
18.725 SOLUTIONS TO PROBLEM SET 9

Due date: Friday, December 3 in lecture. Late work will be accepted only with a
medical note or for another Institute-approved reason. You are strongly encouraged
to work with others, but the final write-up should be entirely your own and based
on your own understanding.

Read through all the problems. Write solutions to the “Required Problems”, 1, 2,
3, and 4 together with 1 more problem to a total of 5.

Required Problem 1, Intersection Multiplicity: This problem is essentially
(Hartshorne, Exer. I.5.4). Let F,G ∈ k[X0, X1, X2] be non-constant, irreducible,
homogeneous polynomials, and denote C = V(F ), D = V(G) in P2

k. Let p ∈ C ∩D
be an element such that dim(C ∩ D, p) = 0, i.e., p is an isolated point of C ∩ D.
The intersection multiplicity of C and D at p, i(C,D; p), is defined to be,

i(C,D; p) = dimk(OP2,p/〈Fp, Gp〉),
where Fp, Gp ∈ OP2,p are germs of dehomogenizations of F and G at p.

Let P ⊂ k[X0, X1, X2] be the homogeneous ideal corresponding to p. Form the
graded k[X0, X1, X2]-module, M = Image(φp), where φp is the homomorphism of
graded modules,

φp : k[X0, X1, X2]/〈F,G〉 → (k[X0, X1, X2]/〈F,G〉)P .

(a) Prove that the Hilbert polynomial of M equals i(C,D; p), i.e., for all l �
0, dimkMl = i(C,D; p). Hint: You may assume existence of a Jordan-Hölder
filtration of M : a filtration of M by graded submodules, M = M0 ⊃ M1 ⊃ · · · ⊃
Mr = {0}, such that for every i = 1, . . . , r, M i−1/M i ∼= (k[X0, X1, X2]/P )(di)
for some integer di. For every X ∈ k[X0, X1, X2]1 − P , the dehomogenization
of M with respect to X equals OP2,p/〈Fp, Gp〉 and has an induced Jordan-Hölder
filtration whose associated graded pieces are the dehomogenizations of the graded
modules M i−1/M i. Relate the length of the dehomogenization of M , the Hilbert
polynomial of M and the integer r.

Solution: The definition of M given above is incorrect. The module M should be
the image of the graded localization: k[X0, X1, X2]/〈F,G〉 → S−1k[X0, X1, X2]/〈F,G〉,
where S = ∪e≥0(k[X0, X1, X2]e − Pe). In the problem, the existence of a Jordan-
Hölder filtation was given as a hypothesis. For completeness, the existence will
be proved – this makes the solution a bit longer. The solution of this problem in
Hartshorne’s Algebraic geometry does not use all of the properties of the filtration
(and so is more elementary).

Lemma 0.1. For every pair of polynomials F,G ∈ k[X0, X1, X2], for every p ∈ P2
k

with associated homogeneous ideal P , if p ∈ V(F,G) is an isolated point then
(i) M is a P -primary module, i.e., the only associated prime of M is P , and
(ii) there is a filtration of M by graded submodules, M = M0 ⊃ · · · ⊃ Mr = (0),

and a collection of integers d0, . . . , dr−1 such that for every i = 0, . . . , r−1,
M i/M i+1 ∼= (k[X0, X1, X2]/P )(di) as graded modules.
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Proof. (i) Consider the ideal J = 〈F,G〉. This is contained in the prime ideal P .
By the existence of a primary decomposition, there exists a collection of associated
primes of J , Q1, . . . , Qm, and a collection of homogeneous ideals, J1, . . . , Jm, such
that

(i) for every i = 1, . . . ,m, Ji is Qi-primary, i.e., for some integer ai > 0,
Qai

i ⊂ Ji ⊂ Qi, and,
(ii) J = J1 ∩ · · · ∩ Jm.

Because J ⊂ P and P is prime, there exists i such that Ji ⊂ P , which in turn
implies Qi ⊂ P , i.e., V(P ) ⊂ V(Qi) ⊂ V(F,G). By hypothesis p is an isolated
point of V(F,G) so that V(Qi) = V(P ) = {p}. By the Nullstellensatz, Qi = P ,
i.e., P is an associated prime of J . Note: This is just the usual argument that
the minimal primes that contain J are the same as the minimal primes among the
associated primes of J .

The module M is a quotient of k[X0, X1, X2]/J , i.e., M = k[X0, X1, X2]/I for a
homogeneous ideal I containing J . In fact I = {a ∈ k[X0, X1, X2]|∃s ∈ S, sa ∈
J}, i.e., I/J ⊂ k[X0, X1, X2]/J is the submodule of elements annihilated by an
element in S. Because P is an associated prime of J , P = ann(f) for some element
f ∈ k[X0, X1, X2]/J . The element f can be chosen homogeneous. The annihilator
of the image f ∈ k[X0, X1, X2]/I is {a ∈ k[X0, X1, X2]|∃s ∈ S, saf = 0} = {a ∈
k[X0, X1, X2]|∃s ∈ S, sa ∈ P}. Because P is a prime and S ∩ P = ∅, if sa ∈ P ,
then a ∈ P . Therefore the annihilator of f is P . In particular, P is an associated
prime of M .

