18.725 PROBLEM SET 8

Due date: Wednesday, November 24 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.

Read through all the problems. Write solutions to the "Required Problems", 1, 2, 3 , and 4 . There will be more problems posted soon, and you will be asked to do 1 more problem to a total of 5 .

Required Problem 1: Recall from Definition 14.12 that a regular morphism of varieties $F:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is projective if for every open affine $U \subset Y$ there exists a projective variety Z, and a closed immersion $i: F^{-1}(U) \rightarrow U \times Z$ such that the restriction morphism $F: F^{-1}(U) \rightarrow U$ equals $\operatorname{pr}_{U} \circ i$. To be precise, this is the definition of weakly projective. A regular morphism of varieties $F:\left(X, \mathcal{O}_{X}\right) \rightarrow$ $\left(Y, \mathcal{O}_{Y}\right)$ is strongly projective if there exists a projective variety Z and a closed immersion $i: X \rightarrow Y \times Z$ such that $F=\operatorname{pr}_{Y} \circ i$.
Let X be a quasi-projective variety and denote by $j: X \hookrightarrow \mathbb{P}_{k}^{n}$ a locally closed immersion. Let $F:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ be a regular morphism of algebraic varieties. Prove the following are equivalent,
(i) F is weakly projective,
(ii) F is proper,
(iii) the graph morphism $F \times j: X \rightarrow Y \times \mathbb{P}_{k}^{n}$ has closed image, and
(iv) F is strongly projective.

Required Problem 2 In each of the following cases, X is an irreducible affine variety and $L / k(X)$ is a finite algebraic field extension. In each case compute the associated normalization $F: Y \rightarrow X$, i.e., write down the equations defining F in some affine space and the coordinates of the morphism F. In all cases, $\operatorname{char}(k)=0$.
(a) $X=\mathbb{V}\left(y^{2}-x^{3}\right) \subset \mathbb{A}_{k}^{2}, L=k(X)$.
(b) $X=\mathbb{V}\left(y^{p}-x^{q}\right) \subset \mathbb{A}_{k}^{2}, p$ and q are relatively prime positive integers, $L=k(X)$.
(c) $X=\mathbb{A}_{k}^{1}, L=k(X)[t] /\left\langle t^{2}+(1 / x) t+1\right\rangle$,
(d) $X=\mathbb{V}\left(y^{2}-x^{2}(x-z)\right) \subset \mathbb{A}_{k}^{3}, L=k(X)$,

Required Problem 3 Let X be a variety. A rank r subbundle of $X \times \mathbb{A}_{k}^{n}$ is a pair (E, ϕ) of a rank r vector bundle E on X together with a morphism of Abelian cones on $X, \phi: E \rightarrow X \times \mathbb{A}_{k}^{n}$ such that for every point $p \in X$, the corresponding map $\phi_{p}: E_{p} \rightarrow \mathbb{A}_{k}^{n}$ is injective, where E_{p} denotes the fiber of E over p. An equivalence of rank r subbundles, $\psi:\left(E_{1}, \phi_{1}\right) \rightarrow\left(E_{2}, \phi_{2}\right)$ is a morphism of Abelian cones on X, $\psi: E_{1} \rightarrow E_{2}$ such that $\phi_{2} \circ \psi=\phi_{1}$. For every regular morphism $F: Y \rightarrow X$ and every rank r subbundle of $X \times \mathbb{A}_{k}^{n},(E, \phi)$, the pullback subbundle is defined to be $\left(Y \times_{X} E, F^{*} \phi\right)$ where $F^{*} \phi: Y \times_{X} E \rightarrow Y \times \mathbb{A}_{k}^{n}$ is $\mathrm{pr}_{Y} \times\left(\mathrm{pr}_{\mathbb{A}_{k}^{n}} \circ \phi \circ \operatorname{pr}_{E}\right)$.
(i) Prove that $F^{*} \phi$ is injective on fibers.
(ii) Prove that $\left(E_{1}, \phi_{1}\right)$ and $\left(E_{2}, \phi_{2}\right)$ are equivalent rank r subbundles of $X \times \mathbb{A}_{k}^{n}$, then $\left(Y \times_{X} E_{1}, F^{*} \phi_{1}\right)$ and $\left(Y \times_{X} E_{2}, F^{*} \phi_{2}\right)$ are equivalent rank r subbundles of $Y \times \mathbb{A}_{k}^{n}$.
(iii) Let $G: Z \rightarrow Y$ be a regular morphism. For every rank r subbundle of $X \times \mathbb{A}_{k}^{n}$, (E, ϕ), prove that $\left(Z \times_{X} E,(F \circ G)^{*} \phi\right)$ is equivalent to $\left(Z \times_{Y}\left(Y \times_{X} E\right), G^{*}\left(F^{*} \phi\right)\right)$.

