18.725 SOLUTIONS TO PROBLEM SET 9

Due date: Friday, December 3 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.

Read through all the problems. Write solutions to the "Required Problems", 1, 2, 3, and 4 together with 1 more problem to a total of 5.

Required Problem 1, Intersection Multiplicity: This problem is essentially (Hartshorne, Exer. I.5.4). Let $F, G \in k[X_0, X_1, X_2]$ be non-constant, irreducible, homogeneous polynomials, and denote $C = \mathbb{V}(F), D = \mathbb{V}(G)$ in \mathbb{P}^2_k . Let $p \in C \cap D$ be an element such that $\dim(C \cap D, p) = 0$, i.e., p is an isolated point of $C \cap D$. The *intersection multiplicity of* C and D at p, i(C, D; p), is defined to be,

$$i(C, D; p) = \dim_k(\mathcal{O}_{\mathbb{P}^2, p} / \langle F_p, G_p \rangle),$$

where $F_p, G_p \in \mathcal{O}_{\mathbb{P}^2, p}$ are germs of dehomogenizations of F and G at p.

Let $P \subset k[X_0, X_1, X_2]$ be the homogeneous ideal corresponding to p. Form the graded $k[X_0, X_1, X_2]$ -module, $M = \text{Image}(\phi_p)$, where ϕ_p is the homomorphism of graded modules,

$$\phi_p: k[X_0, X_1, X_2]/\langle F, G \rangle \to (k[X_0, X_1, X_2]/\langle F, G \rangle)_P$$

(a) Prove that the Hilbert polynomial of M equals i(C, D; p), i.e., for all $l \gg 0$, $\dim_k M_l = i(C, D; p)$. Hint: You may assume existence of a Jordan-Hölder filtration of M: a filtration of M by graded submodules, $M = M^0 \supset M^1 \supset \cdots \supset M^r = \{0\}$, such that for every $i = 1, \ldots, r, M^{i-1}/M^i \cong (k[X_0, X_1, X_2]/P)(d_i)$ for some integer d_i . For every $X \in k[X_0, X_1, X_2]_1 - P$, the dehomogenization of M with respect to X equals $\mathcal{O}_{\mathbb{P}^2, p}/\langle F_p, G_p \rangle$ and has an induced Jordan-Hölder filtration whose associated graded pieces are the dehomogenizations of the graded modules M^{i-1}/M^i . Relate the length of the dehomogenization of M, the Hilbert polynomial of M and the integer r.

Solution: The definition of M given above is incorrect. The module M should be the image of the graded localization: $k[X_0, X_1, X_2]/\langle F, G \rangle \rightarrow S^{-1}k[X_0, X_1, X_2]/\langle F, G \rangle$, where $S = \bigcup_{e \ge 0} (k[X_0, X_1, X_2]_e - P_e)$. In the problem, the existence of a Jordan-Hölder filtation was given as a hypothesis. For completeness, the existence will be proved – this makes the solution a bit longer. The solution of this problem in Hartshorne's Algebraic geometry does not use all of the properties of the filtration (and so is more elementary).

Lemma 0.1. For every pair of polynomials $F, G \in k[X_0, X_1, X_2]$, for every $p \in \mathbb{P}^2_k$ with associated homogeneous ideal P, if $p \in \mathbb{V}(F, G)$ is an isolated point then

- (i) M is a P-primary module, i.e., the only associated prime of M is P, and
- (ii) there is a filtration of M by graded submodules, $M = M^0 \supset \cdots \supset M^r = (0)$, and a collection of integers d_0, \ldots, d_{r-1} such that for every $i = 0, \ldots, r-1$, $M^i/M^{i+1} \cong (k[X_0, X_1, X_2]/P)(d_i)$ as graded modules.

Proof. (i) Consider the ideal $J = \langle F, G \rangle$. This is contained in the prime ideal P. By the existence of a primary decomposition, there exists a collection of associated primes of J, Q_1, \ldots, Q_m , and a collection of homogeneous ideals, J_1, \ldots, J_m , such that

- (i) for every i = 1, ..., m, J_i is Q_i -primary, i.e., for some integer $a_i > 0$, (ii) $Q_i^{a_i} \subset J_i \subset Q_i$, and, (ii) $J = J_1 \cap \cdots \cap J_m$.

Because $J \subset P$ and P is prime, there exists i such that $J_i \subset P$, which in turn implies $Q_i \subset P$, i.e., $\mathbb{V}(P) \subset \mathbb{V}(Q_i) \subset \mathbb{V}(F,G)$. By hypothesis p is an isolated point of $\mathbb{V}(F,G)$ so that $\mathbb{V}(Q_i) = \mathbb{V}(P) = \{p\}$. By the Nullstellensatz, $Q_i = P$, i.e., P is an associated prime of J. Note: This is just the usual argument that the minimal primes that contain J are the same as the minimal primes among the associated primes of J.

The module M is a quotient of $k[X_0, X_1, X_2]/J$, i.e., $M = k[X_0, X_1, X_2]/I$ for a homogeneous ideal I containing J. In fact $I = \{a \in k[X_0, X_1, X_2] | \exists s \in S, sa \in S\}$ J, i.e., $I/J \subset k[X_0, X_1, X_2]/J$ is the submodule of elements annihilated by an element in S. Because P is an associated prime of $J, P = \operatorname{ann}(f)$ for some element $f \in k[X_0, X_1, X_2]/J$. The element f can be chosen homogeneous. The annihilator of the image $\overline{f} \in k[X_0, X_1, X_2]/I$ is $\{a \in k[X_0, X_1, X_2] | \exists s \in S, saf = 0\} = \{a \in A\}$ $k[X_0, X_1, X_2] | \exists s \in S, sa \in P \}$. Because P is a prime and $S \cap P = \emptyset$, if $sa \in P$, then $a \in P$. Therefore the annihilator of \overline{f} is P. In particular, P is an associated prime of M.