Let Q be an associated prime of M . By construction, every element of S acts as
a non-zero-divisor on S−1(k[X0, X1, X2]/〈F,G〉), and thus on M as well. There
is a homogeneous element m ∈ M such that every homogeneous element of Q
annihilates m, so the element is not in S which implies it is a homogeneous element
of P . Because M is a graded module, every associated prime is a homogeneous
ideal. Therefore Q ⊂ P . As proved above, P is a minimal prime containing J , and
J ⊂ Q so that Q = P . Therefore P is the unique associated prime of M , i.e., I is
a P -primary homogeneous ideal.

(ii) For every integer i ≥ 0, define M i ⊂ M to be the kernel of the homomorphis
of graded modules that is the composition,

M → S−1M → S−1M/P i(S−1M).

Of course PM i ⊂ M i+1, so M i/M i+1 is a finitely-generated graded module over
k[X0, X1, X2]/P ∼= k[T ]. Also, since I is a P -primary ideal, P eM = (0) for some
integer e so that Me = (0), i.e., the filration stabilizes to (0). Moreover, M i/M i+1

is a submodule of P iS−1M/P i+1(S−1M) = S−1(P iM/P i+1M). By construction,
ever nonzero homogeneous element of k[X0, X1, X2]/P acts as a non-zero-divisor on
S−1(P iM/P i+1M), thus also on M i/M i+1. So M i/M i+1 is a torsion-free finitely-
generated k[T ]-module, i.e., it is a finite free k[T ]-module. Every finite free k[T ]-
module is free; likewise every graded finite free k[T ]-module is of the form k[T ](d1)⊕
· · ·⊕k[T ](dm) for a sequence of integers d1, . . . , dm. Thus M i/M i+1 has a filtration
by graded submodules (in fact a direct sum decomposition) where the associated
subquotients are of the form k[T ](di).

The induced filtration of each M i/M i+1 determines a refinement of the original
filtration to a filtration by graded submodules, M = M0 ⊃ · · · ⊃ Mr = (0), such

2



that for every i = 0, . . . , r − 1 the associated subquotient of the new filtration,
M i/M i+1, is isomorphic to k[T ](di) for some integer di. �

By the additivity of Hilbert polynomials, the Hilbert polynomial of M is the sum of
the Hilbert polynomials of the associated graded pieces M i−1/M i. For every integer
i = 0, . . . , r− 1, M i−1/M i ∼= k[T ](di). So the Hilbert polynomial of M i−1/M i is 1.
Therefore the Hilbert polynomial of M is r.

Consider the functor ∗(P ) that associates to a graded k[X0, X1, X2]-module N the
(S−1k[X0, X1, X2])0-module,

N(P ) = (S−1N)0.

Localization is exact, as is the functor assigning to a graded module its degree
0 graded part, thus ∗(P ) is an exact functor. In particular, there is an induced
filtration of M(P ), (M(P ))i = (M i)(P ). For every i = 0, dots, r − 1, the associated
subquotient of this filration is (M i/M i+1)(P )

∼= (k[t](di))(t). Now S1k[t](di) ∼=
k[t, t−1](di), and the degree 0 graded summand is just k{tdi}, the 1-dimensional
k-vector space spanned by the monomial tdi . Now dimkM(P ) is the sum of the
dimensions of the associated subquotients, which is r.

For every X ∈ k[X0, X1, X2]1 − P1, the ring (k[X0, X1, X2][1/X])0 is the coor-
dinate ring k[D+(X)] of the affine neighborhood of p, D+(X) ⊂ P2

k. For every
s ∈ k[X0, X1, X2]d − Pd, the dehomogenization of s with respect to X is an el-
ement of k[D+(X)] − mp, and vice versa every element of k[D+(X)] − mp is the
dehomogenization of a homogeneous element in k[X0, X1, X2]− P . It follows that
(k[X0, X1, X2])(P )

∼= k[D+(X)]mp
= OP2

k,p. Moreover, (k[X0, X1, X2]/〈F,G〉)(P )
∼=

OP2
k,p/〈Fp, Gp〉. So the intersection multiplicity i(C,D; p) equals the dimension of

M(P ). Therefore i(C,D; p) equals the Hilbert polynomial of M .

(b) This problem is rather difficult. Attempt it, but you don’t have to solve it.
Denote by e(C; p), resp. e(D; p), the Hilbert-Samuel multiplicity of C at p, resp. of
D at p. Prove that i(C,D; p) ≥ e(C; p)e(D; p). Hint: Work in affine coordinates
for which p = (0, 0). First consider the case that C = V(f), D = V(g) where f
and g are relatively prime homogeneous polynomials in x, y. Next deduce the case
where f and g are not necessarily homogeneous, but the tangent cones of C and
D at p have no common irreducible component. The general case can be deduced
from this one by an “semicontinuity” argument.

