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Problems.

Problem 1. This problem explicitly computes the contraction of a (−1)-curve in one of the
simplest cases: a line on a cubic surface in P3. Let [x0, x1, x2, x3] be homogeneous coordinates on
projective space P3. For every quadratic homogeneous polynomial Q(x0, x1, x2, x3), form the cubic
homogeneous polynomial

F (x0, x1, x2, x3) = x2(x
2
2 − x0x1) + x3Q(x0, x1, x2, x3).

(a) Prove that the zero locus X = Z(F ) is a cubic surface in P3 that contains the line L = Z(x2, x3)
as well as the conic C = Z(x22 − x0x1, x3).

(b) Assuming that X is a smooth cubic surface, prove that Q(1, 0, 0, 0) and Q(0, 1, 0, 0) are nonzero.
Conversely, prove that X is smooth for a general choice of Q.
Hint. Bertini’s Theorem.

(c) Assuming that X is a smooth hypersurface, prove that OP3(1)|X is isomorphic to OX(L + C)
as invertible sheaves. In particular, OP3(1)|X(L) is isomorphic to OP3(2)|X(−C). It is this second
formulation that is easier to use when computing global sections.

(d) Prove that OX(L)|L has degree −1, i.e., L is a (−1)-curve.
Hint. The adjunction formula.

(e) Prove that the vector space of global sections of OP3(2)|X(−C) has as basis the following 5
elements.

y0 = x0x3, y1 = x1x3, y2 = x2x3, y3 = x23, y4 = x22 − x0x1.

Hint. This is the same as the vector space (IC)2 := Γ(P3, IC(2)), where IC is the ideal sheaf of C
in P3.

(f) Explicitly verify that the the 5 global sections above generate the invertible sheaf OP2(2)|X(−C)
at every point of X. Therefore there is a unique morphism φ : X → P4 such that φ∗OP4(1) equals
OP2(2)|X(−C) and the pullback of the homogeneous coordinates are the 5 sections above.

(g) Also verify that y0, y1, y2, y3 are identically zero on the line L. Therefore φ contracts L to the
point p = [0, 0, 0, 0, 1].
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(h) Check that X ′ := Image(φ) is contained in the zero locus of the following two homogeneous,
degree 2 polynomials G(y0, y1, y2, y3, y4),

G1 = y3y4 − y22 + y0y1, G2 = y2y4 +Q(y0, y1, y2, y3).

(i) Prove that the zero scheme of G1, G2 is smooth at p. Also check that φ maps X\L isomorphically
to Z(G1, G2) \ {p}. Conclude that φ is a contraction to the smooth surface Z(G1, G2).

Problem 2. This problem explicitly computes the contraction of a (−2)-curve in one of the
simplest cases: a line on a quartic surface in P3. Let [x0, x1, x2, x3] be homogeneous coordinates on
projective space P3. For every cubic homogeneous polynomial of the form

H = x30 + x31 + x32 − 3λx0x1x2,

with λ not a cube root of 1, and for every cubic homogeneous polynomial K(x0, x1, x2, x3), form
the quartic homogeneous polynomial

F (x0, x1, x2, x3) = x2H(x0, x1, x2) + x3K(x0, x1, x2, x3).

(a) Prove that the zero locus X = Z(F ) is a quartic surface in P3 that contains the line L =
Z(X2, X3) as well as the smooth plane cubic C = Z(H, x3).

(b) Assuming that X is a smooth hypersurface, prove that K(−1, ζ, 0, 0) is nonzero for every ζ a
cube root of 1. Conversely, prove that for a general choice of K, the hypersurface X is smooth.
Hint. Bertini’s Theorem.

(c) Assuming that X is a smooth hypersurface, prove that OP3(1)|X is isomorphic to OX(L + C)
as invertible sheaves. In particular, OP3(2)|X(L) is isomorphic to OP3(3)|X(−C).

(d) Prove that OX(L)|L has degree −2, i.e., L is a (−2)-curve.
Hint. The adjunction formula.

(e) Prove that the vector space of global sections of OP3(2)|X(−C) has as basis the following 11
elements,

y2,0,0,0 = x3(x
2
0), y1,1,0,0 = x3(x0x1), y1,0,1,0 = x3(x0x2), y1,0,0,1 = x3(x0x3), y0,2,0,0 = x3(x

2
1),

y0,1,1,0 = x3(x1x2), y0,1,0,1 = x3(x1x3), y0,0,2,0 = x3(x
2
2), y0,0,1,1 = x3(x2x3), y0,0,0,2 = x3(x

2
3), z = H(x0, x1, x2),

i.e., x3m for every quadratic monomial m together with H.

