply∑

v∈Vertex(τ1)

((2e− 2)d(v) + 2)− 2e−#Edge(τ1).

Clearly this is minimized when e = 1. And in this case the sum simply re-
duces to 2 (#Vertex(τ1)− 1)−#Edge(τ1). But #Edge(τ1) = #Vertex(τ1).
So in this case, D reduces to #Edge(τ1) which is certainly nonnegative. So
we conclude in every case that D ≥ 0. �

Lemma 74. To prove theorem 67 it suffices to prove the statement in
lemma 73 for only τ such that τ = r2(τ).

Proof. Since τ is not moderate, r2(τ) is not very stable. Thus, by
assumption dim(N (X, r2(τ))) ≤ 2β(τ)− 3 + #Tail(r2(τ)). It follows from
lemma 35 that dim(N (X, τ)) ≤ dim(N (X, r2(τ))) + #Tail(τ)−#Tails(τ).
Thus we conclude that dim(N (X, τ)) ≤ 2β(τ)− 3 + #Tail(τ). �

Lemma 75. Theorem 64 and theorem 66 imply theorem 67.

Proof. Using lemma 67, lemma 73, and lemma 74, it suffices to prove
the statement in lemma 73 for τ such that τ = r2(τ). Of course it is trivial
to reduce to the case that also τ = r1(τ).

Let v1 ∈ Vertex(τ) be a leaf. Since τ = r2(τ), we know β(v1) > 0.
Again let {f1, f2} be the unique edge attached to v1 oriented so that ∂f1 =
v1. Let v2 = ∂f2. Let τ ′′ denote the stable A-graph obtained by stabilizing
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the subgraph (τ ′′)pre of τ whose vertex set is V = Vertex(τ) − {v1} and
whose flag set is F = {f ∈ Flag(τ) : ∂f ∈ V, f 6= f2}. There are two cases.

The first case is that τ ′′ is not very stable. Then by the induction
assumption we know that every irreducible component of N (X, τ ′′) has di-
mension at most 2β(τ ′′)−3. Now it follows from theorem 66 that the every
irreducible component of every fiber of the morphism N (X, τ)→ N (X, τ ′′)
has dimension at most 2β(v1) − 1. We conclude that every irreducible
component of N (X, τ) has dimension at most 2β(τ ′′) − 3 + 2β(v1) − 1 =
2β(τ)− 4 < 2β(τ)− 3.

The next case is that τ ′′ is very stable. But then the vertex v2 is
contracted to an edge of τ ′′. Since τ ′′ is very stable and has at least
one edge, by theorem 64, dim(N (X, τ ′′)) = dim(X, τ ′′) ≤ 2β(τ ′′) − 1.
Moreover, now the morphism N (X, τ)→ N (X, τ ′′) has fiber dimension at
most 2β(v1) − 2 since now the universal marked point qf on the univer-
sal curve over N (X, τ) must map to the universal marked point on the
universal curve over N (X, τ ′′) corresponding to the edge to which v2 is
contracted (rather than a whole component of the stable curve as in the
last case). Thus every irreducible component of N (X, τ) has dimension at
most 2β(τ ′′)− 1 + 2β(v1)− 2 = 2β(τ)− 3. �

2.4. Specializations
The theorems in the last section describe the dimensions and evaluation

morphisms for the stacksM(X,φ). In this section we will discuss how the
components in the CD decomposition “fit together”. We begin with one
definition.

Definition 76. A point p M0,r(X, e) is called a type I, nice, basic
point if there is a nice, basic combinatorial datum φ : τ1 → τ2 such
that τ1 → τr(e) is the canonical contraction, and if there is a strict φ-
map

(
((Cv), (hv), (qf )) ,

(
(C ′v), (h

′
v), (q

′
f )
)
, (kv)

)
in M(X,φ) whose image

in M0,r(X, e) is p and such that each C ′v corresponds to a line of type I.

The main result is the following:
Theorem 77. If φ : τ1 → τ2 is a nonlinear, moderate combinatorial

datum, if τ1 → τr(e) is the canonical contraction, and if A ⊂ M(X,φ)

is an irreducible component, then the closure of the image of A, F ′1(A) ⊂
M0,r(X, e) contains a type I, nice, basic point.

In the next two sections we will show that there is a unique irreducible
component M ⊂M0,r(X, e) which contains every type I, nice, basic point.
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It then follows from theorem 77 that the image ofM(X, τ) is contained in
M.

The following lemmas allow us to reduce the proof of theorem 77 to a
more manageable statement.

Lemma 78. In theorem 77 it suffices to consider only nonlinear, mod-
erate, combinatorial data φ which are also elementary. More precisely, if
φ : τ1 → τ2 is a nonlinear, moderate combinatorial datum which is not ele-
mentary and if A ⊂M(X,φ) is an irreducible component, then there exists
a nonlinear, moderate, elementary combinatorial datum ψ : σ1 → σ2 such
that σ1 → τr(e) is the canonical contraction, and there exists an irreducible

component B ⊂M(X,ψ) such that F ′1(B) ⊂ F ′1(A).

Proof. Suppose that φ is not elementary. We will produce ψ : σ1 → σ2

which is “one step closer” to being elementary, i.e. such that

d(ψ) =
∑

v∈Vertex(σ1)

(dψ(v)− 1) =
∑

v∈Vertex(τ1)

(dφ(v)− 1) = d(φ).

We will also produce an irreducible component B ⊂ M(X,ψ) such that
B ⊂ A is a codimension 1 subvariety. The lemma then follows by induction
on d(φ).

Let v1 ∈ Vertex(τ1) be a vertex such that d(v1) > 1. Let w1 = φV (v1),
let d = d(v1), m = βτ2(w1) (so that β(v1) = dm). We define σ1 to be the
stable A-graph obtained as follows. The tree of σ1 is obtained from τ1 by
adding one new vertex v2 and one new edge {f1, f2} such that ∂f1 = v1,
∂f2 = v2. We define βσ1 by

βσ1(v) =

 m(d− 1) v = v1

m v = v2

βτ1(v) otherwise

We construct the stable A-graph σ2 by attaching one new tail g to τ2 such
that ∂g = w1. We define ψ : σ1 → σ2 as follows. The maps ψV and ψF are
obtained by extending φV and φF by ψV (v2) = w1, ψF (f1) = ψF (f2) = g.
Finally we define dψ by

dψ(v) =

 d− 1 v = v1

1 v = v2

dφ(v) otherwise

Since φ is nonlinear and moderate, it is clear that ψ is also nonlinear and
moderate. Moreover, by construction we have d(ψ) = d(φ)− 1.
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Let A ⊂M(X,φ) be an irreducible component. By lemma 34, we know
that G1 :M(X,φ)→ N (X, r1(τ2)) is smooth with irreducible fibers. So if
we define A′ = G1(A), we see that A = G−1

1 (A′). Now the obvious com-
binatorial morphism σ2 → τ2 induces a morphism N (X, σ2) → N (X, τ2).
Clearly this morphism is smooth with irreducible fibers since it is just an
open subset of the universal curve Cw2 → N (X, τ2). Thus the composition

N (X, σ2) → N (X, τ2)
r1−→ N (X, r1(τ2)) is also smooth with irreducible

fibers. Denote this morphism by H : N (X, σ2) → N (X, r1(τ2)). Define
B′ = H−1(A′). Then B′ is irreducible and dim(B′) = dim(A′) + 1. We
define B ⊂ M(X,ψ) to be the preimage of B′ under the 1-morphism
G1 : M(X,ψ) → N (X, σ2). Since dψ(v1) = dφ(v1) − 1, we see that the
defect δψ = δφ− 2. Thus dim(X,ψ) = dim(X,φ) + 1− 2 = dim(X,φ)− 1
(and dim(B) = dim(A)− 1).

The claim is that F ′1(B) ⊂ F ′1(A), i.e. F ′1(B) ⊂ F ′1(A). This is easy:
suppose given a strict ψ-map

ξ =
(
((Cv) , (hv) , (qf )) ,

(
(C ′v) , (h

′
v) ,
(
q′f
))
, (kv)

)
.