Together, (i)-(iii) prove the existence of a contravariant functor,

$$
\text { Grass }(r, n): k-\text { Varieties } \rightarrow \text { Sets, }
$$

where $\operatorname{Grass}(r, n)(X)$ is the set of equivalence classes of rank r subbundles of $X \times \mathbb{A}_{k}^{n}$, and where $\operatorname{Grass}(r, n)(F): \operatorname{Grass}(r, n)(X) \rightarrow \operatorname{Grass}(r, n)(Y)$ is the set map that sends the equivalence class $[\overline{(E, \phi)}]$ to the equivalence class $\left[\left(Y \times_{X} E, F^{*} \phi\right)\right]$. This functor is called the Grassmann functor.

Required Problem 4: This problem proves the existence of a universal object for the Grassmann functor, i.e., a k-variety $\operatorname{Grass}(r, n)$ together with a rank r subbundle of $\operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n},(E, \phi)$, such that for every variety X and every rank r subbundle $\left(E^{\prime}, \phi^{\prime}\right)$, there is a unique morphism $F: X \rightarrow \operatorname{Grass}(r, n)$ such that $F^{*}(E, \phi)$ is equivalent to $\left(E^{\prime}, \phi^{\prime}\right)$.
(i) For every r-tuple $\underline{i}=\left(i_{1}, \ldots, i_{r}\right)$ of integers satisfying $1 \leq i_{1}<\cdots<i_{r} \leq n$, define $U_{\underline{i}} \subset \operatorname{Hom}\left(\mathbb{A}_{k}^{r}, \mathbb{A}_{k}^{n}\right)$ to be the closed subvariety of $n \times r$ matrices such that for every $k, l=1, \ldots, r$,

$$
A_{i_{k}, l}= \begin{cases}1, & k=l \\ 0, & k \neq l\end{cases}
$$

Denote by $\phi_{\underline{i}}: U_{\underline{i}} \times \mathbb{A}_{k}^{r} \rightarrow U_{\underline{i}} \times \mathbb{A}_{k}^{n}$ the morphism given by the matrix A. Prove that $\left(U_{\underline{i}} \times \mathbb{A}_{k}^{\bar{r}}, \phi_{\underline{i}}\right)^{-}$is a rank r subbundle.
(ii) Let \underline{i} be an r-tuple as above. Denote by $\chi_{\underline{i}}: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{r}$ the projection of \mathbb{A}_{k}^{n} onto the coordinates $x_{i_{k}}, k=1, \ldots, r$. Let X be a variety and let (E, ϕ) be a rank r subbundle of $X \times \mathbb{A}_{k}^{n}$ such that composition of ϕ with $\operatorname{Id}_{X} \times \chi_{\underline{i}}: X \times \mathbb{A}_{k}^{n} \rightarrow X \times \mathbb{A}_{k}^{r}$ is an isomorphism. Prove there exists a unique morphism $F: X \rightarrow U_{\underline{i}}$ such that $F^{*}\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}, \phi_{\underline{i}}\right)$ is equivalent to (E, ϕ).
(iii) For every pair of r-tuples $(\underline{i}, \underline{j})$, define $U_{\underline{i}, \underline{j}} \subset U_{\underline{i}}$ to be the open set where the $r \times r$ submatrix $\left(A_{j_{k}, l}\right)$ is invertible, i.e., the distinguished open affine of the determinant of this $r \times r$ matrix. Restricting $\left(U_{\underline{i}}, \phi_{\underline{i}}\right)$ to $U_{\underline{i}, j}$, prove the composition of $\phi_{\underline{i}}$ with $\operatorname{Id} \times \chi_{j}$ is an isomorphism. Deduce existence of a morphism $u_{\underline{i}, j}: U_{\underline{i}, j} \rightarrow$ $U_{\underline{j}, \underline{i}}$.
(iv) Prove the image of $u_{\underline{i}, \underline{j}}$ is contained in $U_{\underline{j}, \underline{i}}$ and that $u_{\underline{i}, \underline{j}}$ and $u_{\underline{j}, \underline{i}}$ are inverse isomorphisms.
(v) Prove the collection $\left(\left(U_{\underline{i}}\right),\left(U_{\underline{i}, \underline{j}}\right),\left(u_{\underline{i}, \underline{j}}\right)\right)$ satisfies the gluing lemma for varieties. Denote the associated variety by $\iota_{\underline{i}}: U_{\underline{i}} \leftrightharpoons \operatorname{Grass}(r, n)$.
(vi) Prove there exists a unique rank r subbundle of $\operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{n},(E, \phi)$, such that for every $\underline{i},\left(\iota_{\underline{i}}\right)^{*}(E, \phi)$ is equivalent to $\left(U_{\underline{i}} \times \mathbb{A}_{k}^{r}, \phi_{\underline{i}}\right)$.
(vii) Use (ii) to prove that $\operatorname{Grass}(r, n)$ and (E, ϕ) have the universal property.

