18.725 PROBLEM SET 8

Due date: Wednesday, November 24 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.

Read through all the problems. Write solutions to the "Required Problems", 1, 2, 3 , and 4 . There will be more problems posted soon, and you will be asked to do 1 more problem to a total of 5 .
Required Problem 1: Recall from Definition 14.12 that a regular morphism of varieties $F:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is projective if for every open affine $U \subset Y$ there exists a projective variety Z, and a closed immersion $i: F^{-1}(U) \rightarrow U \times Z$ such that the restriction morphism $F: F^{-1}(U) \rightarrow U$ equals $\operatorname{pr}_{U} \circ i$. To be precise, this is the definition of weakly projective. A regular morphism of varieties $F:\left(X, \mathcal{O}_{X}\right) \rightarrow$ $\left(Y, \mathcal{O}_{Y}\right)$ is strongly projective if there exists a projective variety Z and a closed immersion $i: X \rightarrow Y \times Z$ such that $F=\operatorname{pr}_{Y} \circ i$.
Let X be a quasi-projective variety and denote by $j: X \hookrightarrow \mathbb{P}_{k}^{n}$ a locally closed immersion. Let $F:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ be a regular morphism of algebraic varieties. Prove the following are equivalent,
(i) F is weakly projective,
(ii) F is proper,
(iii) the graph morphism $F \times j: X \rightarrow Y \times \mathbb{P}_{k}^{n}$ has closed image, and
(iv) F is strongly projective.

Solution:(i) \Rightarrow (ii) Corollary 24.17 proves that every weakly projective morphism is proper.
$(\mathrm{ii}) \Rightarrow(\mathrm{iii})$ The variety \mathbb{P}_{k}^{n} is separated, i.e., the constant morphism $\mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{0}$ is separated. By Lemma 14.5, separated morphisms satisfy base-change, so pr_{Y} : $Y \times \mathbb{P}_{k}^{n} \rightarrow Y$ is separated. The composition of $F \times j$ and pr_{Y} is F, which is proper by hypothesis. By Prop. 24.14, $F \times j$ is proper, in particular it is closed. Therefore $(F \times j)(X) \subset Y \times \mathbb{P}_{k}^{n}$ is closed.
$(\mathrm{iii}) \Rightarrow(\mathrm{iv})$ Here is one argument (not the shortest one). By hypothesis, $(F \times$ $j)(X) \subset Y \times \mathbb{P}_{k}^{n}$ is a closed subset. To prove that $F \times j$ is a closed immersion, it suffices to prove that $F \times j: X \rightarrow(F \times j)(X)$ is an isomorphism. Consider the projection $\operatorname{pr}_{\mathbb{P}_{k}^{n}}:(F \times j)(X) \rightarrow \mathbb{P}_{k}^{n}$. The composition of $\mathrm{pr}_{\mathbb{P}_{k}^{n}}$ and $F \times j$ is j, so $\operatorname{pr}_{\mathbb{P}_{k}^{n}}((F \times j)(X)) \subset j(X)$. The induced set map $\operatorname{pr}_{\mathbb{P}_{k}^{n}}:(F \times j)(X) \rightarrow j(X)$ is a regular morphism by the universal property of the induced SWF structure. Because j is a locally closed immersion, $j: X \rightarrow j(X)$ is an isomorphism. Therefore $j^{-1} \circ \operatorname{pr}_{\mathbb{P}_{k}^{n}}:(F \times j)(X) \rightarrow X$ is a regular morphism. It is straightforward that this is an inverse of $F \times j: X \rightarrow(F \times j)(X)$, proving that $F \times j: X \rightarrow Y \times \mathbb{P}_{k}^{n}$ is a closed immersion. Because $\operatorname{pr}_{Y} \circ(F \times j)=F$, this factorization of F proves F is strongly projective.
$(\mathrm{iv}) \Rightarrow(\mathbf{i})$ This is obvious.

Required Problem 2 In each of the following cases, X is an irreducible affine variety and $L / k(X)$ is a finite algebraic field extension. In each case compute the associated normalization $F: Y \rightarrow X$, i.e., write down the equations defining F in some affine space and the coordinates of the morphism F. In all cases, $\operatorname{char}(k)=0$.
(a) $X=\mathbb{V}\left(y^{2}-x^{3}\right) \subset \mathbb{A}_{k}^{2}, L=k(X)$.

Solution: Denote $A=k[X]$ and denote by B the integral closure of A in L. Let $b=y / x \in L$. Then $b^{2}=y^{2} / x^{2}=x^{3} / x^{2}=x$. So b satisfies the monic polynomial $t^{2}-x$, i.e., $b \in B$. Moreover $x=b^{2}$ and $y=b x=b^{3}$. So $k[X]=k[x, y] \subset k[b] \subset B$. Therefore the integral closure of $k[X]$ in L is the integral closure of $k[b]$ in L. But since $k[b] \cong k[t]$ is a UFD, it is already integrally closed by Gauss's Lemma. Thus $B=k[b]$. So $Y=\mathbb{A}_{k}^{1}$ and $F: \mathbb{A}_{k}^{1} \rightarrow X$ by $b \mapsto\left(b^{2}, b^{3}\right)$ is the normalization.
(b) $X=\mathbb{V}\left(y^{p}-x^{q}\right) \subset \mathbb{A}_{k}^{2}, p$ and q are relatively prime positive integers, $L=k(X)$.

Solution: Denote $A=k[X]$ and denote by B the integral closure of A in L. Because p and q are relatively prime, by the division algorithm there exist integers r, s such that $r p+s q=1$. Let $b=x^{r} y^{s} \in L$. Then $b^{p}=x^{p r} y^{p s}$. Because $y^{p}=x^{q}$, this is $b^{p}=x^{p r+q s}=x^{1}=x$. Similarly, $b^{q}=x^{q r} y^{q s}=y^{p r+q s}=y^{1}=y$. Since b satisfies the monic polynomial $t^{p}-x, b \in B$. And $x, y \in k[b]$, so $k[X] \subset k[b] \subset B$. Because $k[b] \cong k[t]$ is a UFD, $k[b]$ is integrally closed by Gauss's Lemma. Thus $B=k[b]$. So $Y=\mathbb{A}_{k}^{1}$ and $F: \mathbb{A}_{k}^{1} \rightarrow X$ by $b \mapsto\left(b^{p}, b^{q}\right)$ is the normalization.
(c) $X=\mathbb{A}_{k}^{1}, L=k(X)[t] /\left\langle t^{2}+(1 / x) t+1\right\rangle$,

Solution: Denote $A=k[X]=k[x]$ and denote by $B \subset L$ the integral closure of A. Let $u=x t \in L$. Then,

$$
u^{2}=x^{2} t^{2}=x^{2}(-(1 / x) t-1)=-x t-x^{2}=-u-x^{2}
$$

Since u satisfies the monic polynomial $f(y)=y^{2}+y+x^{2}, u$ is in B. Of course $k[X][u] \subset B$ is isomorphic to $C=k[x, y] /\left\langle y^{2}+y+x^{2}\right\rangle$. The claim is that C is integrally closed. To prove this, it suffices to prove that the Jacobian ideal of $y^{2}+y+x^{2}$ is the unit ideal in C, because then $\mathbb{V}\left(y^{2}+y+x^{2}\right)$ is even smooth. The Jacobian ideal is $\langle 2 y+1,2 x\rangle$. But,

$$
1=(2 y+1)(2 y+1)+(2 x)(2 x)-4\left(y^{2}+y+x^{2}\right)
$$

so $\langle 2 y+1,2 x\rangle C$ is all of C. Therefore $Y=\mathbb{V}\left(y^{2}+y+x^{2}\right) \subset \mathbb{A}_{k}^{2}$, and $F: Y \rightarrow X$ is $F(a, b)=a$.
(d) $X=\mathbb{V}\left(y^{2}-x^{2}(x-z)\right) \subset \mathbb{A}_{k}^{3}, L=k(X)$,

Solution: Denote $A=k[X]$ and denote by B the integral closure of A in L. Let $b=y / x$. Then $b^{2}=y^{2} / x^{2}=(x-z)$. Since b satisfies the monic polynomial $t^{2}-(x-z), b \in B$. Moreover, $y=b x$ and $z=x-b^{2}$, so $k[X] \subset k[x, b] \subset B$. But $k[x, b] \cong k[x, y]$ is a UFD, hence integrally closed by Gauss's Lemma. Thus the integral closure of $k[X]$ is $B=k[x, b]$. Therefore $Y=\mathbb{A}_{k}^{2}$ and $F: Y \rightarrow X$ is $F(a, b)=\left(a, a b, a-b^{2}\right)$.

Required Problem 3 Let X be a variety. A rankr subbundle of $X \times \mathbb{A}_{k}^{n}$ is a pair (E, ϕ) of a rank r vector bundle E on X together with a morphism of Abelian cones on $X, \phi: E \rightarrow X \times \mathbb{A}_{k}^{n}$ such that for every point $p \in X$, the corresponding map $\phi_{p}: E_{p} \rightarrow \mathbb{A}_{k}^{n}$ is injective, where E_{p} denotes the fiber of E over p. An equivalence of rank r subbundles, $\psi:\left(E_{1}, \phi_{1}\right) \rightarrow\left(E_{2}, \phi_{2}\right)$ is a morphism of Abelian cones on X, $\psi: E_{1} \rightarrow E_{2}$ such that $\phi_{2} \circ \psi=\phi_{1}$. For every regular morphism $F: Y \rightarrow X$ and
every rank r subbundle of $X \times \mathbb{A}_{k}^{n},(E, \phi)$, the pullback subbundle is defined to be $\left(Y \times_{X} E, F^{*} \phi\right)$ where $F^{*} \phi: Y \times_{X} E \rightarrow Y \times \mathbb{A}_{k}^{n}$ is $\operatorname{pr}_{Y} \times\left(\operatorname{pr}_{\mathbb{A}_{k}^{n}} \circ \phi \circ \operatorname{pr}_{E}\right)$.
(i) Prove that $F^{*} \phi$ is injective on fibers.