Suppose moreover that this is general in the sense that for each f ∈
Flag(σ1) with ∂f = v1, the corresponding point qf ∈ Cv1 is not a ram-
ification point of kv1 . Let C = Cv1 ∪ Cv2 be the connected sum of Cv1
and Cv2 along the points qf1 ∈ Cv1 and qf2 ∈ Cv2 . Let k : C → C ′w2

be
the unique morphism whose restriction to Cv1 is kv1 and whose restric-
tion to Cv2 is kv2 . If we consider this as an admissible cover, there is
no obstruction to smoothing. In other words, there is a flat proper mor-
phism π : C̃ → Spec C[[t]] whose generic fiber is simply P1

C[[t]] and whose

special fiber is C and there is a finite morphism of Spec C[[t]]-schemes

k̃ : C̃ → Spec C[[t]]× C ′w2
whose generic fiber is simply a finite morphism

of degree d and whose special fiber is k defined as above. Now for each
f ∈ Flag(σ1) such that ∂f = v1 and f 6= f1, the corresponding point
qf ∈ Cv ⊂ C is a smooth point of π. Thus we can extend this to a section

q̃f : Spec C[[t]]→ C̃.

We define an element of η =
((
C̃v

)
,
(
h̃v

)
, (q̃f )

)
inM(X, τ1)(Spec C[[t]])

as follows: For each v ∈ Vertex(τ1) with v 6= v1, we define

C̃v = Spec C[[t]] × Cv and h̃v is just the base-change of hv. For each flag
f ∈ Flag(τ1) with ∂f 6= v1, we define q̃f to simply be the base-change of qf .

We define C̃v1 = C̃ from the last paragraph. And for each f ∈ Flag(τ1) with
∂f = v1, we define q̃f from the last paragraph. Clearly this is an element
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of M(X, τ1)(Spec C[[t]]). Moreover it is easy to see that the general fiber

of this family is an element of F1(A). We conclude that F ′1(B) ⊂ F ′1(A).
�

Lemma 79. In theorem 77 it suffices to consider φ : τ1 → τ2 which are
nonlinear, moderate and simple.

Proof. By lemma 78, we see that we may restrict to φ : τ1 → τ2 which
are elementary. Suppose we have proved theorem 77 for all moderate,
nonlinear combinatorial data which are simple.

Let ψ : τ2 → τ2 denote the unique simple, moderate, nonlinear com-
binatorial datum such that ψ is the identity map on trees. By lemma 34,
we know that M(X,φ) → N (X, r1(τ2)) is flat. Thus the image of A in
N (X, r1(τ2)) is an irreducible component. Let B ⊂ M(X,ψ) denote the
preimage of this irreducible component.

By assumption we can find a DVR Spec R with function field K and
residue field k = C and a family of stable maps

ζ =
(
(π′ : C ′ → Spec R), (q′f : Spec R→ C ′), (h′ : C ′ → X)

)
whose general fiber ζK = (h′K : C ′K → X) lies in F ′1(B) and whose special
fiber ζk = (h′k : C ′k → X) is a type I, nice, basic point.

For each vertex v ∈ Vertex(τ2), define C ′v ⊂ C to be the closure of the
irreducible component of C ′K corresponding to v. For each tail f ∈ Tail(τ2)
with ∂f = v, choose a point in the special fiber q′f ∈ (C ′v)k which is not
a special point of C ′k. After replacing Spec R by a finite cover, we may
suppose that each q′f extends to a section q′f : Spec R→ C.

Once we add in all the sections q′f from the last paragraph, the generic
fiber is now a point in the image of N (X, τ2). Of course there is a unique
point η ∈ M(X,φ)(Spec K) such that R2(η) in N (X, τ2) maps to the
general fiber. Moreover, we can construct a family of stable maps over
Spec R whose general fiber is η as follows: for each vertex v ∈ Vertex(τ1),
let Cv = C ′φV (v).

For each flag f ∈ Flag(τ1) with ∂f = v, let qf : Spec R → Cv be the
section corresponding to qφF (f) : Spec R → C ′φV v. And let hv : Cv → X
correspond to h′φV (v) : CφV (v) → X. Then ((Cv), (hv), (qf )) is an element of

M(X, τ1)(Spec R). The general fiber is simply η. Let us take the image of
this family inM0,r(X, e). By construction, the special fiber is obtained by
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gluing together components of the type I, nice, basic point ζk along non-
special points. Thus the special fiber is also a type I, nice, basic point. �

The proof of theorem 77 has been reduced to a statement about simple
combinatorial data φ. The following theorem – whose proof will be proved
in the next few sections – then provides the induction step to finish the
proof of theorem 77

Theorem 80. Let φ : τ → τ be a simple, moderate, nonlinear combi-
natorial datum such that τ → τr(e) is the canonical contraction. Suppose
that τ is not basic. Let A ⊂M(X,φ) be an irreducible component. There
exists a moderate, nonlinear combinatorial datum ψ : σ1 → σ2 (possibly
basic and not necessarily simple) such that σ1 → τr(e) is the canonical
contraction, and there exists an irreducible component B ⊂M(X,ψ) such

that F ′1(B) ⊂ F ′1(A) is a codimension 1 subvariety.

From this theorem one finishes the proof of theorem 77 by induction
on the dimension of A. The following lemmas allow us to reduce the proof
of theorem 80 to a manageable statement.

Lemma 81. Let us assume theorem 64 and theorem 66. Then in the
proof of theorem 80 it suffices to consider only τ of the form τr(e).

Proof. First of all we may use lemma 35 to reduce to the case that
τ = r2(τ), i.e. τ is very stable. So let us assume that τ is very stable.
Then we will prove by induction that ψ and B exist so that ψ is even nice
(not just moderate and nonlinear). If #Vertex(τ) = 1, then τ is already of
the form τr(e). Thus suppose that τ has more than 1 vertex.

We again use our refined leaf induction. Suppose that v1 ∈ Vertex(τ)
is a leaf. Let {f1, f2} be the unique edge attached to v1, let ∂f1 = v1 and
let v2 denote ∂v2. Let τ ′, τ ′′ and τ0 be as defined in the proof of lemma 71.
Since τ is not basic, we can choose the leaf v1 so that τ ′′ is also not basic.
In particular, τ ′′ is nonlinear.

Define φ′′ : τ ′′ → τ ′′ to be the unique simple combinatorial datum which
is the identity map on underlying trees. The combinatorial morphism
τ ←↩ τ ′′ induces a 1-morphism M(X,φ) → M(X,φ′′). Just as in the
proof of lemma 71, we conclude that this 1-morphism is dominant and has
constant fiber dimension 2β(v1) − 1 + #Tail(τ1) (I bet that we can prove
this 1-morphism is even flat). In particular, the image of the irreducible
component A ⊂ M(X,φ) in M(X,φ′′) is a dense subset of an irreducible
component A′′ ⊂M(X,φ′′).
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By induction we know that there is a nice combinatorial datum
ψ′′ : σ′′1 → σ′′2 and an irreducible component B′′ ⊂ M(X,ψ′′) such that

F ′1(B′′) ⊂ F ′1(A′′) is a codimension 1 subvariety. Let Cv2 denote the irre-
ducible component of the universal curve over F ′1(A′′) corresponding to v2.

Let Cv2 denote the closure of Cv2 inside the universal curve over F ′1(A′′).
The restriction of Cv2 over F ′1(B′′) is a union of irreducible components of
the universal curve. Let w2 ∈ Vertex(σ′′) be a vertex corresponding to one
of these irreducible components. Let τ ′′′ be the subgraph of τ ′ as defined in
the proof of lemma 71. Define σ2 to be the stable A-graph obtained by glu-
ing σ′′2 and τ ′′′ via an edge {f1, f2} such that ∂f1 = v1 and ∂f2 = ψ′′V (w2).
Similarly define σ1 to be the stable A-graph obtained by gluing σ′′1 and τ ′′′

via an edge {f1, f2} such that ∂f1 = v1 and ∂f2 = w2. There is a unique
combinatorial datum ψ : σ1 → σ2 which restricts to ψ′′ on σ′′1 and which
restricts to the identity on τ ′′′.

