
18.725 PROBLEM SET 6

Due date: Friday, November 5 in lecture. Late work will be accepted only with a
medical note or for another Institute-approved reason. You are strongly encouraged
to work with others, but the final write-up should be entirely your own and based
on your own understanding.

Read through all the problems. Write solutions to the “Required Problems”, 1,
2, 3, and 4 and 1 additional problem of your choice to a total of 5 problems. I
realize some optional problems have follow-up problems, which might seem at odds
with writing up only 1 additional problem. You are encouraged to work through
problems you don’t write up. You are also allowed to write the solution to a problem
without writing the solution to the problem it follows-up.

Required Problem 1: This is a “multilinear algebra problem” introducing the
derivative and Hessian of a polynomial. The next problem relates the Hessian of a
homogeneous polynomial on P2 to the flex lines of the associated plane curve.

For every finite-dimensional k-vector space V denote by V ∨ the dual vector space
Homk(V, k). Denote by k[V ∨] the ring of polynomial functions on V , i.e., the k-
subalgebra of HomSet(V, k) generated by V ∨. There is a unique Z≥0-grading on
k[V ∨] such that k[V ∨]0 = k and k[V ∨]1 = V ∨. For every integer r ≥ 0, denote by
Sr(V ∨) the k-vector space k[V ∨]r, called the rth symmetric power of V ∨. Denote
by (AV,OAV ) the unique affine variety whose underlying point-set is V and whose
coordinate ring OAV (AV ) is k[V ∨]. (Usually this variety is just denoted (V,OV ),
but in this problem this notation distinguishes V as a k-vector space from V as an
affine variety.)

(a) Denote by M the (left) k[V ∨]-module M = k[V ∨] ⊗k V ∨ where f · (g ⊗ x) :=
(fg)⊗x for every f, g ∈ k[V ∨] and x ∈ V ∨. Prove there exists a unique k-derivation
d : k[V ∨] → M such that d(x) = 1 ⊗ x for every x ∈ V ∨ = k[V ∨]1. The induced
homomorphism of k[V ∨]-modules, Ωk[V ∨]/k → M , is an isomorphism (you need not
prove this).

Solution, Uniqueness: Let d1, d2 : k[V ∨] → M be k-derivations such that
d1(x) = d2(x) = 1 ⊗ x for every x ∈ V ∨. Then ∂ := d1 − d2 : k[V ∨] → M is
a k-derivation such that ∂(x) = 0 for every x ∈ V ∨. For every ring homomorphism
φ : R → S and every R-derivation ∂ : S → M , the kernel of ∂ is an R-subalgebra
of S. The smallest k-subalgebra of k[V ∨] containing V ∨ is all of k[V ∨]. Therefore
∂ = 0, i.e., d1 = d2.

Existence: Let (e1, . . . , en) be an ordered basis for V and let (x1, . . . , xn) be the
dual ordered basis for V ∨. A basis for k[V ∨] is the set of all monomials {xi :=
xi1

1 · · ·xin
n |i = (i1, . . . , in) ∈ (Z≥0)n}. Define d : k[V ∨] → M to be the unique

k-linear map such that d(1) = 0, and for every i 6= (0, . . . , 0),

d(xi) =
∑

1≤m≤n,im>0

(imxim−1
m ·

∏
l 6=m

xil

l )⊗ xm.
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If we tensor this map with the inclusion of rings k[V ∨] ⊂ k[x1, . . . , xn][1/x1, . . . , 1/xn],
then for every i ∈ (Z≥0)n, there is a formula,

d(xi) =
n∑

m=1

(imxi/xm)⊗mj .

The claim is that d is a k-derivation. Because d is k-linear, it suffices to check for
every pair of monomials xi, xj ,

d(xi · xj) = xi · d(xj) + xj · d(xi).

This equation can be checked after tensoring with the larger ring, k[x1, x
−1
1 , . . . , xn, x−1

n ]:

d(xi+j) =
∑n

m=1((im + jm)xi+j/xm)⊗ xn =
xj · (

∑n
m=1(imxi/xm)⊗ xm) + xi · (

∑n
m=1(jmxj/xm)⊗ xm).

Finally, for every x = a1x1 + · · · + anxn ∈ V ∨, d(x) = a1d(x1) + · · · + and(xn) =
a1 · 1⊗ x1 + · · ·+ an · 1⊗ xn = 1⊗ (a1x1) + · · ·+ 1⊗ (anxn) = 1⊗ x.

(b) For every integer r ≥ 0, denote by dr : Sr(V ∨) → Sr−1(V ∨)⊗V ∨ the restriction
of d, and denote by d̃r : Sr(V ∨) → Homk(V, Sr−1(V ∨)) the composition of dr

with the canonical isomorphism Sr−1(V ∨) ⊗k V ∨ ∼= Homk(V, Sr−1(V ∨)). Given
F ∈ Sr(V ∨), denote the image under dr by drF , and denote the induced linear
map by d̃rF : V → Sr−1(V ∨). Let (e1, . . . , en) be an ordered basis for V and let
(x1, . . . , xn) be the dual ordered basis for V ∨. Prove for every F ∈ Sr(V ∨) and
every i = 1, . . . , n,

d̃rF (ei) =
∂F

∂xi
.

