18.725 PROBLEM SET 9

Due date: Wednesday, December 8 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.

Read through all the problems. Write solutions to the "Required Problems", 1, 2, 3 , and 4 together with 1 more problem to a total of 5 .

Required Problem 1, Intersection Multiplicity: This problem is essentially (Hartshorne, Exer. I.5.4). Let $F, G \in k\left[X_{0}, X_{1}, X_{2}\right]$ be non-constant, irreducible, homogeneous polynomials, and denote $C=\mathbb{V}(F), D=\mathbb{V}(G)$ in \mathbb{P}_{k}^{2}. Let $p \in C \cap D$ be an element such that $\operatorname{dim}(C \cap D, p)=0$, i.e., p is an isolated point of $C \cap D$. The intersection multiplicity of C and D at $p, i(C, D ; p)$, is defined to be,

$$
i(C, D ; p)=\operatorname{dim}_{k}\left(\mathcal{O}_{\mathbb{P}^{2}, p} /\left\langle F_{p}, G_{p}\right\rangle\right),
$$

where $F_{p}, G_{p} \in \mathcal{O}_{\mathbb{P}^{2}, p}$ are germs of dehomogenizations of F and G at p.
Let $P \subset k\left[X_{0}, X_{1}, X_{2}\right]$ be the homogeneous ideal corresponding to p. Form the graded $k\left[X_{0}, X_{1}, X_{2}\right]$-module, $M=\operatorname{Image}\left(\phi_{p}\right)$, where ϕ_{p} is the homomorphism of graded modules,

$$
\phi_{p}: k\left[X_{0}, X_{1}, X_{2}\right] /\langle F, G\rangle \rightarrow\left(k\left[X_{0}, X_{1}, X_{2}\right] /\langle F, G\rangle\right)_{P}
$$

(a) Prove that the Hilbert polynomial of M equals $i(C, D ; p)$, i.e., for all $l \gg$ $0, \operatorname{dim}_{k} M_{l}=i(C, D ; p)$. Hint: You may assume existence of a Jordan-Hölder filtration of M : a filtration of M by graded submodules, $M=M^{0} \supset M^{1} \supset \cdots \supset$ $M^{r}=\{0\}$, such that for every $i=1, \ldots, r, M^{i-1} / M^{i} \cong\left(k\left[X_{0}, X_{1}, X_{2}\right] / P\right)\left(d_{i}\right)$ for some integer d_{i}. For every $X \in k\left[X_{0}, X_{1}, X_{2}\right]_{1}-P$, the dehomogenization of M with respect to X equals $\mathcal{O}_{\mathbb{P}^{2}, p} /\left\langle F_{p}, G_{p}\right\rangle$ and has an induced Jordan-Hölder filtration whose associated graded pieces are the dehomogenizations of the graded modules M^{i-1} / M^{i}. Relate the length of the dehomogenization of M, the Hilbert polynomial of M and the integer r.
(b) This problem is rather difficult. Attempt it, but you don't have to solve it. Denote by $e(C ; p)$, resp. $e(D ; p)$, the Hilbert-Samuel multiplicity of C at p, resp. of D at p. Prove that $i(C, D ; p) \geq e(C ; p) e(D ; p)$. Hint: Work in affine coordinates for which $p=(0,0)$. First consider the case that $C=\mathbb{V}(f), D=\mathbb{V}(g)$ where f and g are relatively prime homogeneous polynomials in x, y. Next deduce the case where f and g are not necessarily homogeneous, but the tangent cones of C and D at p have no common irreducible component. The general case can be deduced from this one by an "semicontinuity" argument.
(c) Let X be a plane curve and $p \in X$ an element. Prove that for all but finitely many lines L in \mathbb{P}^{2} containing $p, i(X, L ; p)=e(X ; p)$.

Required Problem 2, Bézout's Theorem in the Plane: This problem continues the previous problem. Let $d=\operatorname{deg}(F)$ and let $e=\operatorname{deg}(G)$. Assume $C \cap D=\left\{p_{1}, \ldots, p_{m}\right\}$, i.e., $C \cap D$ has no irreducible component of dimension 1.

Define $M=k\left[X_{0}, X_{1}, X_{2}\right] /\langle F, G\rangle$ as a graded module. For every $i=1, \ldots, m$, define $M_{i}=\operatorname{Image}\left(\phi_{P_{i}}\right)$ where P_{i} is the homogeneous ideal of p_{i} and where $\phi_{P_{i}}: k\left[X_{0}, X_{1}, X_{2}\right] /\langle F, G\rangle \rightarrow\left(k\left[X_{0}, X_{1}, X_{2}\right] /\langle F, G\rangle\right)_{P_{i}}$ is the localization homomorphism.