The combinatorial morphisms σ1 ←↩ σ′′1 and σ2 ←↩ σ′′2 induce a 1-
morphims M(X,ψ) → M(X,ψ′′). Consider the preimage of B′′ under
this 1-morphism. The claim is that there is an irreducible component B ⊂
M(X,ψ) such that F ′1(B) ⊂ F ′1(A). This is easy to see: for a general point
in B′′, we can find a DVR Spec R and a morphism Spec R→M0,r′′(X, e

′′)
whose generic point maps into F ′1(A′′) and whose special point maps to the
image of our point in F ′1(B′′). Since M(X,φ) → M(X,φ′′) is dominant,
after replacing Spec R by a finite cover, we may lift the generic fiber of
Spec R, Spec K →M0,r′′(X, e

′′) to a map Spec K → A. We can compose
with the map F ′1 : A→ F ′1(A). By the valuative criterion of properness for
M0,r(X, e), after replacing Spec R by a finite cover again, we can extend

this to a map Spec R→ F ′1(A). And we may choose Spec K → A so that
the special fiber of Spec K → A factors through a point of B which maps
to our original point in B′′. Thus we conclude that F ′1(B) ⊂ F ′1(A) and

the codimension is the same as the codimension of F ′1(B′′) ⊂ F ′1(A′′), i.e.
it is a codimension 1 subvariety. �

Lemma 82. In fact in the proof of theorem 80 it suffices to consider
only τ of the form τ0(e) and τ1(e).

Proof. This is an obvious reduction. �

2.5. Basic Components

Lemma 83. Let τ2 denote the stable A-graph whose underlying graph is
just λ2 and with β(u0) = β(u1) = 1. Let τ0 denote the stable A-graph whose
underlying graph is λ0 with β(u0) = 1. Then M(X, τ2) is equivalent to a
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smooth, irreducible C-scheme of dimension 3, M(X, τ2). The obvious com-
binatorial morphism τ2 ←↩ τ0 induces a morphism M(X, τ2) → M(X, τ0).
This morphism is faithfully flat and the fiber over a general point is irre-
ducible.

Proof. Let τ1 be the stable A-graph obtained from λ1 by setting
β(u0) = 1.We have two combinatorial morphisms α0 : τ2 ←↩ τ1 and
α1 : τ2 ←↩ τ1 obtained by sending u0 to u0 and u1 respectively. We have in-
duced morphisms of stacks M(X, τ2)

α0−→ M(X, τ1) and

M(X, τ2)
α1−→ M(X, τ1). Additionally we have the morphism obtained

by evaluation at e0, M(X, τ1) → X. Together these morphisms exhibit
M(X, τ2) as an open substack of the fiber product X

X α0−−−→ M(X, τ1)

α1

y y
M(X, τ1) −−−→ X

.

Of courseM(X, τ1) is equivalent to the universal line over the Fano variety,
F0,1(X) = PF1(X)(S), and so is a finite type, separated C-scheme. Therefore
X is equivalent to a finite type, separated C-scheme and so is M(X, τ2).

And the Zariski tangent space to M(X, τ2) at some [(C, x, h)] is(
H0
(
Cw0 , Nhw0

)
×Nhw0

|p TX|p
)
×TX|p

(
H0
(
Cw1 , Nhw1

)
×Nhw1

|p TX|p
)
.

If Cwi is a line of type I for either i = 0 or i = 1, then this tangent space
has dimension 3. In fact the only way that the dimension could be greater
than 3 is if both lines are of type II, p is the special point on both lines,
and the osculating 2-planes of the two lines coincide. Since X is smooth, it
contains no 2-planes. Therefore the intersection of X with the osculating
2-plane considered as a Cartier divisor on the osculating 2-plane equals
2[Cw0 ] + 2[Cw1 ], and this contradicts Bezout’s theorem. So the dimension
of the Zariski tangent space is always 3 and therefore M(X, τ2) is smooth
of dimension 3, in particular it is reduced.

Moreover, by lemma 10.5 of [Clemens-Griffiths], there is an open subset
U ⊂ M(X, τ0) such that for each closed point [L] ∈ U , the fiber over
[L] of M(X, τ2) → M(X, τ0) is irreducible. Since M(X, τ0) = F1(X) is
irreducible, this implies that M(X, τ2) is irreducible.

Let M(X, τ1) → M(X, τ0) be the morphism induced by the obvious
combinatorial morphism τ1 ←↩ τ0. Composing this with (α0, α1) induces an
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embedding M(X, τ2) → M(X, τ0) ×M(X, τ0). The closure of M(X, τ2)
is an effective Cartier divisor D. And to test whether the projection of a
Cartier divisor D

π0−→M(X, τ0) is flat, it suffices to show that D contains

no associated points of fibers of M(X, τ0)×M(X, τ0)
π0−→M(X, τ0). This

follows since there is no line L ⊂ X such that for every line L′ ⊂ X,
L ∩ L′ 6= ∅. Thus M(X, τ2) → M(X, τ0) is flat. Moreover, for every line
L ⊂ X there exists a line L′ ⊂ X distinct from L such that L ∩ L′ 6= ∅.
Thus the map is even faithfully flat. �

Suppose that τ is a genus 0 tree such that βτ ≡ 1. We define a poset
(I,≺) by I = Flag(τ) t Vertex(τ) t (Flag(τ)/(f ∼ f)) and f ≺ ∂f ,
f ≺ {f, f}. For each [(C, x, h)] ∈ obj M(X, τ)(Spec C) one defines a
compatible family of C-vector spaces indexed by I as follows: For each
{f, f} ∈ Flag(τ)/ ∼, i.e. for each tail {f} and for each edge {f, f}, we
define T{f,f} := TX|hw(xf ) where w = ∂f . For each w ∈ Vertex(τ) we

define Tw := H0(Cw, Nhw) where Nhw is the normal bundle of the map hw.
And for each f ∈ Flag(τ) we define

Tf := H0(Cw, Nhw)×Nhw |xf TV |hw(xf )

where w = ∂f . The linear maps corresponding to f ≺ ∂f and f ≺ {f, f}
are the obvious ones. We define T[(C,x,h)] to be the inverse limit of this
compatible family.

Proposition 84. Let τ and T[(C,x,h)] be as above. Then M(X, τ) is
represented by a separated, finite type C-schemeM(X, τ). Let σ0 be the A-
graph whose underlying graph is λ0 with β(u0) = 1. We have the following:

(1) M(X, τ) is integral of dimension dim(X, τ).
(2) For w ∈ Vertex(τ), let τ ←↩ σ0 be the combinatorial morphism

u0 7→ w. The corresponding morphism M(X, τ) → M(X, σ0) is
faithfully flat.

(3) The Zariski tangent space to M(X, τ) at [(C, x, h)] is T[(C,x,h)]. In
particular, [(C, x, h)] is a smooth point if all the lines hw(Cw) are
of type I.

Proof. Let τ ←↩ r1(τ) be the combinatorial morphism which strips
all tails from τ . Clearly the induced morphism M(X, τ) → M(X, r1(τ))
is representable, surjective and smooth of relative dimension #Tail(τ) and
has connected geometric fibers. If we denote by
[(C, x, h)r] ∈ M(X, r1(τ))(Spec C) the image of a point
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[(C, x, h)] ∈M(X, τ)(Spec C), then the vertical tangent space to this mor-
phism at a point [(C, x, h)] is identified with∏

f∈Tail(τ)

TC∂f |xf .

This is also the kernel of the induced map of inverse limits T[(C,x,h)] →
T[(C,x,h)r]. So, without loss of generality, we may assume that τ has no
tails.

We proceed by induction on β(τ). If β(τ) = 1, then τ is just a single
vertex w with β(w) = 1. Every stable map of a rational curve to X
with image class [L] is just an isomorphism to a line in X. Therefore
M(V, τ) = M(X, τ) is identified with the Fano variety of lines F1(X).
The fact that F1(X) is smooth of dimension 2 is well-known (c.f.[Clemens-
Griffiths]). And for any [L] ∈ F1(X), the Zariski tangent space at [L] is
identified with H0(L,NL/X). So the proposition is true when β(τ) = 1.

