1. Statement of the Lemma

Let \mathcal{C} be an Abelian category. In particular, every image in \mathcal{C} equals the coimage. Thus we make no distinction between images and coimages in what follows. One of the fundamental notions of homological algebra is the following.

Definition 1.1. A short exact sequence

$$\Sigma_A : 0 \longrightarrow A' \xrightarrow{q_A} A \xrightarrow{p_A} A'' \longrightarrow 0$$

is a pair of morphisms in \mathcal{C}

$$\Sigma_A = (q_A : A' \to A, p_A : A \to A)$$

such that all of the following hold:

(i) q_A is a monomorphism,
(ii) p_A is an epimorphism, and
(iii) the image of q_A equals the kernel of p_A.

There is a category whose objects are short exact sequences in \mathcal{C}. Here is the notion of morphism in this category.

Definition 1.2. Let $\Sigma_A = (q_A, p_A)$ and $\Sigma_B = (q_B, p_B)$ be short exact sequences in \mathcal{C}. A morphism Σ_f from Σ_A to Σ_B.

$$\Sigma_A : 0 \longrightarrow A' \xrightarrow{q_A} A \xrightarrow{p_A} A'' \longrightarrow 0$$

$$\Sigma_B : 0 \longrightarrow B' \xrightarrow{q_B} B \xrightarrow{p_B} B'' \longrightarrow 0$$

is a triple of morphisms in \mathcal{C}

$$\Sigma_f = (f' : A' \to B', f : A \to B, f'' : A'' \to B'')$$

such that every square commutes, i.e., both of the following hold:

(i) $q_B \circ f'$ equals $f \circ q_A$, and
(ii) $p_B \circ f$ equals $f'' \circ p_A$.

Date: October 12, 2010.
In the category of short exact sequences the identity morphisms and the compositions are the obvious notions. The category of short exact sequences is an additive category.

Let \(\Sigma f \) be a morphism of short exact sequences as above. Denote the kernels of \(f' \), respectively \(f'', \) by,

\[
\iota' : K'_{\Sigma f} \rightarrow A', \text{ resp. } \iota : K_{\Sigma f} \rightarrow A, \quad \iota'' : K''_{\Sigma f} \rightarrow A''.
\]

Similarly, denote the cokernels of \(f' \), respectively \(f'' \), \(f' \) by,

\[
\sigma' : B' \rightarrow C'_{\Sigma f}, \text{ resp. } \sigma : B \rightarrow C_{\Sigma f}, \quad \sigma'' : B'' \rightarrow C''_{\Sigma f}.
\]

Because \(q_B \circ f' \) equals \(f \circ q_A \), also \(f \circ (q_A \circ \iota') \) equals \(q_B \circ (f' \circ \iota') \), which equals \(q_B \circ 0 = 0 \). Thus, by the universal property of the kernel, there is a unique morphism

\[
q_K : K'_{\Sigma f} \rightarrow K_{\Sigma f}
\]

such that \(\iota \circ q_K \) equals \(q_A \circ \iota' \). For a similar reason, there is a unique morphism

\[
p_K : K_{\Sigma f} \rightarrow K''_{\Sigma f}
\]

such that \(\iota'' \circ p_K \) equals \(p_A \circ \iota \). And by analogous arguments there are unique morphisms

\[
q_C : C'_{\Sigma f} \rightarrow C_{\Sigma f}, \quad p_C : C_{\Sigma f} \rightarrow C''_{\Sigma f}
\]

such that \(q_C \circ \sigma' \) equals \(\sigma \circ q_B \), and \(p_C \circ \sigma \) equals \(\sigma'' \circ p_B \). To summarize, we have that the following diagram is commutative.