Solution: A more complete, but less elementary, solution than the following is
in Chapter 12 of Fulton’s Intersection Theory (there are also solutions in most
textbooks on algebraic curves).

Lemma 0.2. Let f1, f2, g ∈ k [[x, y]] be elements in m = 〈x, y〉 such that for i = 1, 2,
fi and g have no common factor. Then 〈f1, g〉, 〈f2, g〉 and 〈f1f2, g〉 are m-primary,
and

dimk(k [[x, y]] /〈f1f2, g〉) = dimk(k [[x, y]] /〈f1, g〉) + dimk(k [[x, y]] /〈f2, g〉).

Proof. For f = f1, f2 or f1f2, because f and g have no common factor and because
k [[x, y]] is a Unique Factorization Domain, f, g are a regular sequence. In particular,
every prime over 〈f, g〉 has height 2. The only prime in k [[x, y]] of height 2 is m, so
〈f, g〉 is a m-primary ideal.
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There is a short exact sequence of k-vector spaces,

0 −−−−→ 〈f1, g〉/〈f1f2, g〉 −−−−→ k [[x, y]] /〈f1f2, g〉 −−−−→ k [[x, y]] /〈f1, g〉 −−−−→ 0.

So to prove the equation of dimensions, it suffices to prove that 〈f1, g〉/〈f1f2, g〉 is
isomorphic to k [[x, y]] /〈f2, g〉 as a module. There is a k [[x, y]]-module homomor-
phism φ : k [[x, y]] /〈f2, g〉 → 〈f1, g〉/〈f1f2, g〉 by φ(1) = f1. Of course φ is surjective.
For every h ∈ ker(φ), f1h ∈ 〈f1f2, g〉, i.e., f1h = af1f2 + bg for some a, b ∈ k [[x, y]].
This can be rewritten as bg = f1(h− af2); in particular f1 divides bg. By hypoth-
esis, f1 and g have no common factor. The ring k [[x, y]] is a Unique Factorization
Domain, thus f1 divides b, i.e., b = f1c. Then h = af2 + cg, which is in 〈f2, g〉, i.e.,
φ is injective. �

Lemma 0.3. Let F,G ∈ k[x, y] be homogeneous polynomials of degrees d and e
respectively. If F and G have no common factor, then k[x, y]/〈F,G〉 is a k-vector
space of dimension de.

Proof. Both F and G factor as products of homogeneous linear polynomials, F =
L1 · · ·Ld, G = M1 · · ·Me such that for every i, j, Li and Mj are linearly inde-
pendent. Of course V(F,G) = ∪(i,j)V(Li,Mj) = ∪(i,j){(0, 0)} = {(0, 0)}. By the
Nullstellensatz, 〈F,G〉 is 〈x, y〉-primary, i.e., 〈x, y〉e ⊂ 〈F,G〉 for some integer e ≥ 0.
Therefore,

k[x, y]〈F,G〉 ∼= (k[x, y]/〈x, y〉e)/〈F,G〉 ∼= (k [[x, y]] /〈x, y〉e)/〈F,G〉 ∼= k [[x, y]] /〈F,G〉.
The same goes when F and G are replaced by any Li and Mj . Thus Lemma 0.2
applies and gives,

dimk(k [[x, y]] /〈F,G〉) =
d∑

i=1

e∑
j=1

dimk(k [[x, y]] /〈Li,Mj〉) = de.

�

Now let f, g ∈ k [[x, y]] with f ∈ md−md+1 and g ∈ me−me+1. Let F = f ∈ k[x, y]d
and G = g ∈ k[x, y]e.

Lemma 0.4. If F and G have no common factor, then k [[x, y]] /〈f, g〉 is a k-vector
space of dimension de.

Proof. First of all, by Lemma 0.3, k[x, y]/〈F,G〉 is a finite-dimensional k-vector
space. Hence there exists an integer r > 0 such that 〈x, y〉rk[x, y] ⊂ 〈F,G〉k[x, y].
It follows that mr ⊂ 〈f, g〉+ mr+1. By Krull’s Intersection Theorem, mr ⊂ 〈f, g〉.
Let B ⊂ k[x, y] ⊂ k [[x, y]] be a collection of homogeneous elements that map to a
k-basis for k[x, y]/〈F,G〉. The claim is that the images of the elements in B form a
k-basis for k [[x, y]].

Linear independence: Suppose given a nontrivial k-linear relation among the
images of the elements B, i.e., a collection (cb|b ∈ B) of elements of k such that∑

b∈B

cbb = uf + vg.