Now suppose β(τ) > 1. Then τ has at least two vertices. Choose a
leaf w0 ∈ Vertex(τ) (i.e. a vertex of valence 1). Let f0 ∈ Flag(τ) be
the unique flag such that ∂f0 = w0, and let w1 denote ∂f0. We form
new A-graphs τ ′ = (Flag(τ)− {f0, f0},Vertex(τ)− {w0}, jτ , ∂τ ) and τ ′′ =
({f0, f0}, {w0, w1}, jτ , ∂τ ) both with β ≡ 1.
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w
1

w
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f
1 0
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τ ′:

w
1

τ ′′:

w
1

w
0

f
1 0

f

Diagram 5

We have combinatorial morphisms τ ←↩ τ ′ and τ ←↩ τ ′′ inducing mor-
phisms of stacks M(X, τ)→M(X, τ ′) and M(X, τ)→M(X, τ ′′). Let τ0

denote the A-graph whose underlying graph is λ0 with g(u0) = 0, β(u0) = 1.
We have combinatorial morphisms τ ′ ←↩ τ0 and τ ′′ ←↩ τ0 by sending u0 to
w1. Let Y denote the fiber product stack:

Y −−−→ M(X, τ ′′)y y
M(X, τ ′) −−−→ M(X, τ0)

.

Then we have an open immersion ofM(X, τ) into Y . We knowM(X, τ0) is
equivalent to F1(X). And by the induction assumptionM(X, τ ′) is equiv-
alent to a scheme. By lemma 83, M(X, τ ′′) is equivalent to a smooth,
irreducible C-scheme of dimension 3. Since the fiber product of separated,
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finite type C-schemes is still a separated, finite type C-schemes, Y is equiv-
alent to a separated, finite type C-scheme Y . SoM(X, τ) is also equivalent
to a separated, finite type C-scheme.

Also by induction M(X, τ ′) → M(X, τ0) and M(X, τ ′′) → M(X, τ0)
are faithfully flat. By base change X → M(X, τ ′′) and X → M(X, τ ′)
are faithfully flat. And M(X, τ0), M(X, τ ′) and M(X, τ ′′) are integral
schemes. So, by a standard argument, Y is reduced (at least in character-
istic 0; in positive characteristic we would need to prove that our morphisms
are separably generated). Also by lemma 7, the fiber of
M(X, τ ′′) → M(X, τ0) over a general point is irreducible. Since
M(X, τ ′) → M(X, τ0) is faithfully flat, we conclude that the fiber of
Y → M(X, τ ′) over a general point is irreducible. Since M(X, τ ′) is
irreducible we conclude that Y is also irreducible. Therefore Y is inte-
gral. By elementary dimension theory, theorem 5.6 of [Matsumura86],
dim(Y ) = dim(M(X, τ ′)) + dim(M(X, τ ′′))− dim(M(X, τ0)). And this is
dim(X, τ ′) + dim(X, τ ′′)− dim(X, τ0) = dim(X, τ).

Next we show that M(X, τ) → M(X, τ ′) is surjective. Suppose that
[(C, x, h)] ∈ M(X, τ ′) is a closed point. To extend this to a stable map
in M(X, τ), it suffices to show there exists a line Cw0 ⊂ V such that
Cw0 ∩ Cw1 6= ∅ but Cw0 ∩ Cw = ∅ for all w ∈ Wτ ′ which are connected to
w1 by an edge. By construction, all such Cw are distinct from Cw.

Lemma 85. Let L1, L2 ⊂ V be distinct lines. There is a finite closed
subset G ⊂ L1 such that L∩G 6= ∅ for all lines L ⊂ V for which L∩L1 6= ∅
and L ∩ L2 6= ∅.

Proof. Suppose first that L1 ∩L2 6= ∅ (this is the only case of impor-
tance to us), say p ∈ L1∩L2. If we have L∩L1 6= ∅, L∩L2 6= ∅ and p 6∈ L,
then necessarily L ⊂ span (L1, L2)∩X which is a cubic plane curve. Since
p 6∈ L, we see that L is the residual line to L1 ∪ L2 in this plane curve.
There is at most one such L and we define G = {p} ∪ (L ∩ L1).

Next suppose that L1 ∩ L2 = ∅. Then span (L1, L2) is a P3 which
intersects X in a cubic surface S. If L is a line intersecting both L1 and
L2, then it lies in span (L1, L2) and so in S. If S contains only finitely
many lines, say {L1, . . . , LN}, then we may take G = ∪Ni=3Li ∩ L. If S
contains infinitely many lines then S must be a cone over a smooth plane
cubic. This follows, for example, from the fact that F1(X) is embedded in
the abelian variety J(V ) and so contains no rational curves. At any rate,
this implies that L1 ∩ L2 6= ∅ which contradicts our hypothesis.

�
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We define G to be the union of all the finite sets Gw defined as above
for L1 = Cw1 and L2 = Cw for w ∈ Wτ ′ connected to w1 by an edge. Then
any line L intersecting Cw1 in a point not lying in G will suffice for Cw0 .
Through all but at most one point on any line there will be two or more
lines (if there are not two lines through a point, then the one line must
be a line of type II and the point must be the special point on a line of
type II). Thus we may find such L. So M(X, τ)→M(X, τ ′) is surjective
and so is faithfully flat. Using induction we conclude that for w 6= w0,
the morphismM(X, τ)→M(X, σ0) is the composite of the faithfully flat
morphisms M(X, τ) →M(X, τ ′) →M(X, σ0) and thus is faithfully flat.
Since τ has at least two leaves, we conclude that M(X, τ) → M(X, σ0)
is faithfully flat for all w ∈ Vertex(τ). In particular M(X, τ) ⊂ Y is a
nonempty open set. So M(X, τ) is integral of dimension dim(Y, τ).

So it only remains to establish (3). This follows easily by induction
and our description of M(X, τ) as an open subset of the fiber product
M(X, τ ′)×M(X,τ0)M(X, τ ′′). In particular, let Cw0 be a line of type I and
let T[(C,x,h)′] be the Zariski tangent space to M(X, τ ′) at [(C, x, h)′]. The
kernel of the derivative map T[(C,x,h)] → T[(C,x,h)′] is the inverse limit of the
system

H0(Cw0 , Nhw0
)×Nhw0

|p TX|p −−−→ H0(Cw0 , Nhw0
)y

TCw1|p −−−→ TX|p
i.e. H0(Cw0 , Nhw0

)×Nhw0
|p TCw1|p. Since Cw1 and Cw0 are distinct, TCw1|p

maps injectively into Nhw0
|p. Since Cw0 is a line of type I, the normal

bundle is generated by global sections. So the inverse limit has codimen-
sion 1 in H0(Cw0 , Nhw0

). Therefore dimT[(C,x,h)] ≤ dim T[(C,x,h)′] + 1. If
we assume that all the lines Cw are lines of type I, then we may make
the induction assumption dimT[(C,x,h)′] = dim(X, τ ′). And then we con-
clude that dim T[(C,x,h)] = dim (X, τ). So [(C, x, h)] is a smooth point of
M(X, τ). �

Remarks:

(1) Notice that the inductive proof that M(X, τ) is irreducible only
used that the morphism M(X, τ) →M(X, σ0) is dominant even
though we proved that this morphism is even faithfully flat. This
will be important later.

(2) Notice thatM(X, τ ′′) is smooth even at points not satisfying (3).
Thus (3) is sufficient but not necessary.
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Corollary 86. Let φ : τ2 → τ1 be a combinatorial datum such that
βτ1 ≡ 1. Then M(X,φ) is integral and generically smooth of dimension
dim(X,φ) (as a stack).

Proof. This follows from lemma 34 and proposition 84. �

Proposition 87. Let σ be a genus 0 tree, let τ be a basic genus 0 tree,
and let ψ : τ −→ σ be a contraction of A-graphs. For each ((Cw), (hw), (qf )) ∈
M(X, τ)(Spec C) such that each hw(Cw) is a line of type I, the image point
in M(X, σ) is smooth.