Solution: For every $y \in Y$, the fiber of $Y \times_{X} E$ over y is the fiber of E over $x=F(y)$, and the fiber of $Y \times \mathbb{A}_{k}^{n}$ is just \mathbb{A}_{k}^{n}, which is the fiber of $X \times \mathbb{A}_{k}^{n}$ over x. The fiber of $F^{*} \phi$ over y, i.e., $F^{*} \phi:\{y\} \times_{Y}\left(Y \times_{X} E\right) \rightarrow\{y\} \times_{Y}\left(Y \times \mathbb{A}_{k}^{n}\right)$, is the fiber of ϕ over x, which is injective by hypothesis.
(ii) Prove that if $\left(E_{1}, \phi_{1}\right)$ and $\left(E_{2}, \phi_{2}\right)$ are equivalent rank r subbundles of $X \times \mathbb{A}_{k}^{n}$, then $\left(Y \times_{X} E_{1}, F^{*} \phi_{1}\right)$ and $\left(Y \times_{X} E_{2}, F^{*} \phi_{2}\right)$ are equivalent rank r subbundles of $Y \times \mathbb{A}_{k}^{n}$.
Solution: Let $\psi: E_{1} \rightarrow E_{2}$ be a morphism of Abelian cones such that $\phi_{2} \circ \psi=\phi_{1}$. Then $F^{*} \psi: Y \times_{X} E_{1} \rightarrow Y \times_{X} E_{2}$ is a morphism of Abelian cones. Because F^{*} is a functor, $F^{*} \phi_{2} \circ F^{*} \psi=F^{*} \phi_{1}$. Therefore $\left(Y \times_{X} E_{1}, F^{*} \phi_{1}\right)$ is equivalent to $\left(Y \times{ }_{X} E_{2}, F^{*} \phi_{2}\right)$.
(iii) Let $G: Z \rightarrow Y$ be a regular morphism. For every rank r subbundle of $X \times \mathbb{A}_{k}^{n}$, (E, ϕ), prove that $\left(Z \times_{X} E,(F \circ G)^{*} \phi\right)$ is equivalent to $\left(Z \times_{Y}\left(Y \times_{X} E\right), G^{*}\left(F^{*} \phi\right)\right)$.
Solution: The point is that the canonical isomorphism $Z \times_{X} E \rightarrow Z \times_{Y}\left(Y \times_{X} E\right)$ is an isomorphism of vector bundles over Z. This is straightforward and left to the reader.

Together, (i)-(iii) prove the existence of a contravariant functor,

$$
\underline{\operatorname{Grass}(r, n)}: k-\text { Varieties } \rightarrow \text { Sets, }
$$

where $\operatorname{Grass}(r, n)(X)$ is the set of equivalence classes of rank r subbundles of $X \times \mathbb{A}_{k}^{n}$, and where $\operatorname{Grass}(r, n)(F): \operatorname{Grass}(r, n)(X) \rightarrow \operatorname{Grass}(r, n)(Y)$ is the set map that sends the equivalence class $[\overline{(E, \phi)}]$ to the equivalence class $\left[\left(Y \times_{X} E, F^{*} \phi\right)\right]$. This functor is called the Grassmann functor.

Required Problem 4: This problem proves the existence of a universal object for the Grassmann functor, i.e., a k-variety $\operatorname{Grass}(r, n)$ together with a rank r subbundle of $\operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n},(E, \phi)$, such that for every variety X and every rank r subbundle $\left(E^{\prime}, \phi^{\prime}\right)$, there is a unique morphism $F: X \rightarrow \operatorname{Grass}(r, n)$ such that $F^{*}(E, \phi)$ is equivalent to $\left(E^{\prime}, \phi^{\prime}\right)$.
(i) For every r-tuple $\underline{i}=\left(i_{1}, \ldots, i_{r}\right)$ of integers satisfying $1 \leq i_{1}<\cdots<i_{r} \leq n$, define $U_{\underline{i}} \subset \operatorname{Hom}\left(\mathbb{A}_{k}^{r}, \mathbb{A}_{k}^{n}\right)$ to be the closed subvariety of $n \times r$ matrices such that for every $k, l=1, \ldots, r$,

$$
A_{i_{k}, l}=\left\{\begin{array}{lc}
1, & k=l \\
0, & k \neq l
\end{array}\right.
$$

Denote by $\phi_{\underline{i}}: U_{\underline{i}} \times \mathbb{A}_{k}^{r} \rightarrow U_{\underline{i}} \times \mathbb{A}_{k}^{n}$ the morphism given by the matrix A. Prove that $\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}, \phi_{\underline{i}}\right)$ is a rank r subbundle.
Solution: It is clear that this morphism is linear on fibers, thus it is a morphism of Abelian cones. Let $\operatorname{Id}_{U_{\underline{i}}}: \chi_{\underline{i}}: U_{\underline{i}} \times \mathbb{A}_{k}^{n} \rightarrow U_{\underline{i}} \times \mathbb{A}_{k}^{r}$ be the morphism defined below. The composition $\left(\operatorname{Id}_{U_{\underline{i}}} \times \chi_{\underline{i}}\right) \circ \phi_{\underline{i}}$ is the identity morphism. Therefore $\phi_{\underline{i}}$ is injective on fibers.
(ii) Let \underline{i} be an r-tuple as above. Denote by $\chi_{\underline{i}}: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{r}$ the projection of \mathbb{A}_{k}^{n} onto the coordinates $x_{i_{k}}, k=1, \ldots, r$. Let X be a variety and let (E, ϕ) be a rank r
subbundle of $X \times \mathbb{A}_{k}^{n}$ such that composition of ϕ with $\operatorname{Id}_{X} \times \chi_{\underline{i}}: X \times \mathbb{A}_{k}^{n} \rightarrow X \times \mathbb{A}_{k}^{r}$ is an isomorphism. Prove there exists a unique morphism $F: X \rightarrow U_{\underline{i}}$ such that $F^{*}\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}, \phi_{\underline{i}}\right)$ is equivalent to (E, ϕ).
Solution: There is only one idea in this solution, which is to convert the morphism ϕ into an $n \times r$ matrix whose entries are elements of $\mathcal{O}_{X}(X)$, and then use this matrix to define a morphism $X \rightarrow \operatorname{Hom}_{k}\left(\mathbb{A}_{k}^{r}, \mathbb{A}_{k}^{n}\right)$ whose image is contained in $U_{\underline{i}}$. However, the details are a bit tedious. Lemmas are used to organize the details.

Lemma 0.1. Let X and Y be abstract algebraic varieties and let $\left(X \times Y, p r_{X}, p r_{Y}\right)$ be a fiber product. The induced k-algebra homomorphism, $p r_{X}^{\#} \otimes p r_{Y}^{\#}: \mathcal{O}_{X}(X) \otimes_{k}$ $\mathcal{O}_{Y}(Y) \rightarrow \mathcal{O}_{X \times Y}(X \times Y)$, is an isomorphism.

Proof. The first case is when X and Y are affine algebraic varieties. Then this follows from Cor. 13.9.
The second case is where X is general and Y is affine. Let $\left(X_{\alpha}\right)_{\alpha \in A}$ be an open affine covering of X, and for every pair $\alpha, \alpha^{\prime} \in A$, let $\left(X_{\alpha, \alpha^{\prime}, \gamma}\right)_{\gamma \in A_{\alpha, \alpha^{\prime}}}$ be an open affine covering of $X_{\alpha} \cap X_{\alpha^{\prime}}$. By the gluing lemma, there is an exact sequence,

$$
0 \rightarrow \mathcal{O}_{X}(X) \rightarrow \prod_{\alpha \in A} \mathcal{O}_{X}\left(X_{\alpha}\right) \rightarrow \prod_{\left(\alpha, \alpha^{\prime}\right) \in A \times A, \gamma \in A_{\alpha, \alpha^{\prime}}} \mathcal{O}_{X}\left(X_{\alpha, \alpha^{\prime}, \gamma}\right)
$$

Because tensor product of k-vector spaces preserves exact sequences, there is an exact sequence,
$0 \rightarrow \mathcal{O}_{X}(X) \otimes_{k} \mathcal{O}_{Y}(Y) \rightarrow \prod_{\alpha \in A} \mathcal{O}_{X}\left(X_{\alpha}\right) \otimes_{k} \mathcal{O}_{Y}(Y) \rightarrow \prod_{\left(\alpha, \alpha^{\prime}\right) \in A \times A, \gamma \in A_{\alpha, \alpha^{\prime}}} \mathcal{O}_{X}\left(X_{\left.\alpha, \alpha^{\prime}, \gamma\right)}\right) \otimes_{k} \mathcal{O}_{Y}(Y)$.
But also $\left(X_{\alpha} \times Y\right)_{\alpha \in A}$ is an open affine covering of $X \times Y$. Using the first case, the sequence above is the exact sequence from the gluing lemma, i.e., $\mathcal{O}_{X}(X) \otimes$ $\mathcal{O}_{Y}(Y) \rightarrow \mathcal{O}_{X \times Y}(X \times Y)$ is an isomorphism.
The final case where X is arbitrary and Y is arbitrary is proved by precisely the same argument as above, where now the second case is used in place of the first case.

Corollary 0.2. For every variety X and every finite-dimensional k-vector space V, the natural k-algebra homomorphism $\mathcal{O}_{X}(X) \otimes_{k} \operatorname{Sym}^{*}\left(V^{\vee}\right) \rightarrow \mathcal{O}_{X \times \mathbb{A} V}(X \times \mathbb{A} V)$ is an isomorphism.