Of course u and v can be chosen so that either u = 0 or else u 6∈ 〈g〉; if u is in 〈g〉,
replace u by 0 and replace v by v + (u/g)f . Moreover, the factors u and v can be
chosen so that either u = 0 or else the lowest degree nonzero homogeneous part of u
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is not divisible by G. If u = 0, this is trivial. If u 6= 0, then u is not in 〈g〉, which by
Krull’s Intersection Theorem equals ∩N>0(mN + 〈g〉). So there exists some integer
N such that u 6∈ mN + 〈g〉. Let n be the largest integer such that u ∈ mn + 〈g〉,
i.e., u = u0g + u1 where u1 ∈ mn. If the lowest degree part of u1 is divisible by
G, say u1 = u2G + u3 where u3 ∈ mn+1, then u = (u0 + u2)g + u2(G − g) + u3,
and u2(G− g), u3 ∈ mn+1 contradicting that u 6∈ mn+1 + 〈g〉. Therefore the lowest
degree homogeneous part of u is not in 〈g〉.
Let n be the least integer such that either deg(b) = n for some b with cb = 0, or
u ∈ k [[x, y]] − mn−d+1, or v ∈ k [[x, y]] − mn−e+1. Then the linear relation above
gives a k-linear relation modulo mn+1 which is a nontrivial k-linear relation,∑

b∈B

c′bb = UF + V G,

where c′b = cb if deg(b) = n and c′b = 0 otherwise, and where U, V are homogeneous
polynomials of degrees n − d and n − e respectively. By hypothesis, B is linearly
independent in k[x, y]/〈F,G〉, so every c′b = 0. Therefore at least one of U and V
is nonzero and there is a relation UF + V G = 0, i.e., UF = −V G. Since F and
G have no common factor, G divides U . By construction, U , the lowest degree
graded part of u, is divisible by G iff u = 0. Therefore U = 0, which implies
also V = 0. This contradicts the construction of n, proving the only linear relation
among B in k [[x, y]] /〈f, g〉 is the trivial linear relation, i.e., B is linearly independent
in k [[x, y]] /〈f, g〉.
Spanning: Let a be an element in k [[x, y]] /〈f, g〉. The claim is that a ∈ Span(B).
If not then there exist a largest integer n ≥ 0 such that a ∈ mn + Span(B). Up
to adding an element in Span(B), a ∈ mn and a 6∈ mn+1 + Span(B). Consider the
associated homogeneous element,

A := a ∈ mnk [[x, y]] /(mn + 1 + 〈f, g〉) ∼= (k[X, Y ]/〈F,G〉)n.

Because B spans k[X, Y ]/〈F,G〉, there exists an expression for A as the sum of a
k-linear combination of the elements in B and an element in 〈F,G〉. This gives an
expression for a as the sum of a k-linear combination of the elements in B, and an
element in mn+1 contrary to hypothesis. Therefore B spans k [[x, y]] /〈f, g〉. �

Corollary 0.5. Let S be a surface, let p ∈ S be a smooth point, and let C,D ⊂ S
be curves such that p ∈ C ∩D is an isolated point of C ∩D.

(i) If the tangent cone of C at p and the tangent cone of D at p have no
common irreducible component, then i(C,D; p) equals e(C; p)e(D; p).

(ii) In every case, i(C,D; p) ≥ e(C; p)e(D; p).

Proof. (i) Let I(C)OS,p = 〈f〉OS,p and I(D)OS,p = 〈g〉OS,p. Because p is an
isolated point of C ∩D, mr ⊂ 〈f, g〉 for some integer r > 0. Thus,

OS,p/〈f, g〉 ∼= (OS,p/mr)/〈f, g〉 ∼= (ÔS,p/mr)/〈f, g〉 ∼= ÔS,p/〈f, g〉.

Because p is a smooth point of S, ÔS,p is isomorphic to k [[x, y]]. Of course e(C; p) =
d where f ∈ md − md+1 and e(D; p) = e where g ∈ me − me+1. By Lemma 0.4,
i(C,D; p) = dimk(OS,p/〈f, g〉) equals e(C; p)e(D; p).

(ii) The notation is as in Lemma 0.4. The hypothesis that F,G ∈ k[x, y] are
relatively prime is not necessarily satisfied. Let K denote the algebraic closure of the
field k(t). Then there exist F ′ ∈ k[x, y]d, G′ ∈ k[x, y]e such that F + tF ′ ∈ K[x, y]d
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and G + tG′ ∈ K[x, y]e are relatively prime elements in K[x, y]. In k[t] [[x, y]], form
the ideal I = 〈f + tF ′, g + tG′〉 and denote M = 〈x, y〉. Because p ∈ C ∩D is an
isolated point, there exists an integer r ≥ 0 such that mrk [[x, y]] ⊂ 〈f, g〉k [[x, y]].
Therefore (I + Mr)/(I + Mr+1) is a finitely-generated k[t] module and modulo
t this module is 0. By Nakayama’s lemma, there exists a polynomial a ∈ tk[t]
such that (1 + a) annihilates this k[t]-module. Therefore, inverting 1 + a, I +
Mr+1 ⊂ I + Mr. By Krull’s intersection theorem, Mr ⊂ I. Therefore A :=
k[t] [[x, y]] /〈I = (k[t] [[x, y]] /Mr)/I is a finitely-generated k[t][1/(1 + a)]-module.
By the structure theorem for finitely-generated modules over a PID, this is the
direct sum of a finitely-generated torsion-module and a finite free module of some
rank i. In particular, dimk(A/tA) ≥ i. To compute i, tensor the module with
K over k[t][1/(1 + a)]. This gives K [[x, y]] /〈f + tF ′, g + tG′〉. By (i), this is
a finite-dimensional K-vector space of dimension de. Therefore i = de. Since
A/tA = k [[x, y]] /〈f, g〉, this gives,

i(C,D; p) = dimk(k [[x, y]] /〈f, g〉) ≥ de = e(C; p)e(D; p).