Let Q be an associated prime of M. By construction, every element of S acts as a non-zero-divisor on $S^{-1}(k[X_0, X_1, X_2]/\langle F, G \rangle)$, and thus on M as well. There is a homogeneous element $m \in M$ such that every homogeneous element of Q annihilates m, so the element is not in S which implies it is a homogeneous element of P. Because M is a graded module, every associated prime is a homogeneous ideal. Therefore $Q \subset P$. As proved above, P is a minimal prime containing J, and $J \subset Q$ so that Q = P. Therefore P is the unique associated prime of M, i.e., I is a P-primary homogeneous ideal.

(ii) For every integer $i \ge 0$, define $M^i \subset M$ to be the kernel of the homomorphis of graded modules that is the composition,

$$M \to S^{-1}M \to S^{-1}M/P^i(S^{-1}M).$$

Of course $PM^i \subset M^{i+1}$, so M^i/M^{i+1} is a finitely-generated graded module over $k[X_0, X_1, X_2]/P \cong k[T]$. Also, since I is a P-primary ideal, $P^e M = (0)$ for some integer e so that $M^e = (0)$, i.e., the filtration stabilizes to (0). Moreover, M^i/M^{i+1} is a submodule of $P^i S^{-1} M / P^{i+1}(S^{-1}M) = S^{-1}(P^i M / P^{i+1}M)$. By construction, ever nonzero homogeneous element of $k[X_0, X_1, X_2]/P$ acts as a non-zero-divisor on $S^{-1}(P^iM/P^{i+1}M)$, thus also on M^i/M^{i+1} . So M^i/M^{i+1} is a torsion-free finitelygenerated k[T]-module, i.e., it is a finite free k[T]-module. Every finite free k[T]module is free; likewise every graded finite free k[T]-module is of the form $k[T](d_1) \oplus$ $\cdots \oplus k[T](d_m)$ for a sequence of integers d_1, \ldots, d_m . Thus M^i/M^{i+1} has a filtration by graded submodules (in fact a direct sum decomposition) where the associated subquotients are of the form $k[T](d_i)$.

The induced filtration of each M^{i}/M^{i+1} determines a refinement of the original filtration to a filtration by graded submodules, $M = M^0 \supset \cdots \supset M^r = (0)$, such that for every i = 0, ..., r - 1 the associated subquotient of the new filtration, M^i/M^{i+1} , is isomorphic to $k[T](d_i)$ for some integer d_i .

By the additivity of Hilbert polynomials, the Hilbert polynomial of M is the sum of the Hilbert polynomials of the associated graded pieces M^{i-1}/M^i . For every integer $i = 0, \ldots, r-1, M^{i-1}/M^i \cong k[T](d_i)$. So the Hilbert polynomial of M^{i-1}/M^i is 1. Therefore the Hilbert polynomial of M is r.

Consider the functor $*_{(P)}$ that associates to a graded $k[X_0, X_1, X_2]$ -module N the $(S^{-1}k[X_0, X_1, X_2])_0$ -module,

$$N_{(P)} = (S^{-1}N)_0.$$

Localization is exact, as is the functor assigning to a graded module its degree 0 graded part, thus $*_{(P)}$ is an exact functor. In particular, there is an induced filtration of $M_{(P)}$, $(M_{(P)})^i = (M^i)_{(P)}$. For every i = 0, dots, r - 1, the associated subquotient of this filtration is $(M^i/M^{i+1})_{(P)} \cong (k[t](d_i))_{(t)}$. Now $S^1k[t](d_i) \cong k[t,t^{-1}](d_i)$, and the degree 0 graded summand is just $k\{t^{d_i}\}$, the 1-dimensional k-vector space spanned by the monomial t^{d_i} . Now $\dim_k M_{(P)}$ is the sum of the dimensions of the associated subquotients, which is r.

For every $X \in k[X_0, X_1, X_2]_1 - P_1$, the ring $(k[X_0, X_1, X_2][1/X])_0$ is the coordinate ring $k[D_+(X)]$ of the affine neighborhood of $p, D_+(X) \subset \mathbb{P}^2_k$. For every $s \in k[X_0, X_1, X_2]_d - P_d$, the dehomogenization of s with respect to X is an element of $k[D_+(X)] - \mathfrak{m}_p$, and vice versa every element of $k[D_+(X)] - \mathfrak{m}_p$ is the dehomogenization of a homogeneous element in $k[X_0, X_1, X_2] - P$. It follows that $(k[X_0, X_1, X_2])_{(P)} \cong k[D_+(X)]_{\mathfrak{m}_p} = \mathcal{O}_{\mathbb{P}^2_k, p}$. Moreover, $(k[X_0, X_1, X_2]/\langle F, G \rangle)_{(P)} \cong \mathcal{O}_{\mathbb{P}^2_k, p}/\langle F_p, G_p \rangle$. So the intersection multiplicity i(C, D; p) equals the dimension of $M_{(P)}$. Therefore i(C, D; p) equals the Hilbert polynomial of M.

(b) This problem is rather difficult. Attempt it, but you don't have to solve it. Denote by e(C; p), resp. e(D; p), the Hilbert-Samuel multiplicity of C at p, resp. of D at p. Prove that $i(C, D; p) \ge e(C; p)e(D; p)$. Hint: Work in affine coordinates for which p = (0, 0). First consider the case that $C = \mathbb{V}(f), D = \mathbb{V}(g)$ where f and g are relatively prime homogeneous polynomials in x, y. Next deduce the case where f and g are not necessarily homogeneous, but the tangent cones of C and D at p have no common irreducible component. The general case can be deduced from this one by an "semicontinuity" argument.

Solution: A more complete, but less elementary, solution than the following is in Chapter 12 of Fulton's *Intersection Theory* (there are also solutions in most textbooks on algebraic curves).