Let σ be a genus 0 tree, let φ : τ1 −→ τ2 be a combinatorial datum such
that τ1 is basic, and let ψ : τ1 −→ σ be a contraction. For each(

((Cw), (hw), (qf )) ,
(
(C ′w), (h′w), (q′f )

)
, (kw)

)
∈M(X,φ)(Spec C)

such that each hw(Cw) is a line of type I, the image point in M(X, σ) is
smooth.

Proof. The proof of this result follows the pattern of the proof of
theorem 2 in [Fulton-Pandharipande96]. There are only two changes to
that proof which need to be made to prove our proposition. The first
change is that one needs to allow for deformations which preserve those
nodes coming from edges in σ or σ2. This change is trivial and will be left
to the reader. The second change that needs to be made is to provide a
proof that for each component C = Cw, and for each point p ∈ C, one has
H1(C, h∗TX) = H1(C, h∗TX(−p)) = 0. This fact is the only place in the
proof of theorem 2 [Fulton-Pandharipande96] where convexity is used.

By hypothesis, the map h : C → X factors through the map of a line
of type I to X, h = h′ ◦ k, h′ : L → X, k : C → L. And on the line of
type I we have (h′)∗TX = OL ⊕ OL ⊕ OL(2). So, if k has degree β, then
k ∗ TX = OC ⊕ OC ⊕ OC(2β). Since H1(C,OC(r)) = 0 for all r ≥ −1, we
have the result and the proposition is proved. �

2.6. Almost Basic Components
If C ⊂ X is a smooth conic, then span(C) ∩X is a plane cubic which

contains C as an irreducible component. The residual component is then
a line L ⊂ X. Conversely, given a line L ⊂ X and a 2-plane P containing
L, we have that P ∩X is a plane cubic which contains L as an irreducible
component. The residual to L will then be conic (possibly degenerate).
In this way we see that M0,0(X, 2)o admits a natural open immersion into
the projective bundle PF1(X)(Q) where Q is the universal rank 3 quotient
bundle of C5 supported on F1(X).
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Lemma 88. Let I ⊂ M0,0(X, 2)×M0,0(X, 1) be the incidence correspon-
dence {([C], [L]), C ∩ L 6= ∅}. Then I is irreducible of dimension 5. Also
both projections I → M0,0(X, 2) and I → M0,0(X, 1) are dominant and the
generic fibers are irreducible.

Proof. We may view the product M0,0(X, 2)×M0,0(X, 1) as an open
subscheme of PF1(X)(Q) ×C F1(X). One sees that the closure of I, I, is a
subvariety of the incidence correspondence

D ⊂ PF (Q)× F,D = {(([P ], [L]), [L′])|L ⊂ P,L′ ∩ P 6= ∅}
. We notice that D is precisely the pullback of the universal family of
hyperplane sections of F by the natural map PF (Q) → Grass (3,C5) =
Grass (2,C5)∨. This shows us that D is a Cartier divisor. And I is simply

the closure of the open subscheme of D, Io = {(([P ], [L]), [L′]) ∈ D|L∩L′ =
∅}. Therefore I is an irreducible component of D. So the reduced scheme
of I is also a Weil divisor which is even Cartier since PF (Q)×kF is smooth.

Since I
red

is a Cartier divisor, it is a complete intersection and so is certainly
Cohen-Macaulay. And F is regular. Therefore, according to the corollary
to theorem 23.1 in [Matsumura86], to prove that the projections Ired → F ,
Ired → PF (Q) are flat, it suffices to prove that all nonempty fibers of these
maps have dimension 3 and 1 respectively.

Suppose that [L′] ∈ F is a line and L ⊂ X is a line skew to L′. Let p
be a point not contained in span (L,L′). Then P = span (L, p) is a P2

skew to L′. So (([P ], [L]), [L′]) ∈ PF (Q) × F is a point lying over [L′] but
not in I. So the fiber of I over [L′] has dimension 3. Thus Ired → F is flat.

Similarly suppose given ([P ], [L]) ∈ PF (Q). Since the Fano surface
F1(X) is nondegenerate, i.e. lies in no hyperplane in P14, not every line
L′ ⊂ X intersects P . If L′ ∩ P = ∅, then (([P ], [L]), [L′]) is a point lying
over ([P ], [L]) but not in I. So the fiber of I over [L′] has dimension 1.

Thus I
red → PF (Q) is flat.

Now we consider the fibers of I → F . Fix a line [L′] ∈ F and consider
the open subset U L′×F,U = {(p, [L])|∀L′′ such that p ∈ L′′, L∩L′′ = ∅}.
Then U embeds in the fiber I [L′] via (p, [L]) 7→ (( span (p, L), [L]), [L′]).

Even if L′ contains an Eckardt point, the complement of U in I [L′] is still

only 2 dimensional. Since I [L′] has pure dimension 3, we see that U is

dense. Since U is irreducible, I [L′] is irreducible.
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Since both projection maps are faithfully flat and since the fibers of
Ired → F are irreducible, a standard argument shows that Ired itself is irre-

ducible. And the morphism I
red → PF (Q) admits a section,

([P ], [L]) → (([P ], [L]), [L]). So another standard argument shows that
the generic fiber of Ired → PF (Q) is irreducible. �

Proposition 89. Let τ be an almost basic genus 0 tree such that
Tail(τ) = ∅. Then M(X, τ) is equivalent to a finite type, separated C-
scheme, M(X, τ). And we have the following:

(1) M(X, τ) is irreducible of dimension dim (X, τ).
(2) Let w ∈ Vertex(τ) be a vertex. Let σ0 be the A-graph with under-

lying graph λ0 such that β(u0) = βτ (w). Let τ ←↩ σ0 be the com-
binatorial morphism which sends u0 to w. The induced morphism
M(X, τ)→M(X, σ0) is dominant.

Proof. The proof is similar to the proof of proposition 84. We perform
induction on β(τ). If β(τ) = 2, the result is trivial. Thus suppose that
β(τ) > 2. We may find a leaf w0 ∈ Vertex(τ) such that w 6= w̃. Let f0 be
the unique flag such that ∂f0 = w0. Let w1 = ∂f . There are two cases.

Case I: w1 6= w̃ Let τ ′ and τ ′′ be as defined in the proof of proposi-
tion 87. Then M(X, τ) is an open subfunctor of the fiber product stack
Y :

Y −−−→ M(X, τ ′′)y y
M(X, τ ′) −−−→ M(X, τ0)

.

By induction M(X, τ ′) is equivalent to a finte type, separated C-
scheme. By lemma 7, M(X, τ ′′) is equivalent to a finite type, separated
C-scheme. Therefore Y is equivalent to a finite type, separated C-scheme
and so is M(X, τ). Since M(X, τ ′′) → M(X, τ0) is faithfully flat, so
is X → M(X, τ ′). Since M(X, τ ′) → M(X, τ0) is dominant and since
M(X, τ ′′)→M(X, τ0) is flat, we see that X →M(X, τ ′′) is dominant.

Now suppose that U1, U2 ⊂ Y are nonempty open subsets. Let U ′1 and
U ′2 denote the images of these sets in M(X, τ ′). Since Y → M(X, τ ′) is
fppf, we see that U ′1 and U ′2 are nonempty open sets. Let U ⊂ M(X, τ0)
be the open set from the proof of proposition 84. Since M(X, τ ′) →
M(X, τ0) is dominant and since M(X, τ0) is irreducible, the preimage of
U in M(X, τ ′) is a nonempty open set, U ′. By induction M(X, τ ′) is
irreducible. Therefore U ′1 ∩ U ′2 ∩ U ′ 6= ∅. Therefore U1 and U2 intersect
a fiber of Y → M(X, τ ′) over a point in U ′. Since such a fiber is irre-
ducible, we conclude that U1 ∩ U2 6= ∅. Therefore Y is irreducible. And
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the dimension of Y is dimM(X, τ ′) + dimM(X, τ ′′) − dimM(X, τ0) =
dim(X, τ ′) + dim(X, τ ′′)− dim(X, τ0) = dim(X, τ).