�

Remark 0.6. A geometric interpretation of Lemma 0.2 is that if C and D are
curves on S, p ∈ C ∩ D is an isolated point, and if the “completion” of C at p
factors into “branches” with no common irreducible component, C = C1∪C2, then
i(C,D; p) = i(C1, D; p) + i(C2, D; p). This is “fictitious” since the factorization
f = f1f2 may not make sense in OS,p, only in ÔS,p. However, if f = f1f2 is a
factorization in OS,p, this does make sense. In any case, it is a useful fiction whose
rigorous version is Lemma 0.2.

(c) Let X be a plane curve and p ∈ X an element. Prove that for all but finitely
many lines L in P2 containing p, i(X, L; p) = e(X; p).

Solution: The tangent cone to X at p is a union of finitely many lines. Let
L be any line containing p whose tangent cone is not one of these finitely many
lines. By Corollary 0.5(i), i(X, L; p) = e(X; p)e(L; p). Of course e(L; p) = 1, so
i(X, L; p) = e(X; p).

Required Problem 2, Bézout’s Theorem in the Plane: This problem con-
tinues the previous problem. Let d = deg(F ) and let e = deg(G). Assume
C ∩ D = {p1, . . . , pm}, i.e., C ∩ D has no irreducible component of dimension 1.
Define M = k[X0, X1, X2]/〈F,G〉 as a graded module. For every i = 1, . . . ,m,
define Mi = Image(φPi) where Pi is the homogeneous ideal of pi and where
φPi

: k[X0, X1, X2]/〈F,G〉 → (k[X0, X1, X2]/〈F,G〉)Pi
is the localization homo-

morphism.

For the following homomorphism of graded modules, prove both the kernel and
cokernel have finite length:

φ : M → ⊕m
i=1Mi.

Hint: This requires more about the Jordan-Hölder filtration and associated primes.
For a graded module M , there exists a filtration of M , M = M0 ⊃ · · · ⊃ Mr = {0},
such that for every j = 1, . . . , r, M j−1/M j ∼= (k[X0, X1, X2]/Qj)(dj) where Qj is
an associated prime of M . If Q is a minimal associated prime, then (M j−1/M j)P

is nonzero iff Pj = P . So the graded pieces in the filtration of Mi are the associated
graded pieces in the filtration of M such that Qj = Pi.
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Solution: As in the previous problem, the localizations should have been the
graded localizations. Again, at the expense of making the solution longer, the
Jordan-Hölder filtration will be constructed.

In Problem 1, for every i = 1, . . . ,m a Jordan-Hölder filtration is constructed
for the module Mi. Denote K0 = M and for every j = 1, dots, m, denote by
Kj ⊂ M the kernel of the projection to the first i factors, Kj = ker(M → ⊕j

i=1Mi).
Then Ki/Ki+1 is a graded submodule of Mi. By construction, there exists a
filtration of Mi by graded submodules, M0

i ⊃ · · · ⊃ Mri
i = (0), such that every

term M l
i/M

l+1
i is isomorphic to (k[X0, X1, X2]/Pi)(dl) for some integer dl. For

every l = 1, . . . , ri, define Ki,l ⊂ Ki to be the unique graded submodule containing
Ki+1 such that Ki,l/Ki+1 = (Ki/Ki+1) ∩ M l

i . Then Ki,l/Ki,l+1 is a graded
submodule of (k[X0, X1, X2]/Pi)(dl) ∼= k[t](dl). Such a submodule is clearly either
(0) or else k[t](el) for some integer el ≥ dl. Concatenating these filtrations gives
a filtration on M which stabilizes at Km = ker(φ) and such that the associated
filtration on M/Km has the properties mentioned above.