Lemma 0.2. Let $f_1, f_2, g \in k \llbracket x, y \rrbracket$ be elements in $\mathfrak{m} = \langle x, y \rangle$ such that for i = 1, 2, f_i and g have no common factor. Then $\langle f_1, g \rangle$, $\langle f_2, g \rangle$ and $\langle f_1 f_2, g \rangle$ are \mathfrak{m} -primary, and

 $dim_{k}(k \llbracket x, y \rrbracket / \langle f_{1}f_{2}, g \rangle) = dim_{k}(k \llbracket x, y \rrbracket / \langle f_{1}, g \rangle) + dim_{k}(k \llbracket x, y \rrbracket / \langle f_{2}, g \rangle).$

Proof. For $f = f_1$, f_2 or $f_1 f_2$, because f and g have no common factor and because $k \llbracket x, y \rrbracket$ is a Unique Factorization Domain, f, g are a regular sequence. In particular, every prime over $\langle f, g \rangle$ has height 2. The only prime in $k \llbracket x, y \rrbracket$ of height 2 is \mathfrak{m} , so $\langle f, g \rangle$ is a \mathfrak{m} -primary ideal.

There is a short exact sequence of k-vector spaces,

$$0 \longrightarrow \langle f_1, g \rangle / \langle f_1 f_2, g \rangle \longrightarrow k \llbracket x, y \rrbracket / \langle f_1 f_2, g \rangle \longrightarrow k \llbracket x, y \rrbracket / \langle f_1, g \rangle \longrightarrow 0.$$

So to prove the equation of dimensions, it suffices to prove that $\langle f_1, g \rangle / \langle f_1 f_2, g \rangle$ is isomorphic to $k \llbracket x, y \rrbracket / \langle f_2, g \rangle$ as a module. There is a $k \llbracket x, y \rrbracket$ -module homomorphism $\phi : k \llbracket x, y \rrbracket / \langle f_2, g \rangle \rightarrow \langle f_1, g \rangle / \langle f_1 f_2, g \rangle$ by $\phi(1) = f_1$. Of course ϕ is surjective. For every $h \in \ker(\phi)$, $f_1 h \in \langle f_1 f_2, g \rangle$, i.e., $f_1 h = a f_1 f_2 + bg$ for some $a, b \in k \llbracket x, y \rrbracket$. This can be rewritten as $bg = f_1(h - af_2)$; in particular f_1 divides bg. By hypothesis, f_1 and g have no common factor. The ring $k \llbracket x, y \rrbracket$ is a Unique Factorization Domain, thus f_1 divides b, i.e., $b = f_1 c$. Then $h = a f_2 + cg$, which is in $\langle f_2, g \rangle$, i.e., ϕ is injective.

Lemma 0.3. Let $F, G \in k[x, y]$ be homogeneous polynomials of degrees d and e respectively. If F and G have no common factor, then $k[x, y]/\langle F, G \rangle$ is a k-vector space of dimension de.

Proof. Both F and G factor as products of homogeneous linear polynomials, $F = L_1 \cdots L_d$, $G = M_1 \cdots M_e$ such that for every i, j, L_i and M_j are linearly independent. Of course $\mathbb{V}(F,G) = \bigcup_{(i,j)} \mathbb{V}(L_i, M_j) = \bigcup_{(i,j)} \{(0,0)\} = \{(0,0)\}$. By the Nullstellensatz, $\langle F, G \rangle$ is $\langle x, y \rangle$ -primary, i.e., $\langle x, y \rangle^e \subset \langle F, G \rangle$ for some integer $e \ge 0$. Therefore,

$$k[x,y]\langle F,G\rangle \cong (k[x,y]/\langle x,y\rangle^e)/\langle F,G\rangle \cong (k[x,y]/\langle x,y\rangle^e)/\langle F,G\rangle \cong k[x,y]/\langle F,G\rangle$$

The same goes when F and G are replaced by any L_i and M_j . Thus Lemma 0.2 applies and gives,

$$\dim_k(k \llbracket x, y \rrbracket / \langle F, G \rangle) = \sum_{i=1}^d \sum_{j=1}^e \dim_k(k \llbracket x, y \rrbracket / \langle L_i, M_j \rangle) = de.$$

Now let $f, g \in k \llbracket x, y \rrbracket$ with $f \in \mathfrak{m}^d - \mathfrak{m}^{d+1}$ and $g \in \mathfrak{m}^e - \mathfrak{m}^{e+1}$. Let $F = \overline{f} \in k[x, y]_d$ and $G = \overline{g} \in k[x, y]_e$.

Lemma 0.4. If F and G have no common factor, then $k [\![x, y]\!] / \langle f, g \rangle$ is a k-vector space of dimension de.

Proof. First of all, by Lemma 0.3, $k[x,y]/\langle F,G\rangle$ is a finite-dimensional k-vector space. Hence there exists an integer r > 0 such that $\langle x, y \rangle^r k[x,y] \subset \langle F,G \rangle k[x,y]$. It follows that $\mathfrak{m}^r \subset \langle f,g \rangle + \mathfrak{m}^{r+1}$. By Krull's Intersection Theorem, $\mathfrak{m}^r \subset \langle f,g \rangle$.

Let $\mathcal{B} \subset k[x, y] \subset k[x, y]$ be a collection of homogeneous elements that map to a k-basis for $k[x, y]/\langle F, G \rangle$. The claim is that the images of the elements in \mathcal{B} form a k-basis for k[x, y].

Linear independence: Suppose given a nontrivial k-linear relation among the images of the elements \mathcal{B} , i.e., a collection $(c_b|b \in \mathcal{B})$ of elements of k such that

$$\sum_{b \in \mathcal{B}} c_b b = uf + vg$$

Of course u and v can be chosen so that either u = 0 or else $u \notin \langle g \rangle$; if u is in $\langle g \rangle$, replace u by 0 and replace v by v + (u/g)f. Moreover, the factors u and v can be chosen so that either u = 0 or else the lowest degree nonzero homogeneous part of u

is not divisible by G. If u = 0, this is trivial. If $u \neq 0$, then u is not in $\langle g \rangle$, which by Krull's Intersection Theorem equals $\bigcap_{N>0}(\mathfrak{m}^N + \langle g \rangle)$. So there exists some integer N such that $u \notin \mathfrak{m}^N + \langle g \rangle$. Let n be the largest integer such that $u \in \mathfrak{m}^n + \langle g \rangle$, i.e., $u = u_0 g + u_1$ where $u_1 \in \mathfrak{m}^n$. If the lowest degree part of u_1 is divisible by G, say $u_1 = u_2 G + u_3$ where $u_3 \in \mathfrak{m}^{n+1}$, then $u = (u_0 + u_2)g + u_2(G - g) + u_3$, and $u_2(G - g), u_3 \in \mathfrak{m}^{n+1}$ contradicting that $u \notin \mathfrak{m}^{n+1} + \langle g \rangle$. Therefore the lowest degree homogeneous part of u is not in $\langle g \rangle$.