Suppose that [(C, x, h)] ∈M(X, τ ′)(Spec C) is some point. If w̃ is not
connected to w1 by an edge, then lemma 85 applies directly to show there is
a point inM(X, τ) lying above [(C, x, h)]. Suppose that w̃ is connected to
w1 by an edge. Let G ⊂ Cw1 be the union of all the sets Gw as in lemma 85
for all w connected to w1 by an edge such that βτ ′(w) = 1. In fact the
proof of lemma 85 shows that, up to enlarging G by a finite set of closed
points, we may assume that L 6⊂ span (Cw̃, Cw1). If L ⊂ X is a line such
that L ∩ Cw1 6= ∅, L ∩ G = ∅, and L is not contained in span (Cw̃, Cw1),
then Cw0 = L yields a point of M(X, τ) lying above [(C, x, h)]. Thus
M(X, τ) →M(X, τ ′) is surjective. In particular M(X, τ) is a nonempty
open subset of Y . ThereforeM(X, τ) is irreducible of dimension dim(X, τ).

For all w 6= w0 we conclude that M(X, τ) → M(X, σ0) equals the
composite of the dominant morphismsM(X, τ)→M(X, τ ′)→M(X, σ0),
and so is itself dominant. The final case w = w0 factors as
M(X, τ) → M(X, τ ′′) → M(X, σ0). Since it is the flat basechange
of a dominant morphism, M(X, τ) → M(X, τ ′′) is dominant. And by
lemma 83, M(X, τ ′′) → M(X, σ0) is faithfully flat. Therefore
M(X, τ) → M(X, σ0) is dominant. So M(X, τ) → M(X, σ0) is domi-
nant for all w ∈ Vertex(τ). So the proposition is proved in this case.

Case 2: w1 = w̃ We define τ ′ and τ ′′ as before. Yet again we have that
M(X, τ) is an open subfunctor of the fiber product Y :

Y −−−→ M(X, τ ′′)y y
M(X, τ ′) −−−→ M(X, τ0)

.

This time M(X, τ ′′) is different than the previous cases. The proof, how-
ever, is exactly analogous to the proof of the last case where instead of
using lemma 83 we now use lemma 88. Additionally, to get irreducibility
of Y we first prove irreducibility of the fiber product Y ′ defined as above
where M(X, τ ′′) is replaced by the reduced scheme of M(X, τ ′′). By the
proof of lemma 88, the map from Y ′ → M(X, τ ′) is faithfully flat. Since
the reduced scheme of Y equals the reduced scheme of Y ′, we conclude
that Y is irreducible. It will be left to the reader to make the necessary
changes. �

Corollary 90. Let τ be a genus 0 tree such that there exists w̃ ∈
Vertex(τ) with βτ (w̃) = 2 and βτ (w) = 1 for all w 6= w̃. Then M(X, τ) is
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equivalent to a finite type, separated C-scheme M(X, τ) which is integral
of dimension dim(X, τ).

Proof. We are simply putting the tails back into τ . If τ ←↩ r1(τ) is the
combinatorial morphism which strips all tails, then
M(X, τ) → M(X, r1(τ)) is representable, flat, separated, and finite type
with geometric fibers which are irreducible of dimension #Tail(τ). By
the previous resultM(X, r1(τ)) is equivalent to a finite type, separated C-
schemeM(X, r1(τ)) which is irreducible of dimension dim(X, r1(τ)). Thus
M(X, τ) is equivalent to a finite type, separated C-schemeM(X, τ) which
is integral of dimension dim(X, r1(τ)) + #Tail(τ) = dim(X, τ). �

Proposition 91. Let φ : τ1 −→ τ2 be an almost basic combinatorial
datum such that τ1 = r1(τ1). Then M(X,φ) is equivalent to a finite type,
separated C-scheme, M(X,φ). And we have the following:

(1) M(X,φ) is integral of dimension dim(X,φ).
(2) Let w ∈ Vertexτ1 be a vertex. Then M(X,φ) → M(X, {w}) is

flat and dominant.

Proof. Doubtless the reader is growing weary of seeing the same ar-
gument repeated. Therefore we shall just indicate what changes must be
made to the proof of proposition 89 in order to prove the current proposi-
tion.

One proceeds by induction on β(τ2). One chooses a leaf w0 ∈ Vertex(τ1).
If the preimage of φV (w0) is just w0, then one proceeds just as in the proof
of proposition 89.

Thus suppose that φV (w0) consists of more than one vertex. Necessarily
we have βτ2(φV (w0)) = 1. Let τ ′′2 be the A-graph whose underlying graph
is λ1 with β(u0) = 1. Let τ ′′1 be the A-graph whose underlying graph is λ2

with β(u0) = β(u1) = 1. Let φ′′ : τ ′′1 −→ τ ′′2 be the elementary combinatorial
datum such that φ′′V (u0) = φ′′V (u1) = u0, and φ′′F (e0) = φ′′F (e1) = e0. One
has combinatorial morphisms τ1 ←↩ τ ′′1 and τ2 ←↩ τ ′′2 as follows: Send u0 in
σ2 to φV (w0) and e0 in σ2 to φF (f0). And send u0, u1 in σ1 to w0, w1; e0, e1

to f0, f0. These morphisms induce a 1-morphism M(X,φ)→M(X,φ′′).

Define φ′ : τ ′1 −→ τ ′2 to be the combinatorial datum obtained by pruning
f0 and w0 from τ1. There is an obvious 1-morphismM(X,φ)→M(X,φ′).

Finally define τ0 to be the same old A-graph: the underlying graph
is λ0 with g(u0) = 0, β(u0) = 1. Let υ : τ0 → τ0 be the unique simple
combinatorial datum which is the identity on underlying trees. We have
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combinatorial morphisms τ ′1 ←↩ τ0 and τ ′2 ←↩ τ0 by sending u0 to w1 in
Vertex(τ ′1) and to φ′V (w1) in Vertex(τ ′2). We have combinatorial morphisms
τ ′′1 ←↩ τ0 and τ ′′2 ←↩ τ0 by sending u0 to u1 in Vertex(τ ′′1 ) and to u0 in
Vertex(τ ′′2 ). These combinatorial morphisms induce obvious 1-morphisms:
M(X,φ′) → M(X, υ),M(X,φ′′) → M(X, υ). These morphisms exhibit
M(X,φ) as an open substack of the fiber product stack Y :

Y −−−→ M(X,φ′′)y y
M(X,φ′) −−−→ M(X, υ)

.

The only nontrivial new result one needs is the following: M(X,φ′′)
is equivalent to a finite type, separated C-scheme, M(X,φ′′). Moreover
this is a smooth, connected scheme of dimension 3. And the morphism
M(X,φ′′)→M(X, υ) is faithfully flat with irreducible geometric fibers.

Indeed, an element(
((Cv), (hv), (qf )) ,

(
(C ′v), (h

′
v), (q

′
f )
)
, (kv)

)
∈M(X,φ′′)

is uniquely determined by
(
(C ′v), (h

′
v), (q

′
f )
)
. ThusM(X,φ′′) is a nonempty

open subscheme of the universal line over F1(X), F0,1(X). And the mor-
phism M(X,φ′′) → M(X, υ) just corresponds to the projection
F0,1(X)→ F1(X).

One uses this fact in exactly the analogous manner to lemma 83 and
lemma 88. We leave the necessary changes to the reader. �

Corollary 92. Let φ : τ1 −→ τ2 be any almost basic combinatorial
datum. Then M(X,φ) is equivalent to a finite type, separated C-scheme
which is integral of dimension dim (X,φ).

Proof. This is the same as the proof of corollary 90. �

Finally we come to the construction of the distinguished component.