(f) Explicitly verify that the 11 global sections above generate the invertible sheaf OP2(3)|X(−C)
at every point of X. Therefore there is a unique morphism φ : X → P10 such that φ∗OP10(1) equals
OP2(3)|X(−C) and the pullback of the homogeneous coordinates are the 11 sections above.

(g) Also verify that the sections yi are identically zero on the line L. Therefore φ contracts L to
the point p = [0, . . . , 0, 1].
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(h) Check that X ′ := Image(φ) is contained in the zero locus of the following cubic homogeneous
polynomials G(y0, y1, y2, y3, y4),

G1,0,0,0 = H(y2,0,0,0, y1,1,0,0, y1,0,1,0)− y2,0,0,0y1,0,0,1z,

G0,1,0,0 = H(y1,1,0,0, y0,2,0,0, y0,1,1,0)− y0,2,0,0y0,1,0,1z,

G0,0,1,0 = H(y1,0,1,0, y0,1,1,0, y0,0,2,0)− y0,0,2,0y0,0,1,1z,

G0,0,0,1 = H(y1,0,0,1, y0,1,0,1, y0,0,1,1)− y20,0,0,2z.

How many further cubic polynomials are needed to produce a basis of all cubic polynomials van-
ishing on Image(φ)? Can you see a way to produce them?

Problem 3. Explain why there is no (−1)-curve on any smooth hypersurface X ⊂ P3 of degree
d ≥ 4. For each integer d > 4, what is the smallest positive integer e such that there exists a (−e)-
curve E on some smooth, degree d hypersurface X ⊂ P3. Contemplate putting the defining equation
of X into a “normal form” as in the previous two problems, and then explicitly constructing the
contraction of E.

Problem 4. This problem and the next explain how to produce a smooth curve in P3 and a smooth
surface containing the curve such that the curve has negative self-intersection on the surface, yet
there is no contraction of the curve to a projective surface. This first problem produces the curve.
The next problem produces the surface and establishes nonexistence of a contraction to a projective
surface.

(a) Let a, b ≥ 0 be integers. Denote by Sa,b := k[x0, x1, y0, y1]a,b the vector space of bihomogeneous

polynomials of bidegree (a, b), i.e., the vector space with basis xi0x
a−i
1 yj0y

b−j
1 for 0 ≤ i ≤ a and

0 ≤ j ≤ b. Prove that dimk(Sa,b) equals (a + 1)(b + 1). Therefore the projective space PSa,b has
dimension ab+ a+ b.

(b) Denote by R the projective subvariety in PSa,b parameterizing polynomials that are reducible,
i.e., the union over all nonzero pairs of integers (a′, b′) with 0 ≤ a′ ≤ a and 0 ≤ b′ ≤ b of the image
of the Segre morphism

σa′,b′ : PSa′,b′ × PSa−a′,b−b′ → PSa,b.

Prove that Image(σa′,b′) has codimension ≥ a′(b− b′) + (a− a′)b′. Assuming that a, b ≥ 2, conclude
that every irreducible component of R has codimension ≥ 2 (this is false if either a or b is ≤ 1).

(c) By considering Sa,b as the space of global sections on P1 × P1 of the invertible sheaf O(a, b) :=
pr∗1O(a)⊗ pr∗2O(b), interpret elements [F ] ∈ PSa,b as Cartier divisors Z(F ) on P1 × P1. Prove that
Z(F ) is an integral curve if and only if [F ] is not in R.

(d) Let Π be a line in PSa,b that is disjoint from R; since R has codimension ≥ 2, such lines exist.
Denote by B ⊂ P1 × P1 the base locus of Π, i.e., Z({F |[F ] ∈ Π}). Prove that B has codimension
2 in P1 × P1. Also prove that B is a reduced set of points if Π is “general”.
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(e) Let Π be a line as above such that Π is a reduced set of points. Denote by ν : P → P1×P1 the
blowing up of the ideal sheaf of B. Denote by π : P → Π the unique morphism whose (scheme-
theoretic) fiber over every point [F ] ∈ Π is the strict transform of Z(F ) in P . Prove that P is a
smooth variety, and prove that every geometric fiber of π is an integral Cartier divisor on P .

(f) Let L be an invertible sheaf on P1 × P1 such that for the generic fiber Dη of π, the restriction
ν∗L|Dη is isomorphic to ODη as an invertible sheaf. Conclude that ν∗L is isomorphic to π∗M for
an invertible sheaf M on Π.
Hint. Consider a rational section s of ν∗L that is regular on Dη and generates ν∗L|Dη . What can
you say about the Cartier divisor of s on P? Use the fact that all fibers of π are integral.