Solution: By the construction in (a), for every monomial xi,

d̃rx
i(em) = imxi/xm =

∂xi

∂xm
.

Because both sides of the equation are k-linear, and because the monomials form
a k-basis for k[V ∨], the equation holds for every polynomial F .

(c) For every integer r ≥ 0, denote by Hessr : Sr(V ∨) → Homk(V, Sr−2(V ∨)⊗kV ∨)
the unique linear map F 7→ Hessr(F ) such that for every v ∈ V , Hessr(F )(v) =
dr−1((d̃rF )(v)). This is the Hessian of F . Let (e1, . . . , en) be an ordered basis
for V , and let (x1, . . . , xn) be the dual ordered basis for V ∨. Prove that for every
F ∈ Sr(V ∨) and every 1 ≤ j ≤ n,

Hessr(F )(ej) =
n∑

i=1

∂2F

∂xi∂xj
⊗ xi.

Considering the terms ∂2F/∂xi∂xj to be “coefficients”, Hessr(F ) is an n×n matrix
whose (i, j)-entry is the degree r − 2 homogeneous polynomial ∂2F/∂xi∂xj . For
every point p ∈ AV , denote by Hessr(F )(p) : V → V ∨ the k-linear map obtained
by evaluating these degree r − 2 homogeneous polynomials at p.

Solution: By (b), for every F and every m, d̃rF (em) = ∂F/∂xm. Applying (b)
again,

dr−1(d̃rF (em)) =
n∑

l=1

∂

∂xl

(
∂F

∂xm

)
⊗ xl.
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Required Problem 2: This problem continues the previous problem. Let dimkV =
3 so that AV ∼= A3

k. Denote by (PV,OPV ) the projective variety (AV − {0})/(v ∼
λv) ∼= P2

k. Let r ≥ 1, let F ∈ Sr(V ∨) be an irreducible polynomial, and let
C = V(F ) ⊂ PV be the associated plane curve.

(a) Let p ∈ C, and let v ∈ V . Prove that (d̃rF (v))(p) = 0 iff there exists a line
L ⊂ PV tangent to C at p and such that the associated affine cone AL ⊂ AV
contains v. Hint: If v ∈ A{p} this is trivial, and if v 6∈ A{p}, choose an ordered
basis (e0, e1, e2) for V such that p = [1, 0, 0] and v = (0, 1, 0).

Solution: If v is proportional to p then by Euler identity, Problem 1 on Problem
Set 4, (d̃rF (v))(p) is a scalar multiple of rF (p) = 0. Also, for every tangent line L
to C at p, AL contains the 1-dimensional subspace corresponding to p; in particular
v ∈ AL.

Thus assume v is not proportional to p. Let (e1, e2, e3) be an ordered basis for V
such that p = [e1] and v = e2. By the solution to Problem 2(b), Problem Set 4,
span(p, v) = V(x2) is a tangent line to C at p iff ∂F/∂x0(p) = ∂F/∂x1(p) = 0.
By the Euler identity, ∂F/∂x0(p) = F (p) = 0. Hence V(x2) is a tangent line to
C at p iff ∂F/∂x1(p) = 0. By Problem 1(b), (d̃rF (v))(p) = ∂F

∂x1
(p). Therefore

(d̃rF (v))(p) = 0 iff there exists a line L ⊂ PV tangent to C at p such that v ∈ AL.

(b) Assume char(k) does not divide 2(r− 1). For every point p ∈ C a tangent line
L to C at p, L ⊂ PV , is a flex line to C at p if the germ at p of the restriction to L
of the dehomogenization of F is contained in m3

pOL,p, i.e., the restriction of F to L
vanishes to order ≥ 3 at p. Prove there is a flex line to C at p iff the 3× 3 Hessian
Hessr(F )(p) is not an isomorphism, i.e., iff with respect to some (and hence any)
basis, the determinant of the 3 × 3 Hessian matrix is 0. Hint: There are 2 cases
depending on whether p is a smooth or singular point of C. In both cases, choose
an ordered basis (e0, e1, e2) for V such that p = [1, 0, 0] and such that tangent line
under consideration is {[a, b, 0]|a, b ∈ k}.

Solution: Let (e0, e1, e2) be an ordered basis such that p = [1, 0, 0] and such that
L = V(x2) is a tangent line to C at p. Expand the polynomial F about (1, 0, 0) as,

F (x0, x1, x2) = xr
0F (1, x1

x0
, x2

x0
) =

xr
0

[
b2

x2
x1

+ c1,1
x1
x0

2 + c1,2
x1
x0

x2
x0

+ c2,2
x2
x0

2 + . . .
]
.

