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Homework Policy. Please read through all the problems. I will be happy to discuss the solutions
during office hours.

Problems.

Problem 1, Intersection Multiplicity: This problem is essentially (Hartshorne, Exer. I.5.4).
Let F,G ∈ k[X0, X1, X2] be non-constant, irreducible, homogeneous polynomials, and denote C =
V(F ), D = V(G) in P2

k. Let p ∈ C ∩ D be an element such that dim(C ∩ D, p) = 0, i.e., p is an
isolated point of C ∩D. The intersection multiplicity of C and D at p, i(C,D; p), is defined to be,

i(C,D; p) = dimk(OP2,p/〈Fp, Gp〉),

where Fp, Gp ∈ OP2,p are germs of dehomogenizations of F and G at p.

Let P ⊂ k[X0, X1, X2] be the homogeneous ideal corresponding to p. Form the graded k[X0, X1, X2]-
module, M = Image(φp), where φp is the homomorphism of modules,

φp : k[X0, X1, X2]/〈F,G〉 → (k[X0, X1, X2]/〈F,G〉)P .

(a) Prove that the Hilbert polynomial ofM equals i(C,D; p), i.e., for all l� 0, dimkMl = i(C,D; p).
Hint: You may assume existence of a Jordan-Hölder filtration of M : a filtration of M by graded
submodules, M = M0 ⊃ M1 ⊃ · · · ⊃ M r = {0}, such that for every i = 1, . . . , r, M i−1/M i ∼=
(k[X0, X1, X2]/P )(di) for some integer di. For every X ∈ k[X0, X1, X2]1−P , the dehomogenization
of M with respect to X equals OP2,p/〈Fp, Gp〉 and has an induced Jordan-Hölder filtration whose
associated graded pieces are the dehomogenizations of the graded modules M i−1/M i. Relate the
length of the dehomogenization of M , the Hilbert polynomial of M , and the integer r.

(b) This problem is rather difficult. Attempt it, but you don’t have to solve it. Denote by e(C; p),
resp. e(D; p), the Hilbert-Samuel multiplicity of C at p, resp. of D at p. Prove that i(C,D; p) is at
least e(C; p)e(D; p). Hint: Work in affine coordinates for which p = (0, 0). First consider the case
that C = V(f), D = V(g) where f and g are relatively prime homogeneous polynomials in x, y.
Next deduce the case where f and g are not necessarily homogeneous, but the tangent cones of C
and D at p have no common irreducible component. The general case can be deduced from this
one by a “semicontinuity” argument.

(c) Let X be a plane curve, and let p ∈ X be an element. Prove that for all but finitely many lines
L in P2 containing p, i(X,L; p) equals e(X; p).
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Problem 2, Bézout’s Theorem in the Plane: This problem continues the previous problem.
Let d denote deg(F ) and let e denote deg(G). Assume C∩D is a finite set {p1, . . . , pm}, i.e., C∩D has
no irreducible component of dimension 1. Define M to be the graded module k[X0, X1, X2]/〈F,G〉.
For every i = 1, . . . ,m, define Mi to be Image(φPi

) where Pi is the homogeneous ideal of pi and
where φPi

: k[X0, X1, X2]/〈F,G〉 → (k[X0, X1, X2]/〈F,G〉)Pi
is the localization homomorphism.

For the following homomorphism of graded modules, prove both the kernel and cokernel have finite
length:

φ : M → ⊕m
i=1Mi.

Hint: This requires more about the Jordan-Hölder filtration and associated primes. For a graded
module M , there exists a filtration of M , M = M0 ⊃ · · · ⊃ M r = {0}, such that for every
j = 1, . . . , r, M j−1/M j ∼= (k[X0, X1, X2]/Qj)(dj) where Qj is an associated prime of M . If Q is a
minimal associated prime, then (M j−1/M j)P is nonzero if and only if Pj equals P . So the graded
pieces in the filtration of Mi are the associated graded pieces in the filtration of M such that Qj

equals Pi.

Remark: It follows that the Hilbert polynomial of M equals the sum over i of the Hilbert poly-
nomial of Mi. On the one hand, there is an exact sequence of graded modules,

0→ k[X0, X1, X2](−d− e)
(G,−F )†−−−−−→ k[X0, X1, X2](−d)⊕ k[X0, X1, X2](−e)

(F,G)−−−→ k[X0, X1, X2]
k−→ [X0, X1, X2]/〈F,G〉 → 0,

from which it easily follows the Hilbert polynomial of M is the constant polynomial with value de.
On the other hand, by Problem 1, the Hilbert polynomial of each Mi is the intersection multiplicity
i(C,D; pi). This gives Bézout’s theorem in the plane,

deg(C) · deg(D) =
∑

pi∈C∩D

i(C,D; pi).