Proposition 93. There is an irreducible component Mβ ⊂M0,0(X, β)
with the following property. Let τ be any nice, basic genus 0 tree such that
β(τ) = β and Tail(τ) = ∅. Then Mβ is the unique irreducible compo-
nent through which the morphism M(X, τ) → M0,0(X, β) factors. Let
φ : τ1 −→ τ2 be any nice, basic combinatorial datum such that β(τ1) = β
and Tail(τ1) = ∅. Then Mβ is the unique irreducible component through
which the morphism M(X,φ)→M0,0(X, β) factors. We call Mβ the dis-
tinguished component.
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Proof. First of all note that the stacks M(X, τ) are equivalent to
integral schemes and M(X,φ) are integral stacks. And by prop 87, the
image of the morphism intersects the smooth locus of M0,0(X, β). Thus
we conclude that for each morphism there is a unique component (which a
priori depends on the morphism) such that the morphism factors through
that component. Let us refer to this component as the distinguished com-
ponent of τ or the distinguished component of φ respectively. We wish to
prove that these distinguished components all coincide.

Reduction to Basic A-graphs: First we reduce the case of a basic
combinatorial datum to the case of a basic A-graph. Let l = #Vertex(τ1)−
#Vertex(τ2. If l > 1, we will prove that there is a basic stable pair φ′ :
σ1 −→ σ2 whose distinguished component is the same as the distinguished
component of φ and such that #Vertex(σ1)−#Vertex(σ2) < l. If l = 1, we
will prove that there is a basic A-graph σ whose distinguished component
is the same as the distinguished component of φ. We do this by smoothing
an “exterior” node (i.e. a node corresponding to an edge in τ2) and then
allowing the smooth component to become reducible in such a way as to
reduce the size of l.

Let {f, f} be an edge in τ2 such that the preimage of ∂f contains at least
2 vertices. Since φ : τ1 −→ τ2 is a combinatorial datum, there is a unique
edge {f ′, f ′} which maps under φF to {f, f}. We define w0 = ∂f ′, w1 = ∂f ′.
We form a new graph τ ′ along with a factorization of φ : τ1 −→ τ2 by
φ1 : τ1 −→ τ ′, φ2 : τ ′ −→ τ2. We define τ ′ → τ2 to be the smallest “covering”
of τ1 with the following property: for every vertex w whose distance from
φ1,V (w0) or φ1,V (w1) is at most 1 edge, the preimage φ−1

1,V (w) consists of a
single vertex.
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Diagram 6

For illustrative purposes we have changed notation in diagram 6. Here
the role of f0 is played by e4. The first picture shows a basic combinatorial
datum. The second picture shows the factorization of φ into φ1 and φ2.

There are two possibilities for φ1.
Case I: φ1 nontrivial. If φ1 is a nontrivial covering map, then we

consider M(X,φ) as embedded in M(X,φ1). Now let ψ1 : τ1 → σ′1 and
ψ2 : τ2 → σ′2 be the smallest contractions which contract the edge {f ′, f ′}
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and such that we have a combinatorial morphism φ′1 : σ′1 → σ′2 such that
φ′1 ◦ ψ1 = ψ2 ◦ φ1. Let w′ ∈ Vertex(σ′2) be the vertex corresponding to
this contracted edge. Then β(w′) = 2 and one sees that φ′1 : σ′1 −→ σ′2 is
an almost basic combinatorial datum. One uses the contractions ψ1 and
ψ2 to obtain an obvious 1-morphismM(X,φ1)→M(X,φ′1). This induces
a map of the (set) closures closure(M(X,φ1)) → closure(M(X,φ′1). By
proposition 87, for a general point

ζ =
(
((Cv), (hv), (qf )) ,

(
(C ′v), (h

′
v), (q

′
f )
)
, (kv)

)
∈M(X,φ),

the image point in closure(M(X,φ′1)) will be a smooth point. We may con-
struct the universal deformation of this point. Clearly the generic point of
this deformation will smooth the node corresponding to {f ′, f ′}. There-
fore the image of the generic point of the universal deformation is con-
tained in M(X,φ′1). Since ζ is a smooth point of M0,0(X, β) and since
M(X,φ′1) is irreducible, we see that the distinguished component of φ
contains M(X,φ′1).

But now we also have the contraction (φ1 : τ1 −→ τ ′)
ψ−→ (φ′1 : σ′1 −→ σ′2)

and φ1 : τ1
φ1−→ τ ′ is a basic datum. The same argument as above shows

that M(X,φ′1) is contained in the distinguished component of φ1. Since
the distinguished component is close, it also contains M(X,φ). Therefore
the distinguished component of φ equals the distinguished component of φ.
And #Vertex(τ1)−#Vertex(τ ′) is smaller than #Vertex(τ1)−#Vertex(τ2)
by at least 1 since now there is a single vertex in τ ′ lying above φ1,V (w0).

79



w
0

0
f

f
2

f
3

f
1

w
1

w
2

f
4

f
5 w

3

f
6

f
7

w
4

f
8

f
9

f
10

f
11

f
12

f
13

w
5

w
7

w
6

0
c

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
9

c
10

2
v

3
v

5
v

4
v

c
11

1
v

v
0

c
9

c
10

3
v

5
v c

11

c
7

c
8

0
c

c
1

c
2

1
v

v
0

c
3

c
4

2
v~

Diagram 7

This example is a continuation of the example in diagram 6. The first
map illustrated is the covering map φ1. The second map is the contraction
ψ1 : τ ′ −→ σ2, (the contraction ψ2 : τ1 −→ σ1 is easily deduced from diagram
6 and so is not illustrated) in which ṽ2 is the unique vertex with β(ṽ2) = 2.

Case II: φ1 trivial. If φ1 : τ1 −→ τ ′ is trivial, then we can repeat the
argument in case I and now we deduce that the distinguished component
of φ : τ1 −→ τ2 equals the distinguished component of the basic A-graph τ ′.

Therefore we are reduced to considering the case of a basic A-graph τ .

Linking Basic A-graphs. Let l be the length of a maximal chain
inside of τ . If l < β we will prove that there is a basic A-graph σ which
contains a chain of length > l and such that the distinguished component
of τ equals the distinguished component of σ. To prove this, let {f, f}
be an edge such that ∂f is contained in a maximal chain but ∂f is not

contained in this maximal chain. Let τ
ψ−→ σ′ be the contraction which

only contracts {f, f} to a vertex w′ such that β(w′) = 2. We obtain an
induced morphism M(X, τ)→M(V, σ′). If

ζ = ((Cv), (hv), (qf )) ∈M(X, τ)

is a general C-valued point, then the image of this point in M(X, σ′) is
smooth by proposition 87. We may form the universal deformation space
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of this point. Clearly the generic point of this universal deformation space
will smooth the node corresponding to {f, f}. Thus the generic point of
the universal deformation space will lie in M(X, σ′). Since ζ is a smooth
point of M0,0(X, β) and since M(X, σ′) is irreducible, we conclude that
distinguished component of τ contains M(X, σ′).

Now we let σ
ψ′
−→ σ′ be a contraction obtained by expanding the vertex

w′ into an edge in such a way that we increase the length of the maximal
chain. By the same argument as above, we conclude that the distinguished
component of σ containsM(X, σ′). Therefore it containsM(X, τ). There-
fore the distinguished component of τ equals the distinguished component
of σ.
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Diagram 8

The diagram illustrates how the basic A-graph on the left and the basic
A-graph on the right both contract to the same almost basic A-graph in
the middle. Here the contracted edges are circled and ũ2 is the unique
vertex with β(ũ2) = 2.

Since there is a unique basic A-graph which contains a chain of length
β, we see that all of the distinguished components are actually equal.

�
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Corollary 94. For each r and e, there is an irreducible compo-
nent M ⊂ M0,r(X, e) such that for every type I, nice, basic point p ∈
M0,r(X, e), M is the unique irreducible component containing p. Moreover
M is generically smooth of dimension 2e+ r.