\[
\begin{array}{ccccccccc}
K'_{\Sigma f} & \xrightarrow{q_K} & K_{\Sigma f} & \xrightarrow{p_K} & K''_{\Sigma f} \\
\downarrow \iota' & & \downarrow \iota & & \downarrow \iota'' \\
\Sigma_A : 0 & \rightarrow & A' & \rightarrow & A & \rightarrow & A'' & \rightarrow & 0 \\
\downarrow \Sigma_f & & \downarrow f & & \downarrow f'' \\
\Sigma_B : 0 & \rightarrow & B' & \rightarrow & B & \rightarrow & B'' & \rightarrow & 0 \\
\downarrow \sigma' & & \downarrow \sigma & & \downarrow \sigma'' \\
C'_{\Sigma f} & \xrightarrow{q_C} & C_{\Sigma f} & \xrightarrow{p_C} & C''_{\Sigma f}
\end{array}
\]

By hypothesis, both \(f'' \circ p_A \) and \(p_B \circ f \) are equal. Denote by \(t \) this common morphism

\[
t : A \rightarrow B''.
\]

Denote the kernel of \(t \) by

\[
j : K_t \rightarrow A.
\]

Now \(f'' \circ (p_A \circ j) \) equals \(t \circ j \), which is 0. By the universal property of the kernel of \(f'' \), there is a unique morphism

\[
\overline{p}_A : K_t \rightarrow K''_{\Sigma f}
\]

such that \(\iota'' \circ \overline{p}_A \) equals \(p_A \circ j \). Similarly, \(p_B \circ (f \circ j) \) equals \(t \circ j \), which is 0. By the universal property of the kernel of \(p_B \), there is a unique morphism

\[
\overline{f} : K_t \rightarrow B'
\]

such that \(q_B \circ \overline{f} \) equals \(f \circ j \).
Lemma 1.3 (The Snake Lemma). For a morphism Σ_f of commutative diagrams as above, all of the following hold.

(i) The morphism q_K is a monomorphism, and the morphism p_C is an epimorphism.

(ii) The image of q_K equals the kernel of p_K, and the kernel of p_C equals the image of q_C.

(iii) There is a unique morphism $\delta_{\Sigma_f} : K_{\Sigma_f}'' \to C_{\Sigma_f}'$ such that $\delta_{\Sigma_f} \circ p_A$ equals $s' \circ f$ as morphisms $K_t \to C_{\Sigma_f}'$.

(iv) The image of p_K equals the kernel of δ_{Σ_f}, and the kernel of q_C equals the image of δ_{Σ_f}.

In summary, the following long sequence is exact,

$$0 \longrightarrow K_{\Sigma_f}' \overset{q_K}{\longrightarrow} K_{\Sigma_f} \overset{p_K}{\longrightarrow} K_{\Sigma_f}'' \overset{\delta_{\Sigma_f}}{\longrightarrow} \ldots$$

$$\ldots \overset{\delta_{\Sigma_f}}{\longrightarrow} C_{\Sigma_f}' \overset{q_C}{\longrightarrow} C_{\Sigma_f} \overset{p_C}{\longrightarrow} C_{\Sigma_f}'' \longrightarrow 0.$$

This entire situation is often summarized with the following large diagram.

\[
\begin{array}{ccccccc}
0 & \longrightarrow & K_{\Sigma_f}' & \overset{q_K}{\longrightarrow} & K_{\Sigma_f} & \overset{p_K}{\longrightarrow} & K_{\Sigma_f}'' & \overset{\delta_{\Sigma_f}}{\longrightarrow} & \ldots \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & A' & \overset{q_A}{\longrightarrow} & A & \overset{p_A}{\longrightarrow} & A'' & \longrightarrow & 0 \\
\Sigma_A & \downarrow & f' & \downarrow & f & \downarrow & f'' & & \\
\Sigma_f & \downarrow & & & & & & \\
0 & \longrightarrow & B' & \overset{q_B}{\longrightarrow} & B & \overset{p_B}{\longrightarrow} & B'' & \longrightarrow & 0 \\
\Sigma_B & \downarrow & s' & \downarrow & s & \downarrow & s'' & & \\
\ldots & \overset{\delta_{\Sigma_f}}{\longrightarrow} & C_{\Sigma_f}' & \overset{q_C}{\longrightarrow} & C_{\Sigma_f} & \overset{p_C}{\longrightarrow} & C_{\Sigma_f}'' & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & & 0 & & 0 & & 0 & & \\
\end{array}
\]