The claim is that ker(φ) has finite length. If ker(φ) = (0), this is trivial. Therefore
assume ker(φ) 6= (0). Every associated prime of ker(φ) is an associated prime of
M , thus it contains a minimal prime Pi. On the other hand, φPi

is an isomorphism
by construction. Since localization is left exact (ker(φ))Pi = (0). Therefore the
associated prime of ker(φ) is not Pi, i.e., it properly contains Pi. Since M is a
graded module, the assocated prime is a homogeneous prime that properly contains
Pi. The only such prime is 〈X0, X1, X2〉. Since the only associated prime of ker(φ)
is 〈X0, X1, X2〉, ker(φ) is 〈X0, X1, X2〉 primary, i.e., 〈X0, X1, X2〉eker(φ) = (0) for
some integer e. Therefore ker(φ) is a finitely generated module over the local,
Artinian k-algebra k[X0, X1, X2]/〈X0, X1, X2〉e. It follows that ker(φ) has finite
length. The filtration of ker(φ) by powers of the maximal ideal can be refined to
a Jordan-Hölder filtration whose subquotients are all k[X0, X1, X2]/〈X0, X1, X2〉.
Concatenating with the filtration above gives a Jordan-Hölder filtration on M .

More is true. As above, there is a filtration on ⊕iMi: (⊕Mi)0 ⊃ · · · ⊃ (⊕Mi)r = (0)
and the homomorphism φ is strict for this filtration, i.e., φ−1(⊕iMi)l = M l for l =
0, . . . , r (of course M l = ker(φ) has a further filtration, but this isn’t relevant). Be-
cause φ is strict, the induced homomorphism φ : M i/M i+1 → (⊕iMi)l/(⊕iMi)l+1

is injective for every l. As discussed above, the target is (k[X0, X1, X2]/Pj)(dl) for
some j = 1, . . . ,m and some integer dl.

The claim is that the image of φ is nonzero. To see this, localize both sides by
Pj . There is an induced filtration of the localization. Because localization is exact,
(MPj

)l/(MPj
)l+1 ∼= (M l/M l+1)Pj

and

((⊕iMi)Pj )
l/((⊕iMi)Pj )

l+1 ∼= ((⊕iMi)l/(⊕iMi)l+1)Pj
∼= (k[X0, X1, X2]/Pj)Pj .

By construction, φPj
is an isomorphism, and φPj

is strict, therefore φPj
: M l

Pj
/M l+1

Pj
→

(⊕iMi)l
Pj

/(⊕iMi)l
Pj

is an isomorphism. It follows that (M l/M l+1)Pj is nonzero,
and therefore M l/M l+1 is nonzero, proving the claim. In particular, M l/M l+1 =
(k[X0, X1, X2]/Pj)(el) for some integer el, as a submodule of (k[X0, X1, X2]/Pj)(dl).
So the cokernel is isomorphic to k[T ](dl)/k[T ](el) ∼= k[T ]/〈T el−dl , which has finite
length. Since this holds for every l = 1, . . . , r, the cokernel of φ has finite length.
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This proves there exist Jordan-Hölder filrations for M and ⊕iMi such that φ is a
strict map of the filrations whose kernel and cokernel both have finite length.

Remark: It follows that the Hilbert polynomial of M equals the sum over i of the
Hilbert polynomial of Mi. On the one hand, there is an exact sequence of graded
modules,

0 → k[X0, X1, X2](−d− e)
(G,−F )†−−−−−→ k[X0, X1, X2](−d)⊕ k[X0, X1, X2](−e)

(F,G)−−−→ k[X0, X1, X2]
k−→ [X0, X1, X2]/〈F,G〉 → 0,

from which it easily follows the Hilbert polynomial of M is de. On the other hand,
by Problem 1, the Hilbert polynomial of each Mi is the intersection multiplicity
i(C,D; pi). This gives Bézout’s theorem in the plane,

deg(C) · deg(D) =
∑

pi∈C∩D

i(C,D; pi).

Required Problem 3: This is essentially (Hartshorne, Exer. I.7.5). Let C ⊂ P2
k

be a plane curve of degree d ≥ 1.

(a) If there exists p ∈ C such that e(C; p) = d, prove C is a union of lines containing
p.

Solution: Consider the projection πp : (C − {p}) → P1. Let q ∈ C − {p} be a
point, denote q′ = πp(q), and let L ⊂ P2

k be the line containing p corresponding
to q′. Because L is irreducible, if L is not contained in C then C ∩ L is a proper
closed subset of L which is a finite set. Then by Bézout’s theorem, deg(C)deg(L) ≥
i(C,L; p) + i(C,L; q). Of course deg(L) = 1 and e(L; p) = e(L; q) = 1. By Problem
1(b), i(C,L; p) ≥ e(C; p) = d and i(C,L; q) ≥ e(C; q) ≥ 1. So Bézout’s theorem
gives d ≥ d + 1, which is absurd. Therefore L ⊂ C. So C is a union of lines
containing p.

(b) If C is irreducible, and p ∈ C is a point such that e(C; p) = d − 1, prove the
projection from p is birational: πp : (C − {p}) → P1

k.

Solution: First of all, C is not a line since for every line L containing p, e(L; p) =
1 = deg(L) and e(C; p) < deg(C). So, continuing the argument from (a), for every
q ∈ C − {p}, L ∩ C is a finite set and Bézout’s theorem gives

d ≥ e(C; p)+i(C,L; q)+
∑

q′∈C∩L−{p,q}

e(C; q′) = d−1+i(C; q)+
∑

q′∈C∩L−{p,q}

e(C; q′).