Problem 5: In this problem, do at least 2 of the parts (but you don't have to do all the parts). Recall for every integer $r \geq 0$, every vector space V and every vector space W, an alternating, r-multilinear map is a $\operatorname{map} T: V^{r} \rightarrow W$ such that,
(i) for every $i=1, \ldots, r$, and for every ($r-1$)-tuple $\underline{\mathbf{v}}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \mathbf{v}_{r}\right) \in$ V^{r-1}, the map $T_{\underline{\mathbf{v}}}: V \rightarrow W, \mathbf{v} \mapsto T\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{i-1}, \mathbf{v}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_{r}\right)$, is a $k-$ linear map, and
(ii) for every $1 \leq i<j \leq r$, for every r-tuple $\underline{\mathbf{v}}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right) \in V^{r}, T(\underline{\mathbf{v}})=\mathbf{0}$ if $\mathbf{v}_{i}=\mathbf{v}_{j}$.
A pair $\left(\bigwedge^{r}(V), \tau\right)$ of a k-vector space $\bigwedge^{r}(V)$ and an alternating, r-multilinear map $\tau: V^{r} \rightarrow \bigwedge^{r}(V)$ is an $r^{\text {th }}$ exterior power of V if for every alterating, r-multilinear $\operatorname{map} T: V^{r} \rightarrow W$, there exists a unique k-linear map $L: \bigwedge^{r}(V) \rightarrow W$ such that $T=L \circ \tau$. If the $r^{\text {th }}$ exterior power of V exists (which it does!), it is unique up to unique isomorphism.

Let V be a finite-dimensional k-vector space and let $\mathcal{B}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ be an ordered basis for V. Define $\bigwedge^{r}(V)$ to be the free k-vector space with finite basis denoted $\mathcal{B}^{(r)}=\left(\mathbf{v}_{\underline{i}} \mid \underline{i} \in \Sigma_{n, r}\right)$ where $\Sigma_{n, r}$ is the finite set,

$$
\Sigma_{n, r}=\left\{\underline{i}=\left(i_{1}, \ldots, i_{r}\right) \mid 1 \leq i_{1}<\cdots<i_{r} \leq n\right\} .
$$