(g) Let U be the open subscheme (P1× P1) \B, i.e., the maximal open subscheme of P1× P1 such
that ν : ν−1(U) → U is an isomorphism. By restricting the isomorphism from (f) to ν−1(U) ∼= U ,
conclude that L is isomorphic, on U , to O(m · a,m · b) for some integer m. Finally, since B
has codimension 2, use Hartog’s phenomenon / Property S2 to conclude that L is isomorphic to
O(m · a,m · b) on all of P1 × P1. By considering the intersection number with Dη, conclude that
the integer m equals 0, i.e., the following restriction map of Picard groups is injective,

Pic(P1 × P1)→ Pic(Dη).

(h) Assume now that k equals the algebraic closure of a Fermat field, k = Fp. For every k-point
[F ] in Π, prove that the restriction map of Picard groups

Pic(P1 × P1)→ Pic(Z(F ))

is not injective. Hence it really is necessary to pass to the generic point of Π.

Problem 5. Let a, b ≥ 2 be integers as above such that also a > b, e.g., (3, 2) to be definite. Let
Dη ⊂ P1×P1 be a generic element of PSa,b so that the restriction map on Picard groups is injective,
e.g., for (3, 2) the vanishing set of

F = x0x1(x1 − x0)y21 − (x1 − sx0)(x1 − tx0)(x1 − ux0)y20

will do, where s, t, u are elements of k that are algebraically independent over the prime subfield.

(a) Embed P1×P1 in P3 by the usual Segre map, σ([x0, x1], [y0, y1]) = [x0y0, x0y1, x1, y0, x1y1]. Using
Problem 4, prove that for every pair of integers (m,n) 6= (0, 0), the invertible sheaf σ∗O(m)|Dη⊗ω⊗nDη
is nontrivial.

(b) Let q ≥ 1 be a positive integer, and let p ≥ 2q+ 1 be an integer. Let P be a smooth variety of
dimension p and let Q ⊂ P be a smooth, closed subscheme of dimension q. Let L be an invertible
sheaf on P , and let V ⊂ Γ(P, IQ ⊗L) be a finite-dimensional vector space of sections of L that all
vanish on Q; IQ is the ideal sheaf of Q. Assume that for every x ∈ C, the composite map

V → mP,x ⊗ Lx → mP,x/(m
2
P,x + mC,x)⊗ Lx
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is surjective; this is automatic if P is projective, L is sufficiently ample, and V is the vector space of
all sections of IQ⊗L. Repeat the usual proof of Bertini’s theorem to conclude that for the generic
section s of V , the divisor Z(s) is smooth at every point of Q. In particular, for a smooth curve
C in P3, for all integers d � 0, a general degree d surface in P3 containing C is smooth at every
point of C. Since the base locus of the linear system |IC(d)| equals C for d� 0, the usual Bertini’s
theorem then implies that the general degree d surface containing C is everywhere smooth.

(c) Let C ⊂ P3 be a smooth curve. Let Π ⊂ Γ(P3, IC(d)) be a pencil of degree d surfaces containing
C whose general member is smooth and whose base locus B equals C ∪C ′ for an irreducible curve
C ′. Denote by ν : P → P3 the blowing up of B. Denote by π : P → Π the unique morphism whose
fiber over each point [F ] ∈ Π equals the strict transform of Z(F ). For the fiber Dη of π over the
generic point η of Π, prove that Pic(Dη) is generated by OP3(1)|Dη and ODη(C).
(Big) Hint. Extend the invertible sheaf to an open subset of P whose complement has codimension
2; restrict to the complement of the exceptional divisor; finally use the fact that this invertible
sheaf, considered as a sheaf on an open subset of P3, extends to an invertible sheaf on all of P3,
necessarily OP3(m) for some integer m. Thus the restriction of the original invertible sheaf on Dη

to the complement of B equals OP3(m)|Dη . Finally, use that ODη(C+C ′) equals OP3(d)|Dη to write
the invertible sheaf OP3(m)|Dη(aC + a′C ′) as OP3(m+ a′d)|Dη((a− a′)C)
Nota bene. For the geometric generic fiber Dη, the Picard group certainly can be larger than this
(although there are Noether-Lefschetz theorems for d sufficiently large and Π sufficiently general).
Thus it is crucial to work with the generic fiber rather than the geometric generic fiber.

(d) For C as in (a), prove that ODη is the unique invertible sheaf on Dη whose restriction to C is
trivial. In particular, there is no invertible sheaf on Dη whose restriction to C is trivial and that
has positive intersection number with the hyperplane class.