Let *n* be the least integer such that either $\deg(b) = n$ for some *b* with $c_b = 0$, or $u \in k [\![x, y]\!] - \mathfrak{m}^{n-d+1}$, or $v \in k [\![x, y]\!] - \mathfrak{m}^{n-e+1}$. Then the linear relation above gives a *k*-linear relation modulo \mathfrak{m}^{n+1} which is a nontrivial *k*-linear relation,

$$\sum_{b\in\mathcal{B}}c_b'b=UF+VG,$$

where $c'_b = c_b$ if deg(b) = n and $c'_b = 0$ otherwise, and where U, V are homogeneous polynomials of degrees n - d and n - e respectively. By hypothesis, \mathcal{B} is linearly independent in $k[x, y]/\langle F, G \rangle$, so every $c'_b = 0$. Therefore at least one of U and Vis nonzero and there is a relation UF + VG = 0, i.e., UF = -VG. Since F and G have no common factor, G divides U. By construction, U, the lowest degree graded part of u, is divisible by G iff u = 0. Therefore U = 0, which implies also V = 0. This contradicts the construction of n, proving the only linear relation among \mathcal{B} in $k[x, y]/\langle f, g \rangle$ is the trivial linear relation, i.e., \mathcal{B} is linearly independent in $k[x, y]/\langle f, g \rangle$.

Spanning: Let *a* be an element in $k [\![x, y]\!] / \langle f, g \rangle$. The claim is that $a \in \text{Span}(\mathcal{B})$. If not then there exist a largest integer $n \geq 0$ such that $a \in \mathfrak{m}^n + \text{Span}(B)$. Up to adding an element in Span(B), $a \in \mathfrak{m}^n$ and $a \notin \mathfrak{m}^{n+1} + \text{Span}(B)$. Consider the associated homogeneous element,

$$A := \overline{a} \in \mathfrak{m}^n k \llbracket x, y \rrbracket / (\mathfrak{m}^n + 1 + \langle f, g \rangle) \cong (k[X, Y] / \langle F, G \rangle)_n$$

Because \mathcal{B} spans $k[X,Y]/\langle F,G\rangle$, there exists an expression for A as the sum of a k-linear combination of the elements in \mathcal{B} and an element in $\langle F,G\rangle$. This gives an expression for a as the sum of a k-linear combination of the elements in \mathcal{B} , and an element in \mathfrak{m}^{n+1} contrary to hypothesis. Therefore \mathcal{B} spans $k[x,y]/\langle f,g\rangle$. \Box

Corollary 0.5. Let S be a surface, let $p \in S$ be a smooth point, and let $C, D \subset S$ be curves such that $p \in C \cap D$ is an isolated point of $C \cap D$.

- (i) If the tangent cone of C at p and the tangent cone of D at p have no common irreducible component, then i(C, D; p) equals e(C; p)e(D; p).
- (ii) In every case, $i(C, D; p) \ge e(C; p)e(D; p)$.

Proof. (i) Let $\mathbb{I}(C)\mathcal{O}_{S,p} = \langle f \rangle \mathcal{O}_{S,p}$ and $\mathbb{I}(D)\mathcal{O}_{S,p} = \langle g \rangle \mathcal{O}_{S,p}$. Because p is an isolated point of $C \cap D$, $\mathfrak{m}^r \subset \langle f, g \rangle$ for some integer r > 0. Thus,

$$\mathcal{O}_{S,p}/\langle f,g\rangle \cong (\mathcal{O}_{S,p}/\mathfrak{m}^r)/\langle f,g\rangle \cong (\widehat{\mathcal{O}}_{S,p}/\mathfrak{m}^r)/\langle f,g\rangle \cong \widehat{\mathcal{O}}_{S,p}/\langle f,g\rangle.$$

Because p is a smooth point of S, $\widehat{\mathcal{O}}_{S,p}$ is isomorphic to $k \llbracket x, y \rrbracket$. Of course e(C; p) = d where $f \in \mathfrak{m}^d - \mathfrak{m}^{d+1}$ and e(D; p) = e where $g \in \mathfrak{m}^e - \mathfrak{m}^{e+1}$. By Lemma 0.4, $i(C, D; p) = \dim_k(\mathcal{O}_{S,p}/\langle f, g \rangle)$ equals e(C; p)e(D; p).

(ii) The notation is as in Lemma 0.4. The hypothesis that $F, G \in k[x, y]$ are relatively prime is not necessarily satisfied. Let K denote the algebraic closure of the field k(t). Then there exist $F' \in k[x, y]_d, G' \in k[x, y]_e$ such that $F + tF' \in K[x, y]_d$