Define $\tau: V^{r} \rightarrow \bigwedge^{r}(V)$ to be the unique alternating, k-linear map such that for every $\underline{i} \in \Sigma_{n, r}, \tau\left(\mathbf{v}_{i_{1}}, \ldots, \mathbf{v}_{i_{r}}\right)=\mathbf{v}_{\underline{i}}$.
(i) Prove that $\left(\bigwedge^{r}(V), \tau\right)$ is an $r^{\text {th }}$ exterior power of V.
(ii) Let $L: V_{1} \rightarrow V_{2}$ be a k-linear map of vector spaces, let $\left(\bigwedge^{r}\left(V_{1}\right), \tau_{1}\right)$ be an $r^{\text {th }}$ exterior power of V_{1} and let $\left(\bigwedge^{r}\left(V_{1}\right), \tau_{2}\right)$ be an $r^{\text {th }}$ exterior power of V_{2}. Prove there exists a unique k-linear map $\bigwedge^{r}(L): \bigwedge^{r}\left(V_{1}\right) \rightarrow \bigwedge^{r}\left(V_{2}\right)$ such that $\bigwedge^{r}(L) \circ \tau_{1}=$ $\tau_{2} \circ\left(L^{r}\right)$.
(iii) Let \bigwedge^{r} be a rule that assigns to every k-vector space V an $r^{\text {th }}$ exterior power $\left(\bigwedge^{r}(V), \tau\right)$. Prove there exists an associated covariant functor $\bigwedge^{r}: k-$ Vector spaces $\rightarrow k$ - Vector spaces which associates to every vector space V the vector space $\bigwedge^{r}(V)$ and which associates to every k-linear map $L: V_{1} \rightarrow V_{2}$ the k-linear map $\bigwedge^{r}(L)$, i.e., check this rule respects identity morphisms and composition of k-linear maps. Remark: The only issue in defining such a functor is that the $r^{\text {th }}$ exterior power is not unique - it is only unique up to unique isomorphism. This is not a serious issue (there is a canonical choice which is a quotient vector space of the free vector space with basis V^{r}).
(iv) In the same manner as Problem 8 from Problem Set 5, extend the notion of exterior power to vector bundles.
Problem 6: Let $n, r \geq 0$ be integers. Define $N=\binom{n}{r}$. Let X be a variety.
(i) Using Problem 5(i) and (iv), give an isomorphism of the $r^{\text {th }}$ exterior power of $X \times \mathbb{A}_{k}^{n}$ with $X \times \mathbb{A}_{k}^{N}$.
(ii) Applying (i) and Problem 5(iii) to the Grassmannian $\operatorname{Grass}(r, n)$, define a tautological rank 1 subbundle of $\operatorname{Grass}(r, n) \times \mathbb{A}_{k}^{N}, \bigwedge^{r}(\phi): \bigwedge^{r}(S) \rightarrow \operatorname{Gras}(r, n) \times$ \mathbb{A}_{k}^{N}. Combined with Problem 7 from Problem Set 5, deduce existence of a regular morphism $F: \operatorname{Grass}(r, n) \rightarrow \mathbb{P}^{N-1}$. This is the Plücker embedding.
(iii) For every $\underline{i} \in \Sigma_{n, r}$, denote by $x_{\underline{i}}$ the corresponding coordinate on \mathbb{A}_{k}^{N}. Prove that $F^{-1}\left(D_{+}\left(x_{\underline{i}}\right)\right)$ equals $\iota\left(U_{\underline{i}}\right)$. Conclude that F is an affine morphism.
Problem 7: This problem continues the previous problem, proving the Plücker embedding is a closed immersion.
(i) Assume $n \geq r$. Let $\underline{i}=(1, \ldots, r)$. The variety $U_{\underline{i}}$ is the closed subvariety of affine space $\mathbb{A}_{k}^{n r}$ of $n \times r$ matrices such that the first $r \times r$ rows form the identity matrix. Identify $U_{\underline{i}}$ with the affine space $\mathbb{A}_{k}^{(n-r) r}$ of $(n-r) \times r$ matrices A via the rule,

$$
A \leftrightarrow\left(\frac{I_{r \times r}}{A}\right) .
$$

Denote the entries of A by $\left(a_{i, j} \mid 1 \leq i \leq n-r, 1 \leq j \leq r\right)$. These are coordinates on the affine space $U_{\underline{i}}$. For every $1 \leq i \leq n-r$ and $1 \leq j \leq r$, denote by $\underline{k} \in \Sigma_{n, r}$ the r-tuple,

$$
\underline{k}=(1, \ldots, j-1, j+1, \ldots, r, r+i) .
$$

On the affine space $D_{+}\left(x_{\underline{i}}\right)$, the rational function $x_{\underline{k}} / x_{\underline{i}}$ is a coordinate. Prove that $F^{\#}\left(x_{\underline{k}} / x_{\underline{i}}\right)=a_{i, j}$.
(ii) Deduce that $F^{\#}: k\left[D_{+}\left(x_{\underline{i}}\right)\right] \rightarrow k\left[U_{\underline{i}}\right]$ is surjective. Therefore $F: U_{\underline{i}} \rightarrow$ $D_{+}\left(x_{\underline{i}}\right)$ is a closed immersion. Argue this is true for every $\underline{i} \in \Sigma_{n, r}$, therefore $F: \operatorname{Grass}(r, n) \rightarrow \mathbb{P}_{k}^{N-1}$ is a closed immersion.
Problem 8: Here is a way to find generators for the homogeneous ideal of the projective variety $F(\operatorname{Grass}(r, n)) \subset \mathbb{P}_{k}^{N-1}$. Denote by V the vector space \mathbb{A}_{k}^{n} so that \mathbb{A}_{k}^{N} equals $\bigwedge^{r}(V)$. Let $\tau_{r}: V^{r} \rightarrow \bigwedge^{r}(V)$ be the universal alternating r-linear map. Denote by $\left(\bigwedge^{r+1}(V), \tau_{r+1}\right)$ an $(r+1)^{\text {st }}$ exterior power of V.
(i) Prove there is a unique 2-multilinear map $L: \bigwedge^{r}(V) \times V \rightarrow \bigwedge^{r+1}(V)$ such that $\tau_{r+1}=L \circ\left(\left(\tau_{r} \circ \operatorname{pr}_{1, \ldots, r}\right) \times \mathrm{pr}_{r+1}\right)$. Using adjointness, deduce existence of a $\operatorname{map} \widetilde{L}: \bigwedge^{r}(V) \rightarrow \operatorname{Hom}_{k}\left(V^{\vee}, \bigwedge^{r+1}(V)\right)$ such that for every $\mathbf{w} \in \bigwedge^{r}(V)$, for every $x \in V^{\vee}$, and every basis $\mathcal{B}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ for V,

$$
(\widetilde{L}(\mathbf{w}))(x)=\sum_{i=1}^{n}\left\langle x, \mathbf{v}_{i}\right\rangle L\left(\mathbf{w}, \mathbf{v}_{i}\right) .
$$