(e) Now consider the geometric generic fiber Dη, i.e., the base change of Dη by the separable
closure of the residue field κ(η) = k(Π). By way of contradiction, assume that there exists an
invertible sheafM whose restriction to C is trivial and that has positive intersection number with
the hyperplane class. Prove thatM exists already after a base change from κ(η) to a finite Galois
extension. Next consider the tensor product of the finitely many Galois conjugates of M. Prove
that this is also an invertible sheaf whose restriction to C is trivial and that has positive intersection
number with the hyperplane class, yet now it is Galois invariant. Since we can choose C to have
k-points, this Galois invariant invertible sheaf is the base change of an invertible sheaf on Dη. This
contradicts (d), hence there is no such invertible sheaf M on Dη.

(f) Conclude that there is no morphism c : Dη → D′ with D′ projective that contracts precisely
C. In fact, conclude that there is not even a contraction such that D′ is a scheme; if U is an open
affine neighborhood of the singleton Image(C), then D′ \ U is a Cartier divisor whose pullback by
c contradicts (e). Therefore in Castelnuovo’s theorem, it was crucial that the contracted curve had
genus 0. (There does exist a contraction of C such that D′ is an algebraic space.)

Problem 6. For a ring R and an R-module M , a sequence of elements (r1, . . . , rn) ∈ R is M-
regular if r1 is a nonzerodivisor on M , r2 is a nonzerodivisor on M/r1M , r3 is a nonzerodivisor
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on M/(r1M + r2M), etc. This is equivalent to acyclicity of the following Koszul complex M ⊗R
KR(r1, ..., rn), i.e., exactness at all places except the rightmost term,

0 −−−→ M ⊗R
∧n
R(R⊕n)

IdM⊗dn−−−−−→ M ⊗R
∧n−1
R (R⊕n) −−−→ . . .

. . . −−−→ M ⊗R
∧1
R(R⊕n)

IdM⊗d1−−−−→ M ⊗R
∧0
R(R⊕n) −−−→ 0.

Here d1 : R⊕n → R is the morphism (a1, . . . , an) 7→ a1r1 + · · · + anrn. And for every q > 1,
dq :

∧q
R(R⊕n)→

∧q−1
R (R⊕n) is defined by induction using the (differential graded) Leibniz rule:

dq(f ∧ g) = d1(f) ∧ g + (−1)f ∧ dq−1(g)

for every f ∈
∧1
R(R⊕n) and for every g ∈

∧q−1
R (R⊕n). If R is a local ring containing the field k, for

every r1, . . . , rn ∈ mR, prove that (r1, dots, rn) is R-regular if and only if the following associated
local homomorphism is flat,

φ : k[x1, . . . , xn]〈x1,...,xn〉 → R, xi 7→ ri.

Hint. Use the local flatness criterion.

Problem 7. A Noetherian local ring R is Cohen-Macaulay if there exists an R-regular sequence
r1, . . . , rn ∈ mR such that R/〈r1, . . . , rn〉 has finite length, i.e., (r1, . . . , rn) is a system of parameters.
A locally Noetherian scheme X is Cohen-Macaulay if for every x ∈ X the stalk OX,x is a Cohen-
Macaulay local ring. For a field k, prove that a finite type affine k-scheme X, resp., projective
k-scheme X, is Cohen-Macaulay if and only if there exists a finite, flat morphism f : X → An

k ,
resp. a finite, flat morphism f : X → Pnk , for some integer n. In this case, every finite morphism
f : X → An

k , resp. f : X → Pnk , is flat.

Problem 8. J.-P. Serre’s criterion for normality implies (as a special case) that a quasi-projective
k-scheme X is normal if and only if both

(R1) there exists a closed subset C ⊂ X of codimension ≥ 2 such that X \ U is regular (equiv.
smooth if k is algebraically closed), and

(S2) for every point x of X, for a general 2-dimensional linear section S of X containing x, the
surface S is Cohen-Macaulay.

In particular, a 2-dimensional quasi-projective scheme is normal if and only if it is Cohen-Macaulay
and satisfies Condition (R1). The non-normal surface S = Z(xz, xw, yz, yw) ⊂ A4

k satisfied (R1).
Find a finite morphism f : S → A2

k that is not flat, thus verifying that S is not Cohen-Macaulay.

Problem 9. Let Y be a normal surface, let y be a closed point of Y , and let ν : X → Y be
the blowing up. Assume that X is smooth and that the exceptional set is a (−e)-curve E ⊂ X.
Let c : X → X ′ be the contraction of E in X to a point z ∈ X ′. Prove that there exists a
unique morphism f : X ′ → Y such that c ◦ f equals ν, and prove that this unique morphism is an
isomorphism.

Problem 10. Give an example of a birational morphism of quasi-projective, normal varieties
f : X → Y such that the exceptional set E ⊂ X has a component of codimension ≥ 1 and Y is
not Q-factorial.
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