For the following homomorphism of graded modules, prove both the kernel and cokernel have finite length:

$$
\phi: M \rightarrow \oplus_{i=1}^{m} M_{i} .
$$

Hint: This requires more about the Jordan-Hölder filtration and associated primes. For a graded module M, there exists a filtration of $M, M=M^{0} \supset \cdots \supset M^{r}=\{0\}$, such that for every $j=1, \ldots, r, M^{j-1} / M^{j} \cong\left(k\left[X_{0}, X_{1}, X_{2}\right] / Q_{j}\right)\left(d_{j}\right)$ where Q_{j} is an associated prime of M. If Q is a minimal associated prime, then $\left(M^{j-1} / M^{j}\right)_{P}$ is nonzero iff $P_{j}=P$. So the graded pieces in the filtration of M_{i} are the associated graded pieces in the filtration of M such that $Q_{j}=P_{i}$.
Remark: It follows that the Hilbert polynomial of M equals the sum over i of the Hilbert polynomial of M_{i}. On the one hand, there is an exact sequence of graded modules,

$$
\begin{gathered}
0 \rightarrow k\left[X_{0}, X_{1}, X_{2}\right](-d-e) \xrightarrow{(G,-F)^{\dagger}} k\left[X_{0}, X_{1}, X_{2}\right](-d) \oplus k\left[X_{0}, X_{1}, X_{2}\right](-e) \\
\xrightarrow{(F, G)} k\left[X_{0}, X_{1}, X_{2}\right] \xrightarrow{k}\left[X_{0}, X_{1}, X_{2}\right] /\langle F, G\rangle \rightarrow 0,
\end{gathered}
$$

from which it easily follows the Hilbert polynomial of M is $d e$. On the other hand, by Problem 1, the Hilbert polynomial of each M_{i} is the intersection multiplicity $i\left(C, D ; p_{i}\right)$. This gives Bézout's theorem in the plane,

$$
\operatorname{deg}(C) \cdot \operatorname{deg}(D)=\sum_{p_{i} \in C \cap D} i\left(C, D ; p_{i}\right)
$$

Required Problem 3: This is essentially (Hartshorne, Exer. I.7.5). Let $C \subset \mathbb{P}_{k}^{2}$ be a plane curve of degree $d \geq 1$.
(a) If there exists $p \in C$ such that $e(C ; p)=d$, prove C is a union of lines containing p.
(b) If C is irreducible, and $p \in C$ is a point such that $e(C ; p)=d-1$, prove the projection from p is birational: $\pi_{p}:(C-\{p\}) \rightarrow \mathbb{P}_{k}^{1}$.
Required Problem 4: Find an example of a weakly projective morphism F : $X \rightarrow Y$ that is not strongly projective. If you are ambitious, find an example where X and Y are quasi-compact and separated (one was given in lecture . . .).

Problem 5: Assume char (k) does not divide 6. Combine Problem 2 with Problem 2 from Problem Set 6 to deduce that every smooth plane curve C of degree $d \geq 3$ has at most $3 d(d-2)$ flex lines.

Problem 6: If char $(k)=3$, give an example of a smooth plane curve C of degree $d \geq 3$ having infinitely many flex lines. If you get stuck, look up (Hartshorne, Exer. IV.2.4).

Problem 7: Find two homogeneous polynomials $F_{2} \in k\left[X_{0}, X_{1}, X_{2}, X_{3}\right]_{2}, F_{3} \in$ $k\left[X_{0}, X_{1}, X_{2}, X_{3}\right]_{3}$ such that $\mathbb{V}\left(F_{2}, F_{3}\right)$ is the rational normal curve $C=\left\{\left[s_{0}^{3}, s_{0}^{2} s_{1}, s_{0} s_{1}^{2}, s_{1}^{3}\right] \in\right.$ $\left.\mathbb{P}_{k}^{3} \mid\left[s_{0}, s_{1}\right] \in \mathbb{P}_{k}^{1}\right\}$ Note that F_{2}, F_{3} do not generate the homogeneous ideal $\mathbb{I}(C)$.

Problem 8: For every integer $n \geq 3$, find $n-1$ homogeneous polynomials $F_{i} \in$ $k\left[X_{0}, \ldots, X_{n}\right]_{i}, i=2, \ldots, n$, such that $\mathbb{V}\left(F_{2}, \ldots, F_{n}\right)$ is the rational normal curve $C=\left\{\left[s_{0}^{n}, s_{0}^{n-1} s_{1}, \ldots, s_{0} s_{1}^{n-1}, s_{1}^{n}\right] \in \mathbb{P}_{k}^{n} \mid\left[s_{0}, s_{1}\right] \in \mathbb{P}_{k}^{1}\right\}$.
Problem 9: Let $C \subset \mathbb{P}_{k}^{n}$ be an irreducible curve contained in no hyperplane. Let $p \in C$ be any point, and let $\pi_{p}: C-\{p\} \rightarrow \mathbb{P}_{k}^{n-1}$ be projection from p. Denote by D the closure of the image of C. Prove that D is contained in no hyperplane and $\operatorname{deg}(D) \leq \operatorname{deg}(C)-1$.
Problem 10: This problem continues Problem 9. Prove that the only irreducible curve $C \subset \mathbb{P}_{k}^{n}$ of degree 1 is a line and use this to prove that $\operatorname{deg}(C) \geq n$ if C is an irreducible curve contained in no hyperplane.