and $G + tG' \in K[x, y]_e$ are relatively prime elements in K[x, y]. In $k[t] \llbracket x, y \rrbracket$, form the ideal $I = \langle f + tF', g + tG' \rangle$ and denote $M = \langle x, y \rangle$. Because $p \in C \cap D$ is an isolated point, there exists an integer $r \geq 0$ such that $\mathfrak{m}^r k \llbracket x, y \rrbracket \subset \langle f, g \rangle k \llbracket x, y \rrbracket$. Therefore $(I + M^r)/(I + M^{r+1})$ is a finitely-generated k[t] module and modulo t this module is 0. By Nakayama's lemma, there exists a polynomial $a \in tk[t]$ such that (1 + a) annihilates this k[t]-module. Therefore, inverting 1 + a, $I + M^{r+1} \subset I + M^r$. By Krull's intersection theorem, $M^r \subset I$. Therefore $A := k[t] \llbracket x, y \rrbracket / \langle I = (k[t] \llbracket x, y \rrbracket / M^r) / I$ is a finitely-generated k[t][1/(1 + a)]-module. By the structure theorem for finitely-generated modules over a PID, this is the direct sum of a finitely-generated torsion-module and a finite free module of some rank *i*. In particular, $\dim_k(A/tA) \geq i$. To compute *i*, tensor the module with K over k[t][1/(1 + a)]. This gives $K \llbracket x, y \rrbracket / \langle f + tF', g + tG' \rangle$. By (i), this is a finite-dimensional K-vector space of dimension de. Therefore i = de. Since $A/tA = k \llbracket x, y \rrbracket / \langle f, g \rangle$, this gives,

$$i(C,D;p) = \dim_k(k \llbracket x,y \rrbracket / \langle f,g \rangle) \ge de = e(C;p)e(D;p).$$

Remark 0.6. A geometric interpretation of Lemma 0.2 is that if C and D are curves on $S, p \in C \cap D$ is an isolated point, and if the "completion" of C at p factors into "branches" with no common irreducible component, $C = C_1 \cup C_2$, then $i(C, D; p) = i(C_1, D; p) + i(C_2, D; p)$. This is "fictitious" since the factorization $f = f_1 f_2$ may not make sense in $\mathcal{O}_{S,p}$, only in $\widehat{\mathcal{O}}_{S,p}$. However, if $f = f_1 f_2$ is a factorization in $\mathcal{O}_{S,p}$, this does make sense. In any case, it is a useful fiction whose rigorous version is Lemma 0.2.

(c) Let X be a plane curve and $p \in X$ an element. Prove that for all but finitely many lines L in \mathbb{P}^2 containing p, i(X, L; p) = e(X; p).

Solution: The tangent cone to X at p is a union of finitely many lines. Let L be any line containing p whose tangent cone is not one of these finitely many lines. By Corollary 0.5(i), i(X, L; p) = e(X; p)e(L; p). Of course e(L; p) = 1, so i(X, L; p) = e(X; p).

Required Problem 2, Bézout's Theorem in the Plane: This problem continues the previous problem. Let $d = \deg(F)$ and let $e = \deg(G)$. Assume $C \cap D = \{p_1, \ldots, p_m\}$, i.e., $C \cap D$ has no irreducible component of dimension 1. Define $M = k[X_0, X_1, X_2]/\langle F, G \rangle$ as a graded module. For every $i = 1, \ldots, m$, define $M_i = \text{Image}(\phi_{P_i})$ where P_i is the homogeneous ideal of p_i and where $\phi_{P_i} : k[X_0, X_1, X_2]/\langle F, G \rangle \to (k[X_0, X_1, X_2]/\langle F, G \rangle)_{P_i}$ is the localization homomorphism.

For the following homomorphism of graded modules, prove both the kernel and cokernel have finite length:

$$\phi: M \to \bigoplus_{i=1}^m M_i.$$

Hint: This requires more about the Jordan-Hölder filtration and associated primes. For a graded module M, there exists a filtration of M, $M = M^0 \supset \cdots \supset M^r = \{0\}$, such that for every $j = 1, \ldots, r, M^{j-1}/M^j \cong (k[X_0, X_1, X_2]/Q_j)(d_j)$ where Q_j is an associated prime of M. If Q is a minimal associated prime, then $(M^{j-1}/M^j)_P$ is nonzero iff $P_j = P$. So the graded pieces in the filtration of M_i are the associated graded pieces in the filtration of M such that $Q_j = P_i$. **Solution:** As in the previous problem, the localizations should have been the graded localizations. Again, at the expense of making the solution longer, the Jordan-Hölder filtration will be constructed.

In Problem 1, for every $i = 1, \ldots, m$ a Jordan-Hölder filtration is constructed for the module M_i . Denote $K^0 = M$ and for every j = 1, dots, m, denote by $K^j \subset M$ the kernel of the projection to the first i factors, $K^j = \ker(M \to \bigoplus_{i=1}^j M_i)$. Then K^i/K^{i+1} is a graded submodule of M_i . By construction, there exists a filtration of M_i by graded submodules, $M_i^0 \supset \cdots \supset M_i^{r_i} = (0)$, such that every term M_i^l/M_i^{l+1} is isomorphic to $(k[X_0, X_1, X_2]/P_i)(d_l)$ for some integer d_l . For every $l = 1, \ldots, r_i$, define $K^{i,l} \subset K^i$ to be the unique graded submodule containing K^{i+1} such that $K^{i,l}/K^{i+1} = (K^i/K^{i+1}) \cap M_i^l$. Then $K^{i,l}/K^{i,l+1}$ is a graded submodule of $(k[X_0, X_1, X_2]/P_i)(d_l) \cong k[t](d_l)$. Such a submodule is clearly either (0) or else $k[t](e_l)$ for some integer $e_l \ge d_l$. Concatenating these filtrations gives a filtration on M which stabilizes at $K^m = \ker(\phi)$ and such that the associated filtration on M/K^m has the properties mentioned above.