(ii) Let \mathbf{w} be an element of $\bigwedge^{r}(V)-\{\mathbf{0}\}$. Prove the image $[\mathbf{w}] \in \mathbb{P}\left(\bigwedge^{r}(V)\right)=\mathbb{P}_{k}^{N-1}$ is in $F(\operatorname{Grass}(r, n))$ iff $\widetilde{L}(\mathbf{w})$ has rank at most r, i.e., iff the $(r+1) \times(r+1)$ minors of the matrix are all zero.
(iii) Let $n=4$ and $r=2$. Let $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right)$ be an ordered basis for V and let $\left(\mathbf{v}_{1,2}, \mathbf{v}_{1,3}, \mathbf{v}_{1,4}, \mathbf{v}_{2,3}, \mathbf{v}_{2,4}, \mathbf{v}_{3,4}\right)$ be an ordered basis for $\bigwedge^{2}(V)$. Denote by $\left(x_{1,2}, \ldots, x_{2,4}\right.$ the dual ordered basis for $\left(\bigwedge^{2}(V)\right)^{\vee}$. Let $\left(x_{1}, \ldots, x_{4}\right)$ be the dual ordered basis for V^{\vee} and let $\left(\mathbf{v}_{1,2,3}, \mathbf{v}_{1,2,4}, \mathbf{v}_{1,3,4}, \mathbf{v}_{2,3,4}\right)$ be an ordered basis for $\bigwedge_{\widetilde{L}}^{3}(V)$. With respect to these ordered bases, write down the linear transformation \widetilde{L} as a 4×4 matrix whose entries are linear polynomials in $x_{1,2}, \ldots, x_{3,4}$.
(iv) After performing elementary row and column operations, reduce this matrix to a skew-symmetric matrix. The rank of a skew-symmetric matrix is always even, therefore the 3×3 minors vanish iff the determinant vanishes. Prove there exists a quadratic polynomial in $x_{1,2}, \ldots, x_{3,4}$ such that the determinant of the skewsymmetric matrix is the square of this polynomial. The polynomial is called the Pfaffian, and generates the homogeneous ideal of $F(\operatorname{Grass}(2,4)) \subset \mathbb{P}_{k}^{5}$.

Problem 9: Serre's criterion says that an irreducible variety X is normal if,
(i) the singular locus of X has codimension at least 2, and
(ii) for every pair of open subset $U \subset V \subset X$, if $V-U \subset V$ has codimension at least 2 , the restriction map is an isomorphism, $\rho_{U}^{V}: \mathcal{O}_{X}(V) \rightarrow \mathcal{O}_{X}(U)$.
Here is an example of a non-normal variety that satisfies the first condition, but not the second. Let $A \subset k[x, y]$ be the set of polynomials $f(x, y)$ such that $f(1,0)=$ $f(0,1)$.
(i) Prove that A is a finitely generated k-subalgebra of $k[x, y]$.
(ii) Let X be an affine variety with $k[X] \cong A$, and let $F: \mathbb{A}_{k}^{2} \rightarrow X$ be the unique morphism such that $F^{\#}$ induces the inclusion $A \subset k[x, y]$. Prove that F is a birational, finite morphism that is not an isomorphism. Therefore X is not normal.
(iii) Let $U=\mathbb{A}_{k}^{2}-\{(1,0),(0,1)\}$. Prove that $F(U) \subset X$ is an open set and $F: U \rightarrow F(U)$ is an isomorphism. In particular $F(U)$ is smooth, and $X-F(U)$ is finite because the inverse image $\mathbb{A}_{k}^{2}-U$ is finite. So the singular locus of X has codimension 2.
(iv) Prove that the restriction map $\mathcal{O}_{X}(X) \rightarrow \mathcal{O}_{X}(F(U))$ is not an isomorphism.

Problem 10: In a commutative algebra textbook, read the proof that an integrally closed, Noetherian local ring of dimension 1 is a DVR, and thus is regular. Sketch a proof that every normal 1-dimensional variety is smooth.