For the next lemma, let V and W be finite-dimensional k-vector spaces and let $\operatorname{Hom}_{k}(V, W)$ be the associated k-vector space of linear transformations. Denote by $\theta_{V, W}: \operatorname{Hom}_{k}(V, W) \times V \rightarrow W$ the unique set map $(T, v) \mapsto T(v)$. For every linear functional x on $W, x \circ \theta_{V, W}$ is a polynomial in linear functions on $\operatorname{Hom}_{k}(V, W) \times V$, namely,

$$
x \circ \theta_{V, W}=\sum_{i=1}^{r} T_{x, \mathbf{v}_{i}} \circ \operatorname{pr}_{\operatorname{Hom}_{k}(V, W)} \cdot y_{i} \circ \operatorname{pr}_{V},
$$

where $\left(y_{1}, \ldots, y_{r}\right)$ is any basis for V^{\vee} with dual basis $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$, and where $T_{x, \mathbf{v}_{i}}$: $\operatorname{Hom}_{k}(V, W) \rightarrow k$ is $T \mapsto y\left(T\left(\mathbf{v}_{i}\right)\right)$. Because $x \circ \theta_{V, W}$ is always a polynomial function, by the universal property of affine varieties, $\theta_{V, W}: \mathbb{A H o m}_{k}(V, W) \times \mathbb{A} V \rightarrow \mathbb{A} W$ is a regular morphism. There is an induced map of vector bundles on $\mathbb{A} \operatorname{Hom}_{k}(V, W)$,

$$
\tilde{\theta}_{V, W}:=\operatorname{pr}_{\operatorname{Hom}(V, W)} \times \theta_{V, W}: \mathbb{A H o m}_{k}(V, W) \times \mathbb{A} V \rightarrow \operatorname{Hom}_{k}(V, W) \times \mathbb{A} W
$$

Lemma 0.3. For every variety X and every map of vector bundles $\phi: X \times \mathbb{A} V \rightarrow$ $X \times \mathbb{A} W$, there is a unique morphism $F: X \rightarrow \mathbb{A} \operatorname{Hom}_{k}(V, W)$ such that $F^{*} \widetilde{\theta}_{V, W}$ equals ϕ.

Proof. Consider $\operatorname{pr}_{\mathbb{A} W} \circ \phi: X \times \mathbb{A} V \rightarrow \mathbb{A} W$. By the universal property of affine varieties, this is equivalent to the k-algebra homomorphism $k[\mathbb{A} W] \rightarrow \mathcal{O}_{X \times \mathbb{A} V}(X \times \mathbb{A} V)$. By Lemma $0.1, \mathcal{O}_{X \times \mathbb{A} V}(X \times \mathbb{A} V)$ is canonically isomorphic to $\mathcal{O}_{X}(X) \otimes_{k} k[\mathbb{A} V]$. Let $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$ be a basis for V with dual basis $\left(y_{1}, \ldots, y_{r}\right)$ and let $\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)$ be a basis for W with dual basis $\left(x_{1}, \ldots, x_{n}\right)$. Because ϕ is linear on fibers, for every $i=1, \ldots, n,\left(\operatorname{pr}_{A W}^{\circ} \circ \phi\right)^{\#}\left(x_{i}\right)=\sum_{j=1}^{r} a_{i, j} y_{j}$, for elements $a_{i, j} \in \mathcal{O}_{X}(X)$. By the universal property of affine varieties, there is a unique morphism $F: X \rightarrow$ $\mathbb{A H o m}_{k}(V, W)$ such that for every $1 \leq i \leq n$ and $1 \leq j \leq r, F^{\#}\left(T_{x_{i}, \mathbf{v}_{j}}\right)=a_{i, j}$. It is straightforward to check this is the unique regular morphism such that $F^{*} \widetilde{\theta}_{V, W}$ equals ϕ.

Lemma 0.3 solves the problem, after a simple reduction of the original problem about rank r subbundles up to equivalence to a problem about morphisms $X \times \mathbb{A}_{k}^{r} \rightarrow$ $X \times \mathbb{A}_{k}^{n}$ up to equality. As used in (i), observe that the composition of $\phi_{\underline{i}}$ and $\operatorname{Id}_{U_{\underline{i}}} \times \chi_{\underline{i}}$ is the identity morphism. For every morphism $F: X \rightarrow U_{\underline{i}}$, denote by

$$
\alpha_{F}: X \times \mathbb{A}_{k}^{r} \rightarrow X \times_{U_{\underline{i}}}\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}\right)
$$

the canonical isomorphism. Then for every morphism $F: X \rightarrow U_{\underline{i}},\left(X \times \mathbb{A}_{k}^{r}, F^{*} \phi_{\underline{i}} \circ\right.$ $\left.\alpha_{F}\right)$ is a rank r subbundle of $X \times \mathbb{A}_{k}^{n}$ with the additional property that $\left(\operatorname{Id}_{X} \times \chi_{\underline{i}}\right) \circ$ $\left(F^{*} \phi \circ \alpha_{F}\right)$ is the identity morphism.
Denote by $\xi: X \times \mathbb{A}_{k}^{r} \rightarrow E$ the inverse of $\left(\operatorname{Id}_{X} \times \chi_{\underline{i}}\right) \circ \phi$. Then $\phi \circ \xi: X \times \mathbb{A}_{k}^{r} \rightarrow X \times \mathbb{A}_{k}^{n}$ is the unique morphism such that both
(i) $\left(X \times \mathbb{A}_{k}^{r}, \phi \circ \xi\right)$ is a rank r subbundle equivalent to (E, ϕ), and
(ii) $\left(\operatorname{Id}_{X} \times \chi_{\underline{i}}\right) \circ(\phi \circ \xi)$ is the identity morphism $X \times \mathbb{A}_{k}^{r} \rightarrow X \times \mathbb{A}_{k}^{r}$.

By Lemma 0.3, there is a unique morphism $F: X \rightarrow \operatorname{Hom}_{k}\left(\mathbb{A}_{k}^{r}, \mathbb{A}_{k}^{n}\right)$ such that $F^{*} \phi_{\underline{i}} \circ \alpha_{F}$ equals $\phi \circ \xi$. Because $\left(\operatorname{Id} \times \chi_{\underline{i}}\right) \circ \phi \circ \xi$ is the identity, the image of F is contained in $U_{\underline{i}}$. Therefore $F: X \rightarrow U_{\underline{i}}$ is the unique morphism such that $F^{*} \phi_{\underline{i}} \circ \alpha_{F}$ equals $\phi \circ \xi$. By the previous paragraph, $F: X \rightarrow U_{\underline{i}}$ is the unique morphism such that $\left(X \times \mathbb{A}_{k}^{r}, F^{*} \phi_{\underline{i}} \circ \alpha_{F}\right)$ is equivalent to (E, ϕ).
(iii) For every pair of r-tuples $(\underline{i}, \underline{j})$, define $U_{\underline{i}, \underline{j}} \subset U_{\underline{i}}$ to be the open set where the $r \times r$ submatrix $\left(A_{j_{k}, l}\right)$ is invertible, i.e., the distinguished open affine of the determinant of this $r \times r$ matrix. Restricting $\left(U_{\underline{i}}, \phi_{\underline{i}}\right)$ to $U_{\underline{i}, j}$, prove the composition of $\phi_{\underline{i}}$ with $\operatorname{Id} \times \chi_{\underline{j}}$ is an isomorphism. Deduce existence of a morphism $u_{\underline{i}, \underline{j}}: U_{\underline{i}, \underline{j}} \rightarrow$ $U_{\underline{j}, \underline{i}}$.
Solution: Denote by $D \in k\left[A_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq r\right]$ the determinant of the $r \times r$ matrix $\left(A_{j_{k}, l} \mid 1 \leq k, l \leq r\right)$. Then

$$
\mathcal{O}_{U_{\underline{i}}}\left(U_{\underline{i}, \underline{j}}\right)=k\left[A_{i, j} \mid 1 \leq i \leq n, 1 \leq j \leq n\right][1 / D] /\left\langle A_{i_{k}, l}-\delta_{k, l}\right\rangle
$$

By Cramer's rule, for every $1 \leq k, l \leq r$ there exists $B_{k, l} \in \mathcal{O}_{U_{\underline{i}}}\left(U_{\underline{i}, \underline{j}}\right)$ such that the matrix $\left(B_{k, l}\right)$ is an inverse of the matrix $\left(A_{j_{k}, l}\right)$. By the universal property of affine varieties, there exists a unique regular morphism, $\operatorname{pr}_{\mathbb{A}_{k}^{r}} \circ \widetilde{B}_{\underline{i}, \underline{j}}: U_{\underline{i}, \underline{j}} \times \mathbb{A}_{k}^{r} \rightarrow \mathbb{A}_{k}^{r}$, such that for every $1 \leq k \leq r,\left(\operatorname{pr}_{\mathbb{A}_{k}^{r}} \circ \widetilde{B}_{\underline{i}, \underline{j}}\right)^{\#}\left(y_{k}\right)=\sum_{l=1}^{r} B_{k, l} y_{l}$. Denote by $\widetilde{B}_{\underline{i}, \underline{j}}$ the morphism $\operatorname{pr}_{U_{\underline{i}, \underline{j}}} \times\left(\operatorname{pr}_{\mathbb{A}_{k}^{r}} \circ \widetilde{B}_{\underline{i}, \underline{j}}\right): U_{\underline{i}, \underline{j}} \times \mathbb{A}_{k}^{r} \rightarrow U_{\underline{i}, \underline{j}} \times \mathbb{A}_{k}^{r}$. This is a morphism of

Abelian cones and is the inverse of $\left(\operatorname{Id} \times \chi_{\underline{j}}\right) \circ \phi_{\underline{\underline{i}}}$ (restricted to $\left.U_{\underline{i}, \underline{j}}\right)$. By (ii), there exists a unique regular morphism $u_{\underline{i}, \underline{j}}: U_{i, j}, \underline{U_{j}}$ such that

$$
\widetilde{A}_{\underline{j}} \circ\left(\left(u_{i, \underline{j}, \underline{j}} \circ \operatorname{pr}_{U_{\underline{i}, \underline{j}}}\right) \times \operatorname{pr}_{\mathbb{A}_{\tilde{k}}^{r}}\right)=\left.\widetilde{A}_{\underline{i} \mid}\right|_{U_{\underline{i}, \underline{j}}} \circ \widetilde{B}_{\underline{i}, \underline{j}}
$$