Problem 3: This is essentially (Hartshorne, Exer. I.7.5). Let C ⊂ P2
k be a plane curve of degree

d ≥ 1.

(a) If there exists p ∈ C such that e(C; p) equals d, prove that C is a union of lines containing p.

(b) If C is irreducible, and p ∈ C is a point such that e(C; p) equals d−1, prove that the projection
from p is birational: πp : (C − {p})→ P1

k.

Problem 4: This is a “multilinear algebra problem” introducing the derivative and Hessian of a
polynomial. The next problem relates the Hessian of a homogeneous polynomial on P2 to the flex
lines of the associated plane curve.

For every finite-dimensional k-vector space V , denote by V ∨ the dual vector space Homk(V, k).
Denote by k[V ∨] the ring of polynomial functions on V , i.e., the k-subalgebra of HomSet(V, k)
generated by V ∨. There is a unique Z≥0-grading on k[V ∨] such that k[V ∨]0 is the field of constant
functions k and such that k[V ∨]1 is the k-vector space of linear functionals V ∨. For every integer
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r ≥ 0, denote by Sr(V ∨) the k-vector space k[V ∨]r, called the rth symmetric power of V ∨. Denote
by (AV,OAV ) the unique affine variety whose underlying point-set is V and whose coordinate ring
OAV (AV ) is k[V ∨]. (Usually this variety is just denoted (V,OV ), but in this problem this notation
distinguishes V as a k-vector space from V as an affine variety.)

(a) Denote by M the (left) k[V ∨]-module M = k[V ∨] ⊗k V
∨ where f · (g ⊗ x) := (fg) ⊗ x for

every f, g ∈ k[V ∨] and x ∈ V ∨. Prove that there exists a unique k-derivation d : k[V ∨]→ M such
that d(x) = 1 ⊗ x for every x ∈ V ∨ = k[V ∨]1. The induced homomorphism of k[V ∨]-modules,
Ωk[V ∨]/k →M , is an isomorphism (you need not prove this).

(b) For every integer r ≥ 0, denote by dr : Sr(V ∨) → Sr−1(V ∨) ⊗ V ∨ the restriction of d, and

denote by d̃r : Sr(V ∨)→ Homk(V, Sr−1(V ∨)) the composition of dr with the canonical isomorphism
Sr−1(V ∨) ⊗k V

∨ ∼= Homk(V, Sr−1(V ∨)). Given F ∈ Sr(V ∨), denote the image under dr by drF ,

and denote the induced linear map by d̃rF : V → Sr−1(V ∨). Let (e1, . . . , en) be an ordered basis
for V and let (x1, . . . , xn) be the dual ordered basis for V ∨. Prove for every F ∈ Sr(V ∨) and every
i = 1, . . . , n,

d̃rF (ei) =
∂F

∂xi
.

(c) For every integer r ≥ 0, denote by Hessr : Sr(V ∨) → Homk(V, Sr−2(V ∨) ⊗k V
∨) the unique

linear map F 7→ Hessr(F ) such that for every v ∈ V , Hessr(F )(v) = dr−1((d̃rF )(v)). This is the
Hessian of F . Let (e1, . . . , en) be an ordered basis for V , and let (x1, . . . , xn) be the dual ordered
basis for V ∨. Prove that for every F ∈ Sr(V ∨) and every 1 ≤ j ≤ n,

Hessr(F )(ej) =
n∑

i=1

∂2F

∂xi∂xj
⊗ xi.

Considering the terms ∂2F/∂xi∂xj to be “coefficients”, Hessr(F ) is an n× n matrix whose (i, j)-
entry is the degree r− 2 homogeneous polynomial ∂2F/∂xi∂xj. For every point p ∈ AV , denote by
Hessr(F )(p) : V → V ∨ the k-linear map obtained by evaluating these degree r − 2 homogeneous
polynomials at p.

Problem 5: This problem continues the previous problem. Let dimkV = 3 so that AV ∼= A3
k.