The claim is that ker(ϕ) has finite length. If ker(ϕ) = (0), this is trivial. Therefore assume ker(ϕ) \neq (0). Every associated prime of ker(ϕ) is an associated prime of M, thus it contains a minimal prime P_i . On the other hand, ϕ_{P_i} is an isomorphism by construction. Since localization is left exact (ker(ϕ)) P_i = (0). Therefore the associated prime of ker(ϕ) is not P_i , i.e., it properly contains P_i . Since M is a graded module, the associated prime is a homogeneous prime that properly contains P_i . The only such prime is $\langle X_0, X_1, X_2 \rangle$. Since the only associated prime of ker(ϕ) is $\langle X_0, X_1, X_2 \rangle$, ker(ϕ) is $\langle X_0, X_1, X_2 \rangle$ primary, i.e., $\langle X_0, X_1, X_2 \rangle^e$ ker(ϕ) = (0) for some integer e. Therefore ker(ϕ) is a finitely generated module over the local, Artinian k-algebra $k[X_0, X_1, X_2]/\langle X_0, X_1, X_2 \rangle^e$. It follows that ker(ϕ) has finite length. The filtration of ker(ϕ) by powers of the maximal ideal can be refined to a Jordan-Hölder filtration whose subquotients are all $k[X_0, X_1, X_2]/\langle X_0, X_1, X_2 \rangle$.

More is true. As above, there is a filtration on $\oplus_i M_i$: $(\oplus M_i)^0 \supset \cdots \supset (\oplus M_i)^r = (0)$ and the homomorphism ϕ is *strict* for this filtration, i.e., $\phi^{-1}(\oplus_i M_i)^l = M^l$ for $l = 0, \ldots, r$ (of course $M^l = \ker(\phi)$ has a further filtration, but this isn't relevant). Because ϕ is strict, the induced homomorphism $\phi : M^i/M^{i+1} \rightarrow (\oplus_i M_i)^l/(\oplus_i M_i)^{l+1}$ is injective for every l. As discussed above, the target is $(k[X_0, X_1, X_2]/P_j)(d_l)$ for some $j = 1, \ldots, m$ and some integer d_l .

The claim is that the image of ϕ is nonzero. To see this, localize both sides by P_j . There is an induced filtration of the localization. Because localization is exact, $(M_{P_i})^l/(M_{P_i})^{l+1} \cong (M^l/M^{l+1})_{P_i}$ and

$$((\oplus_i M_i)_{P_j})^l / ((\oplus_i M_i)_{P_j})^{l+1} \cong ((\oplus_i M_i)^l / (\oplus_i M_i)^{l+1})_{P_j} \cong (k[X_0, X_1, X_2] / P_j)_{P_j}.$$

By construction, ϕ_{P_j} is an isomorphism, and ϕ_{P_j} is strict, therefore $\phi_{P_j} : M_{P_j}^l/M_{P_j}^{l+1} \to (\oplus_i M_i)_{P_j}^l/(\oplus_i M_i)_{P_j}^l$ is an isomorphism. It follows that $(M^l/M^{l+1})_{P_j}$ is nonzero, and therefore M^l/M^{l+1} is nonzero, proving the claim. In particular, $M^l/M^{l+1} = (k[X_0, X_1, X_2]/P_j)(e_l)$ for some integer e_l , as a submodule of $(k[X_0, X_1, X_2]/P_j)(d_l)$. So the cokernel is isomorphic to $k[T](d_l)/k[T](e_l) \cong k[T]/\langle T^{e_l-d_l}$, which has finite length. This proves there exist Jordan-Hölder filtrations for M and $\bigoplus_i M_i$ such that ϕ is a strict map of the filtrations whose kernel and cokernel both have finite length.

Remark: It follows that the Hilbert polynomial of M equals the sum over i of the Hilbert polynomial of M_i . On the one hand, there is an exact sequence of graded modules,

$$\begin{array}{c} 0 \to k[X_0, X_1, X_2](-d-e) \xrightarrow{(G,-F)^{+}} k[X_0, X_1, X_2](-d) \oplus k[X_0, X_1, X_2](-e) \\ \xrightarrow{(F,G)} k[X_0, X_1, X_2] \xrightarrow{k} [X_0, X_1, X_2]/\langle F, G \rangle \to 0, \end{array}$$

from which it easily follows the Hilbert polynomial of M is de. On the other hand, by Problem 1, the Hilbert polynomial of each M_i is the intersection multiplicity $i(C, D; p_i)$. This gives *Bézout's theorem in the plane*,

$$\deg(C) \cdot \deg(D) = \sum_{p_i \in C \cap D} i(C, D; p_i).$$

Required Problem 3: This is essentially (Hartshorne, Exer. I.7.5). Let $C \subset \mathbb{P}^2_k$ be a plane curve of degree $d \geq 1$.

(a) If there exists $p \in C$ such that e(C; p) = d, prove C is a union of lines containing p.

Solution: Consider the projection $\pi_p : (C - \{p\}) \to \mathbb{P}^1$. Let $q \in C - \{p\}$ be a point, denote $q' = \pi_p(q)$, and let $L \subset \mathbb{P}^2_k$ be the line containing p corresponding to q'. Because L is irreducible, if L is not contained in C then $C \cap L$ is a proper closed subset of L which is a finite set. Then by Bézout's theorem, $\deg(C)\deg(L) \geq i(C, L; p) + i(C, L; q)$. Of course $\deg(L) = 1$ and e(L; p) = e(L; q) = 1. By Problem 1(b), $i(C, L; p) \geq e(C; p) = d$ and $i(C, L; q) \geq e(C; q) \geq 1$. So Bézout's theorem gives $d \geq d + 1$, which is absurd. Therefore $L \subset C$. So C is a union of lines containing p.

(b) If C is irreducible, and $p \in C$ is a point such that e(C;p) = d-1, prove the projection from p is birational: $\pi_p : (C - \{p\}) \to \mathbb{P}^1_k$.