In other words,

$$
u_{\underline{i}, \underline{j}}^{*} \phi_{\underline{j}} \circ \alpha_{u_{i \underline{i}, \underline{j}}}=\left.\phi_{\underline{i}}\right|_{U_{i, \underline{j}}} \circ \widetilde{B}_{\underline{i}, \underline{j}} .
$$

(iv) Prove the image of $u_{\underline{i}, \underline{\underline{j}}}$ is contained in $U_{\underline{\underline{j}}, \underline{i}}$ and that $u_{\underline{i}, \underline{j}}$ and $u_{\underline{\underline{j}}, \underline{i}}$ are inverse isomorphisms.
Solution: The open subscheme $U_{j, i} \subset U_{j}$ is the largest open subset over which $\left(\operatorname{Id} \times \chi_{\underline{\underline{i}}}\right) \circ \phi_{\underline{j}}$ is an isomorphism. So to prove the image of $u_{\underline{i}, \underline{j}}$ is contained in $U_{\underline{j} \underline{\underline{j}}, \underline{i}}$, it suffices to prove the following is an isomorphism,

$$
\left(\operatorname{Id} \times \chi_{\underline{i}}\right) \circ u_{\underline{i}, \underline{j}}^{*} \phi_{\underline{j}} \circ \alpha_{u_{\underline{i}, \underline{j}}} .
$$

By (iii), this equals

$$
\left(\operatorname{Id} \times \chi_{\underline{i}}\right) \circ \phi_{\underline{i}} \mid U_{u_{i, \underline{j}}} \circ \widetilde{B}_{\underline{i}, \underline{j}} .
$$

By (i), (Id $\left.\times \chi_{\underline{i}}\right) \circ \phi_{\underline{\underline{i}}}$ is the identity morphism. Therefore the morphism above is $\widetilde{B}_{i, j}$, which is an isomorphism by construction. So the image of $u_{i, j}$ is contained in $U_{j, i, 2}$.
Moreover, $u_{\underline{i}, \underline{j}}^{*} \phi_{\underline{j}}$ is equivalent to $\left.\phi_{\underline{\underline{i}}}\right|_{U_{\underline{i}, \underline{\underline{j}}}}$ and $u_{\underline{j}, \underline{i}}^{*} \phi_{\underline{i}}$ is equivalent to $\left.\phi_{\underline{j}}\right|_{U_{\underline{j}, \underline{i}}}$. By Problem 3(ii) and (iii), $u_{\underline{i}, \underline{\underline{1}}}^{*} u_{\underline{j}, \underline{2}}^{*} \phi_{\underline{\underline{2}}} U_{U_{\underline{i}, \underline{\underline{2}}}}$ is equivalent to $\phi_{\underline{i}} \mid U_{\underline{i}, \underline{\underline{V}}}$. By the uniqueness in (i), $u_{\underline{i}, \underline{j}} \circ u_{\underline{j}, \underline{i}}=\operatorname{Id}_{U_{\underline{i}, \underline{j}}}$. By symmetry, also $u_{\underline{j}, \underline{i}} \circ u_{\underline{i}, \underline{j}}=\operatorname{Id}_{U_{\underline{j}, \underline{i}}}$. So these are inverse isomorphisms.
(v) Prove the collection $\left(\left(U_{i}\right),\left(U_{i, j}\right),\left(u_{i, j}\right)\right)$ satisfies the gluing lemma for varieties. Denote the associated variety by $\iota_{\underline{i}}: U_{\underline{i}} \leftrightharpoons \operatorname{Grass}(r, n)$.
Solution: Given $\underline{i}, \underline{j}$ and $\underline{k}, U_{\underline{j}, \underline{i}} \cap U_{\underline{j}, \underline{k}} \subset U_{\underline{j}, \underline{i}}$ is the largest open subset where (Id \times $\left.\chi_{\underline{k}}\right) \circ \phi_{\underline{j}}$ is an isomorphism. By the same sort of argument as in (iii), $u_{\underline{i}, \underline{j}}^{-1}\left(U_{\underline{j}, \underline{\underline{2}}} \cap U_{\underline{j}, \underline{k}}\right)$ is the largest open subset of $U_{\underline{i}, \underline{\underline{j}}}$ where $\left(\operatorname{Id} \times \chi_{\underline{k}}\right) \circ \phi_{\underline{i}}$ is an isomorphism, i.e.,

$$
u_{\underline{i}, \underline{j}}^{-1}\left(U_{\underline{j}, \underline{i}} \cap U_{\underline{j}, \underline{, k}}\right)=U_{\underline{i}, \underline{j}} \cap U_{\underline{i}, \underline{k}} .
$$

Moreover, the restriction to $U_{\underline{i}, \underline{\underline{j}}} \cap U_{\underline{i}, \underline{k}}$ of both $u_{\underline{j}, \underline{k}} \circ u_{\underline{i}, \underline{j}}$ and $u_{i, \underline{k}}$ are morphisms that pullback $\phi_{\underline{k}}$ to a rank r bundle equivalent to $\phi_{\underline{i}}$. Therefore by the uniqueness in (i), these morphisms are equal. So the datum satisfies the hypothesis for the gluing lemma for morphisms.
(vi) Prove there exists a unique rank r subbundle of $\operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n},(E, \phi)$, such that for every $\underline{i},\left(t_{\underline{i}}\right)^{*}(E, \phi)$ is equivalent to $\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}, \phi_{\underline{i}}\right)$.
Solution: For every \underline{i}, define $E_{\underline{i}} \subset \iota_{\underline{i}}\left(U_{\underline{i}}\right) \times \mathbb{A}_{k}^{r}$ to be the image of $\left(\left(\iota \circ \operatorname{pr}_{U_{\underline{i}}}\right) \times \operatorname{pr}_{\mathbb{A}_{k}^{r}}\right) \circ$ $\phi_{\underline{i}}$. This is the closed subvariety $\mathbb{V}\left(y_{i}-\sum_{k=1}^{r} A_{i_{k}, j} y_{j}, 1 \leq i \leq n\right)$, and the restriction of $\operatorname{Id} \times \chi_{\underline{i}}$ is an isomorphism $E_{\underline{i}} \rightarrow \iota_{\underline{i}}\left(U_{\underline{i}}\right) \times \mathbb{A}_{k}^{r}$. Because of (ii), the restrictions of $E_{\underline{i}}$ and $E_{\underline{j}}$ to $\iota_{\underline{i}}\left(U_{\underline{i}, \underline{j}}\right)=\iota_{\underline{j}}\left(U_{\underline{j}, \underline{i}}^{\underline{-}}\right)$ are equal as subvarieties of $U \times \mathbb{A}_{k}^{n}$. Therefore there is a unique closed subvariety $E \subset \operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n}$ whose restriction to every $\iota_{\underline{i}}\left(U_{\underline{i}}\right) \times \mathbb{A}_{k}^{n}$ is $E_{\underline{i}}$. Denote by $\phi: E \rightarrow \operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n}$ the inclusion morphism. By construction, this is a subbundle such that for every $\underline{i},\left(\iota_{i}\right)^{*}(E, \phi)$ is equivalent to $\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}, \phi_{\underline{i}}\right)$.
(vii) Use (ii) to prove that $\operatorname{Grass}(r, n)$ and (E, ϕ) have the universal property.

Solution, Uniqueness: Let X be a variety, let $\left(E_{X}, \phi_{X}\right)$ be a rank r subbundle of $X \times \mathbb{A}_{k}^{n}$, and let $F_{1}, F_{2}: X \rightarrow \operatorname{Grass}(r, n)$ be morphisms such that the pullbacks by F_{1} and F_{2} of (E, ϕ) are both equivalent to $\left(E_{X}, \phi_{X}\right)$. By construction $\iota_{\underline{i}}\left(U_{\underline{i}}\right) \subset$ $\operatorname{Grass}(r, n)$ is the largest open subset over which $\left(\operatorname{Id} \times \chi_{\underline{i}}\right) \circ \phi$ is an isomorphism. Therefore, both $F_{1}^{-1}\left(U_{\underline{i}}\right)$ and $F_{2}^{-1}\left(U_{\underline{i}}\right)$ are equal to the largest open subset of X over which $\left(\operatorname{Id} \times \chi_{\underline{i}}\right) \circ \phi_{X}$ is an isomorphism. Denote this open subset by $X_{\underline{i}}$. Then $\left.\iota_{\underline{i}}^{-1} \circ F_{1}\right|_{X_{\underline{i}}}$ and $\left.\iota_{\underline{i}}^{-1} \circ F_{2}\right|_{X_{\underline{i}}}$ are both morphisms such that the pullback of $\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}, \phi_{\underline{i}}\right)$ are equivalent to the restriction to $X_{\underline{i}}$ of $\left(E_{X}, \phi_{X}\right)$. By the uniqueness in (ii), these two morphisms are equal. Therefore the restriction of F_{1} and F_{2} to $X_{\underline{i}}$ are equal for every \underline{i}, i.e., $F_{1}=F_{2}$.
Existence: Suppose that there exists an open covering $\left(X_{\alpha}\right)$ of X, and for every α there exists a morphism $F_{\alpha}: X_{\alpha} \rightarrow \operatorname{Grass}(r, n)$ with the property. By the uniqueness above, the datum $\left(X_{\alpha}, F_{\alpha}\right)$ satisfies the hypotheses for the gluing lemma for morphisms, and thus there exists a morphism $F: X \rightarrow \operatorname{Grass}(r, n)$ such that for every $\alpha,\left.F\right|_{X_{\alpha}}=F_{\alpha}$. Then, to construct an equivalence $\psi: X \times_{\operatorname{Grass}(\mathrm{r}, \mathrm{n})} E \rightarrow E_{X}$, again by the gluing lemma it suffices to construct an equivalent ψ_{α} over X_{α} for every α, which follows from the property of F_{α}. Therefore it suffices to prove there exists an open covering $\left(X_{\alpha}\right)$ of X, and for every α prove there exists a morphism $F_{\alpha}: X_{\alpha} \rightarrow \operatorname{Grass}(r, n)$ with the property for the restriction to X_{α} of $\left(E_{X}, \phi_{X}\right)$.