Denote by (PV,OPV ) the projective variety (AV − {0})/(v ∼ λv) ∼= P2
k. Let r ≥ 1, let F ∈ Sr(V ∨)

be an irreducible polynomial, and let C = V(F ) ⊂ PV be the associated plane curve.

(a) Let p ∈ C be an element, and let v ∈ V be a vector. Prove that (d̃rF (v))(p) = 0 if and only if
there exists a line L ⊂ PV tangent to C at p and such that the associated affine cone AL ⊂ AV
contains v. Hint: If v is in A{p} this is trivial, and if v is not in A{p}, choose an ordered basis
(e0, e1, e2) for V such that p = [1, 0, 0] and v = (0, 1, 0).

(b) Assume char(k) does not divide 2(r − 1). For every point p ∈ C, a tangent line L to C at
p, L ⊂ PV , is defined to be a flex line to C at p if the germ at p of the restriction to L of the
dehomogenization of F is contained in m3

pOL,p, i.e., the restriction of F to L vanishes to order ≥ 3
at p. Prove that there is a flex line to C at p if and only if the 3× 3 Hessian Hessr(F )(p) is not an
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isomorphism, i.e., if and only if, with respect to some (and hence any) basis, the determinant of the
3×3 Hessian matrix equals 0. Hint: There are two cases depending on whether p is a smooth or a
singular point of C. In both cases, choose an ordered basis (e0, e1, e2) for V such that p = [1, 0, 0]
and such that tangent line under consideration is {[a, b, 0]|a, b ∈ k}.

(c) Assume char(k) does not divide 6. Compute all the flex lines to the smooth cubic plane curve
V(x30 + x31 + x32) ⊂ P2

k. Hint: There are 9 of them.

Problem 6: Assume char(k) does not divide d(d − 1). Combine Problem 2 with Problem 5 to
deduce that every smooth plane curve C of degree d ≥ 3 has at most 3d(d− 2) flex lines.

Problem 7: If char(k) = p, give an example of a smooth plane curve C of degree d = p+ 1 having
infinitely many flex lines.

Problem 8: Use the same technique from Lecture 1 to prove that for every integer r ≥ 1, for a
general quadruple (Π1,Π2,Π3,Π4) of linear subvarieties Πi ⊂ P2r−1 of dimension r − 1, there are
precisely r lines L ⊂ P2r−1 such that for every i = 1, . . . , 4, L intersects Πi.

Problem 9: With the same notation as in the previous problem, for a general triple (Π1,Π2,Π3),
describe the union Σ of all lines L that intersect each of Π1, Π2 and Π3. Show that Σ is irreducible
of dimension r. For a general codimension r linear space Π4 ⊂ Pr, what can you say about Σ∩Π4?
What can you conclude about the degree of Σ? Do you know another way to compute this degree?
(If so, double-check your answer.)

Problem 10: Recall the heuristic “parameter count” from lecture: for every integer n ≥ 2, for
d = 2n − 3, for a general hypersurface X ⊂ Pn of degree d, we expect a finite number cn of lines
L ⊂ Pn to be contained in X. Recall also that the list c2 = 1, c3 = 27, c4 = 2875. Now, inside the
ring Z[s, t], graded in the usual way so that s and t have degree 1, consider the homogeneous ideal

I = 〈sn+1, sn + sn−1t+ · · ·+ sn−rtr + · · ·+ stn−1 + tn, tn+1〉,

which is invariant under the action of Z/2Z on the graded ring permuting s and t. Consider the
graded quotient ring Z[s, t]/I with its induced Z/2Z-action, and denote by A∗ the invariant graded
subring (Z[s, t]/I)Z/2Z.

(a) Check that the top non-zero graded piece of A∗ has degree 2(n − 1) generated by the image
sn−1tn−1 of the invariant monomial sn−1tn−1. Recall that we computed that 2(n − 1) equals the
dimension of the Grassmannian of lines in Pn.

(b) Now, for d = 2n − 3, compute the image in A∗ of the invariant, homogeneous polynomial of
degree d+ 1 = 2(n− 1),

f(s, t) = (ds+ 0t) · ((d− 1)s+ 1t) · · · ((d− r)s+ rt) · · · (1s+ (d− 1)t) · (0s+ dt).

Write your answer as bnsn−1tn−1 for some integer bn. How do the integers bn compare to the integers
cn for n = 2, 3, 4? Based on this, what is your guess for c5, the number of lines contained in a septic
fourfold?
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