It follows that the fiber of πp containing q equals {q} and i(C,L; q) = 1. Let t be
a uniformizer for OP1,q′ , let s be a uniformizer for OC,q, and let π#

p (t) = usi for a
unit u and an integer i. The algebra computing i(C,L; q), namely OP2,q/〈Fq, Gq〉
equals OC,q/〈Gq〉 ∼= OC,q〈si〉, which has length i. Therefore i equals q, i.e., π#

p t is
a uniformizer for C at q. In particular, C−{p} is smooth and πp : C−{p} → P1 is
injective, and more, the derivative dπp is everywhere an isomorphism. Since πp is
generically finite, there exists a dense open subset U ⊂ P1 such that πp : π−1

p (U) →
U is finite. Because πp is injective, the corresponding field extension k(P1) → k(C)
is purely inseparable. Because dπp is not identically zero, this field extension is in
fact an isomorphism, i.e., πp : C − {p} → P1

k is birational.
8



Required Problem 4: Find an example of a weakly projective morphism F :
X → Y that is not strongly projective. If you are ambitious, find an example
where X and Y are quasi-compact and separated.

Solution: There are elementary examples if Y is not quasi-compact. For instance,
let Y be the disjoint union Y = t∞n=0Yn where Yn

∼= A0
k, let X = t∞n=0Xn where

Xn
∼= Pn

k , and let f : X → Y be the locally constant morphism such that f(Xn) =
Yn. This is weakly projective because for every p ∈ Y there exists an n with
p ∈ Yn ⊂ Y , the subset Yn ⊂ Y is an open affine subset, and F : F−1(Yn) → Yn is
strongly projective. But F is not strongly projective. Indeed, if there were a closed
immersion i : X → Y ×Pr

k, then every irreducible component Xn
∼= Pn

k of X would
have a closed immersion into Yn×Pr

k
∼= Pr

k. For n > r, dim(Xn) = n > r = dim(Pr
k),

so there is no closed immersion i : Xn → Pr
k.

A more ambitious example is Hironaka’s example, described in lecture. Here is an
explicit version of the example from lecture. Denote homogeneous coordinates on
P3

k by X0, X1, X2, Y . For every integer n, denote by Xn the variable Xa where
a ∈ {0, 1, 2} is the unique integer such that n − a is divisible by 3. Let U =
P3

k−{[0, 0, 0, 1]}. For every integer n, denote Un = D+(Xn) ⊂ U , and denote by Fn :
Vn → Un the blowing up of the ideal In = 〈(Y/Xn)2, (Y/Xn)(Xn+1/Xn), (Xn+1/Xn)2(Xn+2/Xn)〉.
Of course identify Vn = Vm if n−m is divisible by 3.

Because Xn+1/Xn is invertible on Un∩Un+1, Fn : F−1
n (Un∩Un+1) → Un∩Un+1 is

the blowing up of the ideal I ′n = 〈(Y/Xn), (Xn+2/Xn)〉. Similarly, Fn+1 : F−1
n+1(Un∩

Un+1) → Un∩Un+1 is the blowing up of the ideal 〈(Y/Xn+1)2, (Y/Xn+1)(Xn+2/Xn+1), (Xn+2/Xn+1)2〉,
which is the same as the ideal I ′′n = 〈(Y/Xn)2, (Y/Xn)(Xn+2/Xn), (Xn+2/Xn)2〉 =
(I ′n)2. Because the pullback of I ′n to F−1

n (Un ∩ Un+1) is a locally principal ideal,
the pullback of (I ′n)2 is a locally principal ideal whose generator is the square of
the generator of the pullback of I ′n. By the universal property, there is an in-
duced morphism φn+1,n : F−1

n (Un ∩ Un+1) → F−1
n+1(Un ∩ Un+1). Similarly, at

every point of F−1
n+1(Un ∩ Un+1), because the pullback of I ′′n is a principal ideal

〈t〉, one of the fractions of the consecutive generators of I ′′n is a regular function.
Since each such fraction is either (Y/Xn)/(Xn+2/Xn) or (Xn+2/Xn)/(Y/Xn), it
follows that either the pullback of I ′n is generated by the pullback of (Xn+2/Xn)
or it is generated by the pullback of (Y/Xn). Thus the pullback of I ′n is a lo-
cally principal ideal. By the universal property, there is an induced morphism
φn,n+1 : F−1

n+1(Un ∩ Un+1) → F−1
n (Un ∩ Un+1).

Of course Fn+1 ◦ φn+1,n = Fn and Fn ◦ φn,n+1 = Fn+1. Therefore Fn+1 ◦ (φn+1,n ◦
φn,n+1) = Fn+1. Because Fn+1 is birational, φn+1,n ◦ φn,n+1 equals the identity
morphism over a dense open subset. Because Vn is separated, φn+1,n ◦φn,n+1 is the
identity morphism. Similarly φn,n+1 ◦ φn+1,n is the identity morphism, i.e., φn,n+1

and φn+1,n are inverse isomorphisms. For essentially the same reason, the collection
((Vn)n, (F−1

n (Un∩Un+1))n, (φn,n+1)) satisfy the gluing lemma for varieties. Denote
by V be the associated variety. And the collection (Fn) satisfies the gluing lemma
for morphisms. Denote by F : V → U the associated morphism.