In particular, X is covered by open subsets over which E_{X} is trivial. Therefore, by the previous paragraph, it suffices to consider the case when $E_{X}=X \times \mathbb{A}_{k}^{r}$.
For every \underline{i}, the morphism $\left(\operatorname{Id} \times \chi_{\underline{i}}\right) \circ \phi_{X}: X \times \mathbb{A}_{k}^{r} \rightarrow X \times \mathbb{A}_{k}^{r}$ is equivalent to an $r \times r$ matrix whose entries are elements of $\mathcal{O}_{X}(X)$. The determinant is an element $D_{\underline{i}} \subset \mathcal{O}_{X}(X)$. Define $X_{\underline{i}} \subset X$ to be the open subset where $D_{\underline{i}}$ is nonzero. For every \underline{i}, there is a morphism $F_{\underline{i}}^{\prime}: X_{\underline{i}} \rightarrow U_{\underline{i}}$ as in (ii), and $F_{\underline{i}}=\iota_{\underline{i}} \circ F_{\underline{i}}^{\prime}: X_{\underline{i}} \rightarrow$ $\operatorname{Grass}(r, n)$ satisfies the property for the restriction of $\left(E_{X}, \phi_{X}\right)$ to $X_{\underline{i}}$. So, by the same argument as in the last paragraph, it suffices to prove that the open subsets ($\left.X_{\underline{i}} \mid \underline{i}\right)$ cover X.

For every $p \in X$, the fiber $\phi_{X}:\{p\} \times_{X}\left(X \times \mathbb{A}_{k}^{r}\right) \rightarrow\{p\} \times_{X}\left(X \times \mathbb{A}_{k}^{n}\right)$ is an injective map of vector spaces. In other words, the matrix of the induced linear transformation $\mathbb{A}_{k}^{r} \rightarrow \mathbb{A}_{k}^{n}$ has rank r. Thus some $r \times r$ minor is nonzero, i.e., there exists \underline{i} such that $D_{\underline{i}}$ is nonzero at p. Therefore $p \in X_{\underline{i}}$, i.e., $\left(X_{\underline{i}} \mid \underline{i}\right)$ is an open covering of X.

Problem 5: In this problem, do at least 2 of the parts (but you don't have to do all the parts). Recall for every integer $r \geq 0$, every vector space V and every vector space W, an alternating, r-multilinear map is a map $T: V^{r} \rightarrow W$ such that,
(i) for every $i=1, \ldots, r$, and for every ($r-1$)-tuple $\underline{\mathbf{v}}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \mathbf{v}_{r}\right) \in$ V^{r-1}, the map $T_{\underline{\mathbf{v}}}: V \rightarrow W, \mathbf{v} \mapsto T\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{r}\right)$, is a k linear map, and
(ii) for every $1 \leq i<j \leq r$, for every r-tuple $\underline{\mathbf{v}}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right) \in V^{r}, T(\underline{\mathbf{v}})=\mathbf{0}$ if $\mathbf{v}_{i}=\mathbf{v}_{j}$.
A pair $\left(\bigwedge^{r}(V), \tau\right)$ of a k-vector space $\bigwedge^{r}(V)$ and an alternating, r-multilinear map $\tau: V^{r} \rightarrow \bigwedge^{r}(V)$ is an $r^{t h}$ exterior power of V if for every alterating, r-multilinear map $T: V^{r} \rightarrow W$, there exists a unique k-linear map $L: \bigwedge^{r}(V) \rightarrow W$ such that
$T=L \circ \tau$. If the $r^{\text {th }}$ exterior power of V exists (which it does!), it is unique up to unique isomorphism.
Let V be a finite-dimensional k-vector space and let $\mathcal{B}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be an ordered basis for V. Define $\bigwedge^{r}(V)$ to be the free k-vector space with finite basis denoted $\mathcal{B}^{(r)}=\left(\mathbf{v}_{\underline{i}} \mid \underline{i} \in \Sigma_{n, r}\right)$ where $\Sigma_{n, r}$ is the finite set,

$$
\Sigma_{n, r}=\left\{\underline{i}=\left(i_{1}, \ldots, i_{r}\right) \mid 1 \leq i_{1}<\cdots<i_{r} \leq n\right\} .
$$

Define $\tau: V^{r} \rightarrow \bigwedge^{r}(V)$ to be the unique alternating, r-multilinear map such that for every $\underline{i} \in \Sigma_{n, r}, \tau\left(\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{r}}\right)=\mathbf{v}_{\underline{i}}$.
(i) Prove that $\left(\bigwedge^{r}(V), \tau\right)$ is an $r^{\text {th }}$ exterior power of V.

Solution: This is a standard result of multilinear algebra.
(ii) Let $L: V_{1} \rightarrow V_{2}$ be a k-linear map of vector spaces, let $\left(\bigwedge^{r}\left(V_{1}\right), \tau_{1}\right)$ be an $r^{\text {th }}$ exterior power of V_{1} and let $\left(\bigwedge^{r}\left(V_{1}\right), \tau_{2}\right)$ be an $r^{\text {th }}$ exterior power of V_{2}. Prove there exists a unique k-linear map $\bigwedge^{r}(L): \bigwedge^{r}\left(V_{1}\right) \rightarrow \bigwedge^{r}\left(V_{2}\right)$ such that $\bigwedge^{r}(L) \circ \tau_{1}=$ $\tau_{2} \circ\left(L^{r}\right)$.
Solution: The map $\tau_{2} \circ\left(L^{r}\right): V_{1}^{r} \rightarrow \bigwedge^{r}\left(V_{2}\right)$ is r-multilinear and alternating. By the universal property, there exists a unique k-linear map $\bigwedge^{r}(L): \bigwedge^{r}\left(V_{1}\right) \rightarrow \bigwedge^{r}\left(V_{2}\right)$ such that $\bigwedge^{r}(L) \circ \tau_{1}=\tau_{2} \circ\left(L^{r}\right)$.
(iii) Let \bigwedge^{r} be a rule that assigns to every k-vector space V an $r^{\text {th }}$ exterior power $\left(\bigwedge^{r}(V), \tau\right)$. Prove there exists an associated covariant functor $\bigwedge^{r}: k-$ Vector spaces $\rightarrow k$ - Vector spaces which associates to every vector space V the vector space $\bigwedge^{r}(V)$ and which associates to every k-linear map $L: V_{1} \rightarrow V_{2}$ the k-linear map $\bigwedge^{r}(L)$, i.e., check this rule respects identity morphisms and composition of k-linear maps. Remark: The only issue in defining such a functor is that the $r^{\text {th }}$ exterior power is not unique - it is only unique up to unique isomorphism. This is not a serious issue (there is a canonical choice which is a quotient vector space of the free vector space with basis V^{r}).
(iv) In the same manner as Problem 8 from Problem Set 5 , extend the notion of exterior power to vector bundles.

Solution: There are different solutions to this problem: each produces the same answer, but each emphasizes a different property of the answer. Here is one solution.
Let E, E^{\prime} be Abelian cones over X. Denote by $E^{(r)}$ the r-fold fiber product $E^{(r)}=$ $E \times_{X} E \times_{X} \cdots \times_{X} E$.

Definition 0.4. An alternating, r-multilinear morphism of Abelian cones from E to E^{\prime} is a regular morphism $T: E^{(r)} \rightarrow E^{\prime}$ such that,
(i) $\operatorname{pr}_{X} \circ T: E^{(r)} \rightarrow X$ equals $\operatorname{pr}_{X}: E^{(r)} \rightarrow X$, i.e., T is compatible with projection to X, and
(ii) for every $x \in X$, denoting by $\left.E\right|_{x}=\{x\} \times_{X} E$ and $\left.E^{\prime}\right|_{x}=\{x\} \times_{X} E^{\prime}$ the induced k-vector spaces, $\left.T\right|_{x}:\left.\left(\left.E\right|_{x}\right)^{r} \rightarrow E^{\prime}\right|_{x}$ is an alternating, r-multilinear map of k-vector spaces.

Definition 0.5. Let E be a vector bundle over X. An $r^{\text {th }}$ exterior power of E is a pair $\left(\bigwedge^{r}(E), \tau\right)$ of a vector bundle $\bigwedge^{r}(E)$ over X together with an alternating, r-multilinear morphim of Abelian cones, $\tau: E^{(r)} \rightarrow \bigwedge^{r}(E)$, such that for every element $x \in X$, the restriction $\left.\tau\right|_{x}$ is an $r^{\text {th }}$ exterior power of $\left.E\right|_{x}$.

Lemma 0.6. Let E be a vector bundle over X, and let $\left(\bigwedge^{r}(E), \tau\right)$ be an $r^{\text {th }}$ exterior power of E. For every morphism $F: Y \rightarrow X,\left(Y \times_{X} \bigwedge^{r}(E), F^{*} \tau \circ \alpha_{F}\right)$ is an $r^{\text {th }}$ exterior power of $Y \times_{X} E$, where $\alpha_{F}:\left(Y \times_{X} E\right)^{(r)} \rightarrow Y \times_{X} E^{(r)}$ is the canonical isomorphism.

Proof. This is straightforward.
In particular, if V is a k-vector space and $\left(\bigwedge^{r}(V), \tau\right)$ is an $r^{\text {th }}$ exterior power, then for $X=\mathbb{A}_{k}^{0}$ and $E=\mathbb{A} V$, the pair $\left(\mathbb{A}\left(\bigwedge^{r}(V)\right), \mathbb{A} \tau\right)$ is an $r^{\text {th }}$ exterior power of E. By the lemma, for every variety $X,\left(X \times \mathbb{A}\left(\bigwedge^{r}(V)\right), \operatorname{Id}_{X} \times \mathbb{A} \tau\right)$ is an $r^{\text {th }}$ exterior power of $X \times \mathbb{A} V$ over X.
Let E be an Abelian cone over X with corresponding sheaf of sections $\mathcal{E}_{\text {sec }}$. In particular, $\mathcal{E}_{\text {sec }}(X)$ is an $\mathcal{O}_{X}(X)$-module in a natural manner. For every finitedimensional vector space V, setting $E=X \times \mathbb{A} V$, the $\mathcal{O}_{X}(X)$-module $\mathcal{E}_{\text {sec }}(X)$ is canonically isomorphic to $\mathcal{O}_{X}(X) \otimes_{k} V$.