Solution: First of all, C is not a line since for every line L containing p, $e(L; p) = 1 = \deg(L)$ and $e(C; p) < \deg(C)$. So, continuing the argument from (a), for every $q \in C - \{p\}, L \cap C$ is a finite set and Bézout's theorem gives

$$d \ge e(C;p) + i(C,L;q) + \sum_{q' \in C \cap L - \{p,q\}} e(C;q') = d - 1 + i(C;q) + \sum_{q' \in C \cap L - \{p,q\}} e(C;q')$$

It follows that the fiber of π_p containing q equals $\{q\}$ and i(C, L; q) = 1. Let t be a uniformizer for $\mathcal{O}_{\mathbb{P}^1,q'}$, let s be a uniformizer for $\mathcal{O}_{C,q}$, and let $\pi_p^{\#}(t) = us^i$ for a unit u and an integer i. The algebra computing i(C, L; q), namely $\mathcal{O}_{\mathbb{P}^2,q}/\langle F_q, G_q \rangle$ equals $\mathcal{O}_{C,q}/\langle G_q \rangle \cong \mathcal{O}_{C,q}\langle s^i \rangle$, which has length i. Therefore i equals q, i.e., $\pi_p^{\#}t$ is a uniformizer for C at q. In particular, $C - \{p\}$ is smooth and $\pi_p : C - \{p\} \to \mathbb{P}^1$ is injective, and more, the derivative $d\pi_p$ is everywhere an isomorphism. Since π_p is generically finite, there exists a dense open subset $U \subset \mathbb{P}^1$ such that $\pi_p : \pi_p^{-1}(U) \to$ U is finite. Because π_p is injective, the corresponding field extension $k(\mathbb{P}^1) \to k(C)$ is purely inseparable. Because $d\pi_p$ is not identically zero, this field extension is in fact an isomorphism, i.e., $\pi_p : C - \{p\} \to \mathbb{P}^1_k$ is birational. **Required Problem 4:** Find an example of a weakly projective morphism $F : X \to Y$ that is not strongly projective. If you are ambitious, find an example where X and Y are quasi-compact and separated.

Solution: There are elementary examples if Y is not quasi-compact. For instance, let Y be the disjoint union $Y = \bigsqcup_{n=0}^{\infty} Y_n$ where $Y_n \cong \mathbb{A}_k^0$, let $X = \bigsqcup_{n=0}^{\infty} X_n$ where $X_n \cong \mathbb{P}_k^n$, and let $f: X \to Y$ be the locally constant morphism such that $f(X_n) = Y_n$. This is weakly projective because for every $p \in Y$ there exists an n with $p \in Y_n \subset Y$, the subset $Y_n \subset Y$ is an open affine subset, and $F: F^{-1}(Y_n) \to Y_n$ is strongly projective. But F is not strongly projective. Indeed, if there were a closed immersion $i: X \to Y \times \mathbb{P}_k^r$, then every irreducible component $X_n \cong \mathbb{P}_k^n$ of X would have a closed immersion into $Y_n \times \mathbb{P}_k^r \cong \mathbb{P}_k^r$. For n > r, $\dim(X_n) = n > r = \dim(\mathbb{P}_k^r)$, so there is no closed immersion $i: X_n \to \mathbb{P}_k^r$.

A more ambitious example is Hironaka's example, described in lecture. Here is an explicit version of the example from lecture. Denote homogeneous coordinates on \mathbb{P}^3_k by X_0, X_1, X_2, Y . For every integer n, denote by X_n the variable X_a where $a \in \{0, 1, 2\}$ is the unique integer such that n - a is divisible by 3. Let $U = \mathbb{P}^3_k - \{[0, 0, 0, 1]\}$. For every integer n, denote $U_n = D_+(X_n) \subset U$, and denote by F_n : $V_n \to U_n$ the blowing up of the ideal $I_n = \langle (Y/X_n)^2, (Y/X_n)(X_{n+1}/X_n), (X_{n+1}/X_n)^2(X_{n+2}/X_n) \rangle$. Of course identify $V_n = V_m$ if n - m is divisible by 3.

Because X_{n+1}/X_n is invertible on $U_n \cap U_{n+1}$, $F_n : F_n^{-1}(U_n \cap U_{n+1}) \to U_n \cap U_{n+1}$ is the blowing up of the ideal $I'_n = \langle (Y/X_n), (X_{n+2}/X_n) \rangle$. Similarly, $F_{n+1} : F_{n+1}^{-1}(U_n \cap U_{n+1}) \to U_n \cap U_{n+1}$ is the blowing up of the ideal $\langle (Y/X_{n+1})^2, (Y/X_{n+1})(X_{n+2}/X_{n+1}), (X_{n+2}/X_{n+1})^2 \rangle$, which is the same as the ideal $I''_n = \langle (Y/X_n)^2, (Y/X_n)(X_{n+2}/X_n), (X_{n+2}/X_n)^2 \rangle =$ $(I'_n)^2$. Because the pullback of I'_n to $F_n^{-1}(U_n \cap U_{n+1})$ is a locally principal ideal, the pullback of $(I'_n)^2$ is a locally principal ideal whose generator is the square of the generator of the pullback of I'_n . By the universal property, there is an induced morphism $\phi_{n+1,n} : F_n^{-1}(U_n \cap U_{n+1}) \to F_{n+1}^{-1}(U_n \cap U_{n+1})$. Similarly, at every point of $F_{n+1}^{-1}(U_n \cap U_{n+1})$, because the pullback of I''_n is a principal ideal $\langle t \rangle$, one of the fractions of the consecutive generators of I''_n is a regular function. Since each such fraction is either $(Y/X_n)/(X_{n+2}/X_n)$ or $(X_{n+2}/X_n)/(Y/X_n)$, it follows that either the pullback of I'_n is generated by the pullback of I'_n is a locally principal ideal. By the universal property, there is an induced morphism $\phi_{n,n+1} : F_{n+1}^{-1}(U_n \cap U_{n+1}) \to F_n^{-1}(U_n \cap U_{n+1})$.

Of course $F_{n+1} \circ \phi_{n+1,n} = F_n$ and $F_n \circ \phi_{n,n+1} = F_{n+1}$. Therefore $F_{n+1} \circ (\phi_{n+1,n} \circ \phi_{n,n+1}) = F_{n+1}$. Because F_{n+1} is birational, $\phi_{n+1,n} \circ \phi_{n,n+1}$ equals the identity morphism over a dense open subset. Because V_n is separated, $\phi_{n+1,n} \circ \phi_{n,n+1}$ is the identity morphism. Similarly $\phi_{n,n+1} \circ \phi_{n+1,n}$ is the identity morphism, i.e., $\phi_{n,n+1}$ and $\phi_{n+1,n}$ are inverse isomorphisms. For essentially the same reason, the collection $((V_n)_n, (F_n^{-1}(U_n \cap U_{n+1}))_n, (\phi_{n,n+1}))$ satisfy the gluing lemma for varieties. Denote by V be the associated variety. And the collection (F_n) satisfies the gluing lemma for morphisms. Denote by $F: V \to U$ the associated morphism.