By construction, F : V → U is weakly projective: for every n, Fn : Vn → Un

is a blowing up which is strongly projective. Because U is quasi-projective, if F
is strongly projective, then V is also quasi-projective. But by the argument in
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lecture comparing the degrees of various irreducible components of F , V is not
quasi-projective. Thus F is weakly projective, but F is not strongly projective.

Problem 5: Assume char(k) does not divide 6. Combine Problem 2 with Problem
2 from Problem Set 6 to deduce that every smooth plane curve C of degree d ≥ 3
has at most 3d(d− 2) flex lines.

Problem 6: If char(k) = 3, give an example of a smooth plane curve C of degree
d ≥ 3 having infinitely many flex lines. If you get stuck, look up (Hartshorne, Exer.
IV.2.4).

Problem 7: Find two homogeneous polynomials F2 ∈ k[X0, X1, X2, X3]2, F3 ∈
k[X0, X1, X2, X3]3 such that V(F2, F3) is the rational normal curve C = {[s3

0, s
2
0s1, s0s

2
1, s

3
1] ∈

P3
k|[s0, s1] ∈ P1

k} Note that F2, F3 do not generate the homogeneous ideal I(C).

Problem 8: For every integer n ≥ 3, find n − 1 homogeneous polynomials Fi ∈
k[X0, . . . , Xn]i, i = 2, . . . , n, such that V(F2, . . . , Fn) is the rational normal curve
C = {[sn

0 , sn−1
0 s1, . . . , s0s

n−1
1 , sn

1 ] ∈ Pn
k |[s0, s1] ∈ P1

k}.
Solution: For every integer m = 2, . . . , n, define

Fm(X0, . . . , Xn) =
m−1∑
k=0

(−1)k

(
m− 1

k

)
XkXk

m−1X
m−1−k
m .

This is homogeneous of degree m. Moreover,

Fm(sn
0 , sn−1

0 s1, . . . , s
n
1 ) =

∑m−1
k=0 (−1)k

(
m−1

k

)
(sn−k

0 sk
1)(sn+1−m

0 sm−1
1 )k(sn−m

0 sm
1 )m−1−k

= (
∑m−1

k=0 (−1)k
(
m−1

k

)
)sm(n+1−m)

0 s
m(m−1)
1

= (1− 1)m−1s
m(n+1−m)
0 s

m(m−1)
1 = 0.

So C ⊂ V(F2, . . . , Fn). Let p = [a0, a1, . . . , an] be an element of V(F2, . . . , Fn).
First consider the case that a0 = 0. The claim is that for every i = 0, . . . , n − 1,
ai = 0. This is proved by induction on i. If i = 0, this is the hypothesis. By way
of induction, assume i > 0 and assume a0 = · · · = ai−1 = 0. Plugging in to Fi+1,

0 = Fi+1(p) = 0 + · · ·+ (−1)i

(
i

i

)
Xi+1

i = (−1)iXi+1
i .

Therefore ai = 0, proving the claim by induction. So p = [0, . . . , 0, 1], which is in
C.

Next consider the case that a0 6= 0. Define b = a1/a0. The claim is that for
every i = 1, . . . , n, ai = a0b

i. This is proved by induction on i. If i = 1, this is
the definition of b. By way of induction, assume i > 0 and assume aj = a0b

j for
j = 1, . . . , i− 1. Plugging in to Fi,

Fi(p) =
∑i−1

k=0(−1)k
(
i−1
k

)
(a0b

k)(a0b
i−1)kam−k

i =
a0

∑i−1
k=0(−1)k

(
i−1
k

)
(a0b

i)kXm−k
i = a0(ai − a0b

i)i−1.

Since i ≥ 1, since a0 6= 0 and since Fi(p) = 0, it follows that (ai−a0b
i)i−1 = 0, i.e.,

ai = a0b
i. The claim is proved by induction. So p = [a0, a0b, a0b

2, . . . , a0b
n], which

is in C. Therefore V(F2, . . . , Fn) ⊂ C, proving that C = V(F2, . . . , Fn).

Problem 9: Let C ⊂ Pn
k be an irreducible curve contained in no hyperplane. Let

p ∈ C be any point, and let πp : C − {p} → Pn−1
k be projection from p. Denote by

D the closure of the image of C. Prove that D is contained in no hyperplane and
deg(D) ≤ deg(C)− 1.
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Problem 10: This problem continues Problem 9. Prove that the only irreducible
curve C ⊂ Pn

k of degree 1 is a line and use this to prove that deg(C) ≥ n if C is an
irreducible curve contained in no hyperplane.

11