Let V be a finite-dimensional k-vector space and let E be an Abelian cone over X. For every morphism of Abelian cones, $\psi: X \times \mathbb{A} V \rightarrow E$, there is an induced map of $\mathcal{O}_{X}(X)$-vector spaces $\psi_{*}: \mathcal{O}_{X}(X) \otimes_{k} V \rightarrow \mathcal{E}_{\text {sec }}(X)$. By adjointness, this is equivalent to a map of k-vector spaces, $\psi_{*}: V \rightarrow \mathcal{E}_{\text {sec }}(X)$.

Lemma 0.7. For every finite-dimensional k-vector space, V, and every Abelian cone over X, E, the following induced map is an isomorphism,

$$
\operatorname{Hom}_{A b .} \text { cone }(X \times \mathbb{A} V, E) \rightarrow \operatorname{Hom}_{k-\text { Vect. sp. }}\left(V, \mathcal{E}_{\text {sec }}(X)\right)
$$

Proof. Injectivity: Let $\psi: X \times \mathbb{A} V \rightarrow E$ be a morphism of Abelian cones such that ψ_{*} is the zero map. For every $v \in V$, there is a unique global section s_{v} : $X \rightarrow \mathbb{A} V$ whose projection to $\mathbb{A} V$ is the constant morphism with image v. By hypothesis, $\psi \circ s_{v}$ is the zero map. Therefore, for every $x \in X$, for every $v \in V$, $\psi(x, v)=\mathbf{0}_{x} \in\{x\} \times E$, i.e., ψ is the zero morphism.

Surjectivity: Let $L: V \rightarrow \mathcal{E}_{\text {sec }}(X)$ be a map of k-vector spaces. Let $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be an ordered basis of V. For every $i=1, \ldots, n$, let $s_{i}: X \rightarrow E$ be the global section which is $L\left(\mathbf{v}_{i}\right)$. Because E is an Abelian cone, there is a multiplication morphism $m: \mathbb{A}_{k}^{1} \times E \rightarrow E$. Composing this with the morphism $\operatorname{pr}_{\mathbb{A}^{1}} \times\left(s_{i} \circ \operatorname{pr}_{X}\right)$: $\mathbb{A}_{k}^{1} \times X \rightarrow \mathbb{A}_{k}^{1} \times E$, and using the canonical isomorphism $\mathbb{A}_{k}^{1} \times X \cong X \times \mathbb{A}_{k}^{1}$ gives a morphism $X \times \mathbb{A}_{k}^{1} \rightarrow E$, denoted \widetilde{s}_{i}. The n-fold fiber product of $X \times \mathbb{A}_{k}^{1}$ over X is canonically isomorphic to $X \times \mathbb{A}_{k}^{n}$. Via the basis $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right), X \times \mathbb{A}_{k}^{n}$ is canonically isomorphic to $X \times \mathbb{A} V$. Therefore there is an induced morphism

$$
\widetilde{s}_{1} \times \cdots \times \widetilde{s}_{n}: X \times \mathbb{A} V \rightarrow E \times_{X} \cdots \times_{X} E .
$$

Composing with the addition map $E \times_{X} \cdots \times_{X} E \rightarrow E$ gives a morphism ψ : $X \times \mathbb{A} V \rightarrow E$. It is straightforward to check this is a morphism of Abelian cones and $\psi_{*}=L$.

Lemma 0.8. For every X and every finite-dimensional vector space V, the $r^{\text {th }}$ exterior power of $X \times \mathbb{A} V,\left(X \times \mathbb{A} \bigwedge^{r}(V), \mathbb{A} \tau\right)$, has the universal property: For every Abelian cone E and every r-multilinear, alternating morphism of Abelian cones $T:(X \times \mathbb{A} V)^{(r)} \rightarrow E$, there is a unique morphism of Abelian cones $L:$ $X \times \mathbb{A} \bigwedge^{r}(V) \rightarrow E$ such that $L \circ \tau=T$.

Proof. Uniqueness: Let $L: X \times \mathbb{A} \bigwedge^{r}(V) \rightarrow E$ be a morphism of Abelian cones such that $L \circ \tau=T$. For every $x \in X$, conside the morphism $\left.T\right|_{x}: V^{r} \cong(X \times$ $\mathbb{A} V)\left.\left.^{(r)}\right|_{x} \rightarrow E\right|_{x}$. This is an r-multilinear, alternating map of k-vector spaces. And the induced map of k-vector spaces $\left.L\right|_{x}:\left.\left.\bigwedge^{r}(V) \cong\left(X \times \mathbb{A} \bigwedge^{r}(v)\right)\right|_{x} \rightarrow E\right|_{x}$ is a map of k-vector spaces such that $\left.\left.L\right|_{x} \circ \tau\right|_{x}=\left.T\right|_{x}$. Because $\bigwedge^{r}(V)$ is an $r^{\text {th }}$ exterior power of V, there is a unique such map $\left.L\right|_{x}$. Since this holds for every $x \in X$, there is at most one morphism of Abelian cones $L: X \times \mathbb{A} \bigwedge^{r}(V) \rightarrow E$ such that $L \circ \tau=T$.

Existence: Let $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be an ordered basis for V. For every $\underline{i} \in \Sigma_{n, r}$, let $T \circ s_{\underline{i}}: X \rightarrow E$ be the global section obtained by composing T with the global section $s_{\underline{\underline{i}}}=s_{\mathbf{v}_{i_{1}}} \times \cdots \times s_{\mathbf{v}_{i_{r}}}: X \rightarrow(X \times \mathbb{A} V)^{(r)}$. There is a unique map of k-vector space $\bigwedge^{r}(V) \rightarrow \mathcal{E}_{\sec }(X)$ such that for every $\underline{i} \in \Sigma_{n, r}, \mathbf{v}_{\underline{i}} \mapsto T \circ s_{\underline{i}}$. By Lemma 0.7, there is a unique morphism $L: X \times \mathbb{A} \bigwedge^{r}(V) \rightarrow E$ such that L_{*} is this map of k-vector spaces. By construction, for every $\underline{i} \in \Sigma_{n, r}, L \circ \tau \circ s_{\underline{i}}=L \circ s_{\mathbf{v}_{\underline{i}}}=T \circ s_{\underline{i}}$. So for every $x \in X$, the induced $\left.\operatorname{map} L\right|_{x}:\left.\bigwedge^{r}(V) \rightarrow E\right|_{x}$ is the unique map of k-vector spaces such that $\left.\left.L\right|_{x} \circ \tau\right|_{x}=\left.T\right|_{x}$. Since this holds for every $x \in X, L \circ \tau=T$.

Lemma 0.9. (i) For every finite-dimensional vector space V and every $r^{t h}$ exterior power (E, T) of $X \times \mathbb{A} V$, there is a unique isomorphism of Abelian cones $L: X \times \mathbb{A} \bigwedge^{r}(V) \rightarrow E$ such that $L \circ \tau=T$.
(ii) For every vector bundle E on X, every $r^{\text {th }}$ exterior power $\left(\bigwedge^{r}(E), \tau\right)$ of E satisfies the universal property from Lemma 0.8.
(iii) For every vector bundle E on X, there exists an $r^{\text {th }}$ exterior power $\left(\bigwedge^{r}(E), \tau\right)$.

Proof. (i): By Lemma 0.8, there is a unique morphism of Abelian cones $L: X \times$ $\mathbb{A} \bigwedge^{r}(V) \rightarrow E$ such that $L \circ \tau=T$. At issue is whether L is an isomorphism. This can be checked locally. For every $x \in X$, there is an open neighborhood of x over which E is trivial. Thus, without loss of generality, assume $E=X \times \mathbb{A}_{k}^{N}$ for some integer N. Choosing an ordered basis for V, also $X \times \bigwedge^{r}(V) \cong X \times \mathbb{A}_{k}^{M}$ for some integer M. By Lemma 0.3, the morphism L is equivalent to a morphism $F: X \rightarrow \mathbb{A H o m}_{k}\left(k^{M}, k^{N}\right)$. Using Cramer's rule, etc., the morphism L is an isomorphism near x iff the image $F(x)$ is contained in the open subset (possibly empty) of isomorphisms. Thus L is an isomorphism near x iff $\left.L\right|_{x}$ is an isomorphism.

By hypothesis, $\left.T\right|_{x}:\left.V^{r} \rightarrow E\right|_{x}$ is an $r^{\text {th }}$ exterior power of V, therefore $\left.L\right|_{x}$ is an isomorphism since exterior powers are unique up to unique isomorphism.
(ii): By the gluing lemma for morphisms, this can be proved locally on X. Locally on X, E is isomorphic to $X \times \mathbb{A} V$. By Lemma 0.8 and (i), every $r^{\text {th }}$ exterior power of $X \times \mathbb{A} V$ satisfies the universal property.
(iii): Because of (ii), $r^{\text {th }}$ exterior powers are unique up to unique isomorphism. Therefore, by the gluing lemma for varieties, it suffices to prove there exists an $r^{\text {th }}$ exterior power locally on X. Locally on X, E is isomorphic to $X \times \mathbb{A} V$ and $\left(X \times \mathbb{A} \bigwedge^{r}(V), \mathbb{A} \tau\right)$ is an $r^{\text {th }}$ exterior power of $X \times \mathbb{A} V$.