Proof. By lemma 34, it suffices to consider the case when r = 0. By
the last theorem, there is a distinguished component Me ⊂ M0,0(X, e)
which contains every nice, basic component, in particular it contains every
type I, nice, basic point. But a type I, nice, basic point is a smooth point of
M0,0(X, e) and therefore lies on a unique irreducible component. Finally
sinceM0,0(X, e) is smooth of dimension 2e at each type I, nice, basic point,
M is also smooth of dimension 2e at each type I, nice, basic point. �

2.7. Bend-and-Break

Together theorem 77 and cor 94 imply that M ⊂ M0,r(X, e) is the
unique irreducible component which contains every nonlinear, moderate
component M(X,φ). In this section we will finish the proofs of theo-
rem 64, theorem 65, theorem 66, and theorem 80. Using the lemmas from
section 2.3 and section 2.4, all that remains to finish the proofs is to prove
that for each τr(e) and for each corresponding simple combinatorial datum
φ : τr(e)→ τr(e)

(1) M(X,φ) has pure dimension 2e+ r,
(2) each evaluation 1-morphism e :M(X,φ)→ X has constant fiber

dimension 2e + r − 3 over Xf and has fiber dimension at most
2e+ r − 2 over each Eckardt point p ∈ E, and

(3) for each irreducible component A ⊂M(X,φ), there is a moderate,
nonlinear combinatorial datum ψ : σ1 → σ2 with canonical con-
traction σ1 → τr(e), and an irreducible component B ⊂M(X,ψ)
such that F ′1(B) ⊂ F ′1(A) is a codimension 1 subvariety.

Of course to prove this for all τr(e), it is clearly equivalent to prove this
for τ1(e). For e = 2 this is proved in section 2.6. Thus we may suppose that
e ≥ 3. Moreover, having reduced to the case τ1(e), we are free to prove the
result for τ2(e) instead (our reason for doing this will become clear). Let
φ : τ2(e)→ τ2(e) be the unique simple datum which is the identity map on
underlying trees. We will prove 1, 2, and 3 above for each φ by induction
on e (where e = 2 is the base case).

Suppose that A ⊂M(X,φ) is an irreducible component. Without loss
of generality, identify A as an open subset of an irreducible component
of M0,2(X, e). Let E : M0,2(X, e) → X × X denote the evaluation map
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coming from the two flags f1, f2 of τ2(e). Let Y ⊂ X×X denote the image
of A under E. Let (p, q) ∈ Y be any point such that {p, q} lies on no line
L ⊂ X (since the stable maps parametrized by A are birational to their
image, we can find such a pair on the image of each such stable map).
Now the virtual dimension 2e+ 2 ofM(X,φ) is always a lower bound, i.e.
dim(A) ≥ 2e + 2. So the dimension of the fiber E−1(p, q) ⊂ A is at least
dim(A)− dim(Y ) ≥ 2e+ 2− 6 = 2e− 4. Since e ≥ 3, this is at least 2 (in
particular it is positive).

Let D ⊂ E−1(p, q) be any irreducible component. The claim is that
D∩ (A−A) ⊂ D is a codimension 1 subvariety. By [Cornalba95], we know
that the coarse moduli scheme ofM0,2(X, e) is projective, thus the coarse
moduli scheme of D (with the reduced induced structure) is projective. So
to establish that D∩ (A−A) ⊂ D is codimension 1, it suffices to establish
that for any complete curve K ⊂ D, K ∩ (A− A) = neq∅.

Suppose the contrary, i.e. suppose that there is a complete curve
K ⊂ D ∩ A. Now after replacing K by a ramified cover of K, we may
assume that K actually factors through the stack of D and not just the
coarse moduli scheme of D. We may also assume that K is smooth. Let
π : C → K be the pullback to K of the universal curve, let s1, s2 : K → C
be the two markings and let h : C → X be the map to X. Since the
image of K is contained in A, π is smooth. Now after again replacing K
by a ramified cover of K, we may suppose that there is a third section
s3 : K → C such that h(s1(K)), h(s2(K)) and h(s3(K)) are disjoint: sim-
ply take any hyperplane section H of X which contains neither p nor q and
replace K by the normalization of the multisection h−1(H) of π. But then,
since any rational curve with three distinct marked points is canonically
isomorphic to (P1, 0, 1,∞), we may identify (π : C → K, s1, s2, s3) with
(π1 : K × P1, t0, t1, t∞) where ti(x) = (x, i) ∈ K × P1 for all x ∈ K. But
then the morphism h : P1 ×K → X along with the sections t0, t1 satisfies
the hypothesis of theorem 61 This contradicts that K ⊂ M(X,φ). So we
conclude that D ∩ (A− A) ⊂ D is a codimension 1 subvariety. Since this
is true for every irreducible component, we conclude that A− A ⊂ A is a
codimension 1 subvariety.

By the proof of corollary 37, we know that A − A is contained in
M0,2(X, e) −M(X,φ). Thus A − A is the union of its (locally closed)
intersections with the other components M(X,ψ). Thus there is some ψ
such that M(X,ψ) ∩ (A− A) has codimension 1 in A.
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Let us consider the other components of the CD decomposition of
M0,2(X, e). One of the combinatorial data we have to consider is the
simple combinatorial datum φ′ : τ → τ where the underlying tree of τ
is the tree with two vertices v1, v2, one edge {f1, f2}, ∂f1 = v1, ∂f2 = v2

and two tails ∂f3 = v2, ∂f4 = v4 and such that β(v1) = e, β(v2) = 0. But
clearly M(X,φ′) will not intersect any of the fibers E−1(p, q) with p 6= q.

Second we should consider all components M(X,ψ) such that ψ is
linear. But for general p, q ∈ E(A), {p, q} lies on no line L ⊂ X. Thus
no componentM(X,ψ) can dominate E(A). So we can discount all linear
components.

Next we should consider all components M(X,ψ) such that φ is not
moderate. But by theorem 67, dim(M(X,ψ)) ≤ 2e− 1, so it cannot have
codimension 1 in A.

All that is left are the components M(X,ψ) such that ψ is moderate
and nonlinear. By induction the 1, 2, and 3 have already been proved for
all e′ < e. And the induction arguments in section 2.3 for ψ : σ1 → σ2

with canonical contraction σ1 → τ2(e) only use 1, 2, and 3 for e′ < e.
Therefore we know that for each such ψ, M(X,ψ) has pure dimension
dim(X,ψ). And by the analogous (trivial) calculation to lemma 50, we see
that dim(X,ψ) ≤ 2e + 1. The only conclusion is that dim(A) ≤ 2e + 2.
Of course this is equivalent to dim(A) = 2e + 2. Also, since M(X,ψ) ∩
(A − A) has dimension 2e + 1 = dim(M(X,ψ), we conclude that there is
an irreducible component B ⊂ M(X,ψ) such that B ⊂ A. This proves 1
and 3.

All that remains is to prove 2. Let p ⊂ Xf and consider the preimage
ef1−1(p) ⊂ A. Let D ⊂ e−1

f1
(p) be any irreducible component. Since this is

a union of subsets E−1(p, q), we know that D∩ (A−A) has codimension 1
in D. So it intersects some M(X,ψ) in a set of codimension 1. Since p is
not an Eckardt point we can show that φ is moderate – indeed for ψ which
are not moderate, the only fibers of ef1 : M(X,ψ) → X with dimension
> 2e− 2 are the fibers over Eckardt points. Also, since for a general point
q ∈ ef2(D), the pair {p, q} lies on no lines, we see that ψ must be nonlinear.
And then we conclude by theorem 66, that M(X,ψ) ∩ D ∩ (A − A) is
contained in the fiber of ef1 : M(X,ψ) → X over p which has dimension
leq(2e+ 1)− 3 = 2e− 2. Thus dim(D) ≤ 2e− 1 when p ∈ Xf .
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If p ∈ X is an Eckardt point, then by the same argument each irre-
ducible component D of e−1

f1
(p)∩A contains some locusM(X,ψ)∩D as a

codimension 1 subvariety. As before, we can rule out all linear ψ. If ψ is
moderate, then by theorem 66, we conclude that dim(D) ≤ 2e. But even
for ψ which aren’t moderate, by theorem 67 we know dim(M(X,ψ)) ≤
2e− 1 so again we conclude dim(D) ≤ 2e. This proves 2. This finishes the
proof of theorem 62.
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