By construction, $F: V \to U$ is weakly projective: for every $n, F_n: V_n \to U_n$ is a blowing up which is strongly projective. Because U is quasi-projective, if F is strongly projective, then V is also quasi-projective. But by the argument in

lecture comparing the degrees of various irreducible components of F, V is not quasi-projective. Thus F is weakly projective, but F is not strongly projective.

Problem 5: Assume char(k) does not divide 6. Combine Problem 2 with Problem 2 from Problem Set 6 to deduce that every smooth plane curve C of degree $d \ge 3$ has at most 3d(d-2) flex lines.

Problem 6: If char(k) = 3, give an example of a smooth plane curve C of degree $d \ge 3$ having infinitely many flex lines. If you get stuck, look up (Hartshorne, Exer. IV.2.4).

Problem 7: Find two homogeneous polynomials $F_2 \in k[X_0, X_1, X_2, X_3]_2, F_3 \in k[X_0, X_1, X_2, X_3]_3$ such that $\mathbb{V}(F_2, F_3)$ is the rational normal curve $C = \{[s_0^3, s_0^2 s_1, s_0 s_1^2, s_1^3] \in \mathbb{P}_k^3 | [s_0, s_1] \in \mathbb{P}_k^1 \}$ Note that F_2, F_3 do not generate the homogeneous ideal $\mathbb{I}(C)$.

Problem 8: For every integer $n \geq 3$, find n-1 homogeneous polynomials $F_i \in k[X_0, \ldots, X_n]_i$, $i = 2, \ldots, n$, such that $\mathbb{V}(F_2, \ldots, F_n)$ is the rational normal curve $C = \{[s_0^n, s_0^{n-1}s_1, \ldots, s_0s_1^{n-1}, s_1^n] \in \mathbb{P}_k^n | [s_0, s_1] \in \mathbb{P}_k^1 \}.$

Solution: For every integer $m = 2, \ldots, n$, define

$$F_m(X_0, \dots, X_n) = \sum_{k=0}^{m-1} (-1)^k \binom{m-1}{k} X_k X_{m-1}^k X_m^{m-1-k}$$

This is homogeneous of degree m. Moreover,

$$F_m(s_0^n, s_0^{n-1}s_1, \dots, s_1^n) = \sum_{k=0}^{m-1} (-1)^k {m-1 \choose k} (s_0^{n-k}s_1^k) (s_0^{n+1-m}s_1^{m-1})^k (s_0^{n-m}s_1^m)^{m-1-k}$$
$$= (\sum_{k=0}^{m-1} (-1)^k {m-1 \choose k}) s_0^{m(n+1-m)} s_1^{m(m-1)}$$
$$= (1-1)^{m-1} s_0^{m(n+1-m)} s_1^{m(m-1)} = 0.$$

So $C \subset \mathbb{V}(F_2, \ldots, F_n)$. Let $p = [a_0, a_1, \ldots, a_n]$ be an element of $\mathbb{V}(F_2, \ldots, F_n)$. First consider the case that $a_0 = 0$. The claim is that for every $i = 0, \ldots, n-1$, $a_i = 0$. This is proved by induction on i. If i = 0, this is the hypothesis. By way of induction, assume i > 0 and assume $a_0 = \cdots = a_{i-1} = 0$. Plugging in to F_{i+1} ,

$$0 = F_{i+1}(p) = 0 + \dots + (-1)^{i} {i \choose i} X_{i}^{i+1} = (-1)^{i} X_{i}^{i+1}$$

Therefore $a_i = 0$, proving the claim by induction. So p = [0, ..., 0, 1], which is in C.

Next consider the case that $a_0 \neq 0$. Define $b = a_1/a_0$. The claim is that for every i = 1, ..., n, $a_i = a_0 b^i$. This is proved by induction on i. If i = 1, this is the definition of b. By way of induction, assume i > 0 and assume $a_j = a_0 b^j$ for j = 1, ..., i - 1. Plugging in to F_i ,

$$F_{i}(p) = \sum_{k=0}^{i-1} (-1)^{k} {\binom{i-1}{k}} (a_{0}b^{k}) (a_{0}b^{i-1})^{k} a_{i}^{m-k} = a_{0} \sum_{k=0}^{i-1} (-1)^{k} {\binom{i-1}{k}} (a_{0}b^{i})^{k} X_{i}^{m-k} = a_{0} (a_{i} - a_{0}b^{i})^{i-1}.$$

Since $i \ge 1$, since $a_0 \ne 0$ and since $F_i(p) = 0$, it follows that $(a_i - a_0 b^i)^{i-1} = 0$, i.e., $a_i = a_0 b^i$. The claim is proved by induction. So $p = [a_0, a_0 b, a_0 b^2, \dots, a_0 b^n]$, which is in C. Therefore $\mathbb{V}(F_2, \dots, F_n) \subset C$, proving that $C = \mathbb{V}(F_2, \dots, F_n)$.

Problem 9: Let $C \subset \mathbb{P}_k^n$ be an irreducible curve contained in no hyperplane. Let $p \in C$ be any point, and let $\pi_p : C - \{p\} \to \mathbb{P}_k^{n-1}$ be projection from p. Denote by D the closure of the image of C. Prove that D is contained in no hyperplane and $\deg(D) \leq \deg(C) - 1$.

Problem 10: This problem continues Problem 9. Prove that the only irreducible curve $C \subset \mathbb{P}_k^n$ of degree 1 is a line and use this to prove that $\deg(C) \ge n$ if C is an irreducible curve contained in no hyperplane.