Problem 6: Let $n, r \geq 0$ be integers. Define $N=\binom{n}{r}$. Let X be a variety.
(i) Using Problem 5(i) and (iv), give an isomorphism of the $r^{\text {th }}$ exterior power of $X \times \mathbb{A}_{k}^{n}$ with $X \times \mathbb{A}_{k}^{N}$.
(ii) Applying (i) and Problem 5(iii) to the Grassmannian $\operatorname{Grass}(r, n)$, define a tautological rank 1 subbundle of $\operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{N}, \bigwedge^{r}(\phi): \bigwedge^{r}(S) \rightarrow \operatorname{Gras}(r, n) \times$ \mathbb{A}_{k}^{N}. Combined with Problem 7 from Problem Set 5 , deduce existence of a regular morphism $F: \operatorname{Grass}(r, n) \rightarrow \mathbb{P}^{N-1}$. This is the Plücker embedding.
(iii) For every $\underline{i} \in \Sigma_{n, r}$, denote by $x_{\underline{i}}$ the corresponding coordinate on \mathbb{A}_{k}^{N}. Prove that $F^{-1}\left(D_{+}\left(x_{\underline{i}}\right)\right)$ equals $\iota\left(U_{\underline{i}}\right)$. Conclude that F is an affine morphism.

Solution: By construction, $D_{+}\left(x_{\underline{i}}\right) \subset \mathbb{P}_{k}^{N-1}$ is the maximal open subset over which the composition of the tautological rank 1 subbundle $E_{1, N} \hookrightarrow \mathbb{P}_{k}^{N-1} \times \mathbb{A}_{k}^{N}$ with the projection to the $x_{\underline{i}}$ coordinate, $\mathbb{P}_{k}^{N-1} \times \mathbb{A}_{k}^{N} \rightarrow \mathbb{P}_{k}^{N-1} \times \mathbb{A}_{k}^{1}$ is an isomorphism. By construction, $U_{\underline{i}} \subset \operatorname{Grass}(r, n)$ is the maximal open subset over which the composition of the tautological rank r subbundle $E_{r, n} \hookrightarrow \operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n}$ with the projection $\operatorname{Id} \times \chi_{\underline{i}}: \operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n} \rightarrow \operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{r}$ is an isomorphism.

For a map of k-vector spaces, $L: k^{r} \rightarrow k^{n}$, the composition $\chi_{\underline{i}} \circ L: k^{r} \rightarrow k^{r}$ is an isomorphism iff the determinant of the matrix is nonzero, i.e., iff for the induced map of k-vector spaces $\bigwedge^{r} L: k \rightarrow k^{N}$, composition with the coordinate $x_{\underline{i}}: k^{N} \rightarrow k$ is an isomorphism. Therefore $F^{-1}\left(D_{+}\left(x_{\underline{i}}\right)\right)=U_{\underline{i}}$.
Because $\left(D_{+}\left(x_{\underline{i}}\right) \mid \underline{i} \in \Sigma_{n, r}\right)$ is an open affine covering of \mathbb{P}_{k}^{N-1}, and because every $F^{-1}\left(D_{+}\left(x_{\underline{i}}\right)\right)$ is an affine variety, F is an affine morphism.

Problem 7: This problem continues the previous problem, proving the Plücker embedding is a closed immersion.
(i) Assume $n \geq r$. Let $\underline{i}=(1, \ldots, r)$. The variety $U_{\underline{i}}$ is the closed subvariety of affine space $\mathbb{A}_{k}^{n r}$ of $n \times r$ matrices such that the first $\bar{r} \times r$ rows form the identity matrix. Identify $U_{\underline{i}}$ with the affine space $\mathbb{A}_{k}^{(n-r) r}$ of $(n-r) \times r$ matrices A via the rule,

$$
A \leftrightarrow\left(\frac{I_{r \times r}}{A}\right) .
$$

Denote the entries of A by $\left(a_{i, j} \mid 1 \leq i \leq n-r, 1 \leq j \leq r\right)$. These are coordinates on the affine space $U_{\underline{i}}$. For every $1 \leq i \leq n-r$ and $1 \leq j \leq r$, denote by $\underline{k} \in \Sigma_{n, r}$ the r-tuple,

$$
\underline{k}=(1, \ldots, j-1, j+1, \ldots, r, r+i)
$$

On the affine space $D_{+}\left(x_{\underline{i}}\right)$, the rational function $x_{\underline{\underline{k}}} / x_{\underline{i}}$ is a coordinate. Prove that $F^{\#}\left(x_{\underline{k}} / x_{\underline{i}}\right)=a_{i, j}$.
Solution: This is actually correct only up to a minus sign. The point is that the composition of $\phi_{\underline{i}}$ with the morphism $\mathrm{Id} \times \chi_{\underline{k}}$ is given by an $r \times r$ matrix whose first $r-1$ rows are the coordinate vectors of the standard basis elements $\mathbf{e}_{1}, \ldots, \mathbf{e}_{j-1}, \mathbf{e}_{j+1}, \ldots, \mathbf{e}_{r}$ and whose final row is the $(r+i)^{\text {th }}$ row of $\phi_{\underline{i}}$, namely $\left(a_{i, 1}, \ldots, a_{i, r}\right)$. Computing the determinant of this matrix by cofactor expansion gives $\pm a_{i, j}$.
(ii) Deduce that $F^{\#}: k\left[D_{+}\left(x_{\underline{i}}\right)\right] \rightarrow k\left[U_{\underline{i}}\right]$ is surjective. Therefore $F: U_{\underline{i}} \rightarrow$ $D_{+}\left(x_{\underline{i}}\right)$ is a closed immersion. Argue this is true for every $\underline{i} \in \Sigma_{n, r}$, therefore $F: \operatorname{Grass}(r, n) \rightarrow \mathbb{P}_{k}^{N-1}$ is a closed immersion.
Solution: The coordinate ring $k\left[U_{\underline{i}}\right]$ is the polynomial ring in the variables $a_{i, j}$, $1 \leq i \leq n-r, 1 \leq j \leq r$. By (i), every variable is contained in the image of F. Therefore the image of F is all of $k\left[U_{i}\right]$.

Clearly, using the action of the symmetric group on n letters on \mathbb{P}^{N-1} and $\operatorname{Grass}(r, n)$, the same result holds for every $\underline{i} \in \Sigma_{n, r}$.

Problem 8: Remark: The original formulation of this problem was wrong. Below is the correct formulation.

Here is a way to find generators for the homogeneous ideal of the projective variety $F(\operatorname{Grass}(r, n)) \subset \mathbb{P}_{k}^{N-1}$. Denote by V the vector space \mathbb{A}_{k}^{n} so that \mathbb{A}_{k}^{N} equals $\bigwedge^{r}(V)$. Let $\tau_{r}: V^{r} \rightarrow \bigwedge^{r}(V)$ be the universal alternating r-linear map. Denote by $\left(\bigwedge^{r+1}(V), \tau_{r+1}\right)$ an $(r+1)^{\text {st }}$ exterior power of V.
(i) Prove there is a unique 2-multilinear map $L: \bigwedge^{r}(V) \times V \rightarrow \bigwedge^{r+1}(V)$ such that $\tau_{r+1}=L \circ\left(\left(\tau_{r} \circ \operatorname{pr}_{1, \ldots, r}\right) \times \operatorname{pr}_{r+1}\right)$. Using adjointness, deduce existence of a map $\widetilde{L}: \bigwedge^{r}(V) \rightarrow \operatorname{Hom}_{k}\left(V, \bigwedge^{r+1}(V)\right)$ such that for every $\mathbf{w} \in \bigwedge^{r}(V)$ and every $\mathbf{v} \in V$, $\widetilde{L}(\mathbf{w})(\mathbf{v})=L(\mathbf{w}, \mathbf{v})$.
(ii) Let \mathbf{w} be an element of $\bigwedge^{r}(V)-\{\mathbf{0}\}$. Prove the image $[\mathbf{w}] \in \mathbb{P}\left(\bigwedge^{r}(V)\right)=\mathbb{P}_{k}^{N-1}$ is in $F(\operatorname{Grass}(r, n))$ iff $\widetilde{L}(\mathbf{w})$ has rank at most $n-r$, i.e., iff the $(n-r+1) \times(n-r+1)$ minors of the matrix are all zero.

Solution: First of all, suppose $[\mathbf{w}] \in F(\operatorname{Grass}(r, n))$. Then there exist linearly independent vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r} \in k^{n}$ such that $\mathbf{w}=\mathbf{v}_{1} \wedge \cdots \wedge \mathbf{v}_{r}$. There exists an ordered basis for $k^{n},\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right)$, and,

$$
\widetilde{L}(\mathbf{w})\left(\mathbf{v}_{i}\right)=\left\{\begin{array}{cc}
\mathbf{v}_{1, \ldots, r, i}, & i=r+1, \ldots, n \\
\mathbf{0}, & i=1, \ldots, r
\end{array}\right.
$$

Therefore $\widetilde{L}(\mathbf{w})$ has rank $n-r$.
Conversely, suppose that $\widetilde{L}(\mathbf{w})$ has rank $\leq n-r$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ be linearly independent elements in the kernel. There exists an ordered basis for $k^{n},\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}, \mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right)$. For every $\underline{i} \in \Sigma_{n, r}$ there exists an element $c_{\underline{i}} \in k$ such that,

$$
\mathbf{w}=\sum_{\underline{i} \in \Sigma_{n, r}} c_{\underline{i}} \mathbf{v}_{\underline{i}} .
$$

For every $\underline{i} \in \Sigma_{n, r}$, denote by $|\underline{i}|$ the set $\left\{i_{1}, \ldots, i_{r}\right\}$. Clearly,

$$
\mathbf{w} \wedge \mathbf{v}_{j}=\sum_{\underline{i} \in \Sigma_{n, r}, j \notin|\underline{i}|} \pm c_{\underline{i}} \mathbf{v} \underline{i}^{\prime}
$$

where $\underline{i}^{\prime} \in \Sigma_{n, r+1}$ is the unique element such that the set $\left|\underline{i}^{\prime}\right|=|\underline{i}| \cup\{j\}$. The elements \underline{i}^{\prime} are linearly independent. Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ are in the kernel, for every $\underline{i} \in \Sigma_{n, r}$ such that $c_{\underline{i}} \neq 0,1, \ldots, r$ are in $|\underline{i}|$. Since $|\underline{i}|$ has size r, this means that $c_{\underline{i}}=0$ if $\underline{i} \neq(1, \ldots, r)$. Therefore $\mathbf{w}=c \mathbf{v}_{1} \wedge \cdots \wedge \mathbf{v}_{r}$ for some $c \in k$.
(iii) Let $n=4$ and $r=2$. Let $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right)$ be an ordered basis for V and let $\left(\mathbf{v}_{1,2}, \mathbf{v}_{1,3}, \mathbf{v}_{1,4}, \mathbf{v}_{2,3}, \mathbf{v}_{2,4}, \mathbf{v}_{3,4}\right)$ be an ordered basis for $\bigwedge^{2}(V)$. Denote by $\left(x_{1,2}, \ldots, x_{2,4}\right.$ the dual ordered basis for $\left(\bigwedge^{2}(V)\right)^{\vee}$. Let $\left(\mathbf{v}_{1,2,3}, \mathbf{v}_{1,2,4}, \mathbf{v}_{1,3,4}, \mathbf{v}_{2,3,4}\right)$ be an ordered basis for $\Lambda^{3}(V)$. With respect to these ordered bases, write down the linear transformation \widetilde{L} as a 4×4 matrix whose entries are linear polynomials in $x_{1,2}, \ldots, x_{3,4}$.

Solution: With respect to the ordered basis $\mathcal{B}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right)$ for V and the ordered basis for $\bigwedge^{3}(V), \mathcal{C}=\left(\mathbf{v}_{1,2,3}, \mathbf{v}_{1,2,4}, \mathbf{v}_{1,3,4}, \mathbf{v}_{2,3,4}\right)$, the matrix of \widetilde{L} is,

$$
[\widetilde{L}]_{\mathcal{C}, \mathcal{B}}=\left(\begin{array}{cccc}
x_{2,3} & -x_{1,3} & x_{1,2} & 0 \\
x_{2,4} & -x_{1,4} & 0 & x_{1,2} \\
x_{3,4} & 0 & -x_{1,4} & x_{1,3} \\
0 & x_{3,4} & -x_{2,4} & x_{2,3}
\end{array}\right)
$$

(iv) After performing elementary row and column operations, reduce this matrix to a skew-symmetric matrix. The rank of a skew-symmetric matrix is always even, therefore the 3×3 minors vanish iff the determinant vanishes. Prove there exists a quadratic polynomial in $x_{1,2}, \ldots, x_{3,4}$ such that the determinant of the skewsymmetric matrix is the square of this polynomial. The polynomial is called the Pfaffian, and generates the homogeneous ideal of $F(\operatorname{Grass}(2,4)) \subset \mathbb{P}_{k}^{5}$.

Solution: The columns of the new matrix are related to the columns of the original matrix by $C_{1}^{\prime}=-C_{4}, C_{2}^{\prime}=C_{3}, C_{3}^{\prime}=-C_{2}, C_{4}^{\prime}=C_{1}$. This gives the row equivalent, skew-symmetric matrix,

$$
\left(\begin{array}{cccc}
0 & x_{1,2} & x_{1,3} & x_{2,3} \\
-x_{1,2} & 0 & x_{1,4} & x_{2,4} \\
-x_{1,3} & -x_{1,4} & 0 & x_{3,4} \\
-x_{2,3} & -x_{2,4} & -x_{3,4} & 0
\end{array}\right) .
$$

The determinant of this matrix is the square of the Pfaffian, $x_{1,2} x_{3,4}-x_{1,3} x_{2,4}+$ $x_{1,4} x_{2,3}$. This is well-defined only up to ± 1, but this is the standard normalization. Observe this is essentially the same as the polynomial in Problem 11 from Problem Set 2 ($=$ Problem 12 from Problem Set 3).

Problem 9: Serre's criterion says that an irreducible variety X is normal if,
(i) the singular locus of X has codimension at least 2 , and
(ii) for every pair of open subset $U \subset V \subset X$, if $V-U \subset V$ has codimension at least 2 , the restriction map is an isomorphism, $\rho_{U}^{V}: \mathcal{O}_{X}(V) \rightarrow \mathcal{O}_{X}(U)$.
Here is an example of a non-normal variety that satisfies the first condition, but not the second. Let $A \subset k[x, y]$ be the set of polynomials $f(x, y)$ such that $f(1,0)=$ $f(0,1)$.
(i) Prove that A is a finitely generated k-subalgebra of $k[x, y]$.

Solution: It is clear that A is a k-subalgebra. Moreover, A contains the subalgebra $k[x, y]^{S_{2}}$ of symmetric polynomials. By a standard algebra theorem, $k[x, y]^{S_{2}}=$ $k[x+y, x y]$, and $k[x, y]$ is a free module over $k[x+y, x y]$ generated by 1 and x. Therefore $A \subset k[x, y]$ is a finitely generated module over $k[x+y, x y]$. So $k[x+y, x y] \rightarrow A$ is a finitely generated ring extension, proving A is a finitely generated k-algebra. However, this does not identify generators.

Clearly $x((x+y)-1), x^{2} y \in A$. Every element in $k[x, y]$ equals $f+x g$ for unique $f, g \in k[x+y, x y]$. At $(1,0), f+x g$ has value $f(1,0)+g(1,0)$, and at $(0,1)$, it has value $f(0,1)=f(1,0)$. Therefore $f+x g$ is in A iff $g(1,0)=0$, i.e., iff $g \in\langle(x+y)-1, x y\rangle k[x+y, x y]$. So, as a module over $k[x+y, x y],\{x g \mid x g \in A\}$ is
generated by $x((x+y)-1)$ and $x^{2} y$. Therefore A is generated by,

$$
\begin{gathered}
A=k\left[x+y, x y, x((x+y)-1), x^{2} y\right] \cong k\left[z_{1}, z_{2}, z_{3}, z_{4}\right] / I \\
I=\left\langle z_{3}^{2}-z_{1}\left(z_{1}-1\right) z_{3}+\left(z_{1}-1\right)^{2} z_{2}, z_{3} z_{4}-z_{1} z_{2} z_{3}+\left(z_{1}-1\right) z_{2}^{2}\right. \\
\left.z_{4}^{2}-z_{1} z_{2} z_{4}+z_{2}^{3}, z_{2} z_{3}-z_{4}\left(z_{1}-1\right)\right\rangle .
\end{gathered}
$$

(ii) Let X be an affine variety with $k[X] \cong A$, and let $F: \mathbb{A}_{k}^{2} \rightarrow X$ be the unique morphism such that $F^{\#}$ induces the inclusion $A \subset k[x, y]$. Prove that F is a birational, finite morphism that is not an isomorphism. Therefore X is not normal.
Solution: First of all $x=\left(x^{2} y\right) / x y$ is in the function field of A, and thus also $y=(x+y)-x$ is in the function field of A. So $K(A)=k(x, y)$. Moreover x satisfies the monic polynomial $x^{2}-x(x+y)+(x y)$ over A. So x is in the integral closure of A. Thus also y is in the integral closure of A. So $F: \mathbb{A}_{k}^{2} \rightarrow X$ is finite and birational. But $A \neq k[x, y]$, so F is not an isomorphism.
(iii) Let $U=\mathbb{A}_{k}^{2}-\{(1,0),(0,1)\}$. Prove that $F(U) \subset X$ is an open set and $F: U \rightarrow F(U)$ is an isomorphism. In particular $F(U)$ is smooth, and $X-F(U)$ is finite because the inverse image $\mathbb{A}_{k}^{2}-U$ is finite. So the singular locus of X has codimension 2.
Let $V_{1}=D(x+y-1) \subset \mathbb{A}_{k}^{2}$ and let $V_{2}=D(x y) \subset \mathbb{A}_{k}^{2}$. Then $V_{1} \cup V_{2}=U$. Of course $F^{-1}(D((x+y)-1))=V_{1}$ and $F^{-1}(D(x y))=V_{2}$. For $F: V_{1} \rightarrow D((x+y)-1)$, the induced map on algebras is,

$$
k\left[x+y, x y, x(x+y-1), x^{2} y\right][1 /(x+y-1)] \rightarrow k[x, y][1 /(x+y-1)] .
$$

In particular, $x(x+y-1) /(x+y-1)$ maps to $x, x+y-x(x+y-1) /(x+y-1)$ maps to y, and $1 /(x+y-1)$ maps to $1 /(x+y-1)$. So the map of algebras is an isomorphism, i.e., $F: V_{1} \rightarrow D((x+y)-1)$ is an isomorphism. Similarly, for $F: V_{2} \rightarrow D(x y)$, the induced map on algebras is,

$$
k\left[x+y, x y, x(x+y-1), x^{2} y\right][1 / x y] \rightarrow k[x, y][1 / x y] .
$$

In particular, $x^{2} y / x y$ maps to $x,(x+y)-x^{2} y / x y$ maps to y, and $1 / x y$ maps to $1 / x y$. So the map of algebras is an isomorphism, i.e., $F: V_{2} \rightarrow D(x y)$ is an isomorphism. Therefore $F(U)=D((x+y)-1) \cup D(x y)$ is an open subset of X and $F: U \rightarrow F(U)$ is an isomorphism.
(iv) Prove that the restriction map $\mathcal{O}_{X}(X) \rightarrow \mathcal{O}_{X}(F(U))$ is not an isomorphism.

Solution: Of course $\mathcal{O}_{X}(X)=A=k\left[x+y, x y, x((x+y)-1), x^{2} y\right]$. By the isomorphism, $\mathcal{O}_{X}(F(U))=\mathcal{O}_{\mathbb{A}_{k}^{2}}(U)$. By the same argument as in Problem 13 from Problem Set 2 (or by Serre's criterion), $\mathcal{O}_{\mathbb{A}_{k}^{2}}(U)=\mathcal{O}_{\mathbb{A}_{k}^{2}}\left(\mathbb{A}_{k}^{2}\right)=k[x, y]$. So the restriction map is $A \rightarrow k[x, y]$, which is not an isomorphism.
Problem 10: In a commutative algebra textbook, read the proof that an integrally closed, Noetherian local ring of dimension 1 is a DVR, and thus is regular. Sketch a proof that every normal 1-dimensional variety is smooth.