In particular the restriction of F to L is F (1, t, 0) = c1,1t
2 + . . . . If c1,1 = 0, the

restriction of F to L vanishes to order ≥ 3 at p. Suppose that c1,1 6= 0. If b2 = 0,
then every line M containing p is a tangent line to C at p. Let λ ∈ k be a solution
of the quadratic equation c1,1t

2 + c1,2t + c2,2. The restriction of F to the line
M = V(x1 − λx2) is F (1, λt, t) = (c1,1λ

2 + c1,2λ + c2,2)t2 + . . . , which vanishes to
order ≥ 3 at t = 0. So if c1,1 = 0 or b2 = 0, there exists a flext line to C at p.

Conversely, suppose that c1,1, b2 6= 0. Then the unique tangent line to C at p is L,
and the restriction of F to L is F (1, t, 0) = c1,1t

2 + . . . , which vanishes to order 2
at t = 0. Therefore there exists a flex line to C at p iff b2 = 0 or c1,1 = 0.

Next consider the partial derivatives of F at p. By Problem 2(b) from Problem
Set 4, ∂F/∂x0(p) = ∂F/∂x1(p) = 0. With the notation above, ∂F/∂x2(p) = b2.
By the Euler identity, ∂2F/∂x2

0(p) = (r − 1)∂F/∂x0(p) = 0, ∂2F/∂x0∂x1(p) =
3



(r − 1)∂F/∂x1(p) = 0, and ∂2F/∂x0∂x2(p) = (r − 1)b2. Because char(k) does not
divide r−1, this is 0 iff b2 = 0. Finally, with the notation above, c1,1 = ∂2F/∂x2

1(p).

Denote ai,j = ∂2F/∂xi∂xj(p) for 0 ≤ i, j ≤ 2. Then, by (c),

Hessr(F )(p) =

 0 0 a0,2

0 a1,1 a1,2

a0,2 a1,2 a2,2

 .

The determinant is −a2
0,2a1,1. Hence the determinant is 0 iff either a0,2 = 0 or

a1,1 = 0, i.e., iff either b2 = 0 or c1,1 = 0. Therefore there is a flex line to C at p iff
the determinant of Hessr(F )(p) = 0.

(c) Assume char(k) does not divide 6. Compute all the flex lines to the smooth
cubic plane curve V(x3

0 + x3
1 + x3

2) ⊂ P2
k. Hint: There are 9 of them.

Solution: The Hessian matrix is, 6x0 0 0
0 6x1 0
0 0 6x2

 .

The determinant of the Hessian matrix is 63x0x1x2. Because char(k) does not divide
6, the determinant is 0 at p = [a0, a1, a2] iff a0a1a2 = 0. By (b), p is in C and C has
a flex line to C at p iff, a3

0+a3
1+a3

2 = a0a1a2 = 0. If a0 = 0, the first equation reduces
to a3

1+a3
2 = 0, which has 3 solutions [0, 1,−1], [0, 1,−ω], [0, 1,−ω2] where ω is a zero

of t2 + t+1. The corresponding flex lines are V(x1 +x2), V(x1 +ω2x2), V(x1 +ωx2).
Permuting the roles of x0, x1, and x2, it follows the flex lines to C are precisely,

L1 = V(x1 + x2),
L2 = V(x1 + ω2x2),
L3 = V(x1 + ωx2),
L4 = V(x0 + x2),
L5 = V(x0 + ω2x2),
L6 = V(x0 + ωx2),
L7 = V(x0 + x1),
L8 = V(x0 + ω2x2),
L9 = V(x0 + ωx2)

Required Problem 3: This problem together with the next problem work through
the construction of the blowing up of an affine variety along an ideal. You are
encouraged to do these problems in whatever order makes most sense to you (the
sketch below is only one of many approaches). You are also encouraged to read the
section about blowing up in The Geometry of Schemes by Eisenbud and Harris.

Let X ⊂ An
k be an affine algebraic set and denote A = k[X]. Let I ⊂ A be an ideal

and let f1, . . . , fr ∈ I be generators. Let Ar
k be an affine space with coordinates

y1, . . . , yr. For every f ∈ I, denote by Ff : D(f) → Ar
k the regular morphism,

p 7→ (f1(p)/f(p), . . . , fr(p)/f(p)),

and denote by Yf ⊂ X ×Ar
k the Zariski closure of the image of IdX ×Ff : D(f) →

X × Ar
k. Denote by BIA the blowup algebra of I in A, i.e., the Z≤0-graded A-

algebra,
BIA := A[I/t] ⊂ A[1/t], i.e., A⊕ I ⊕ · · · ⊕ Ik ⊕ . . .
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where deg(a) = 0 for all a ∈ A and deg(1/t) = −1 (cf. also, Eisenbud’s Commuta-
tive Algebra, p. 148; the reason for using 1/t as a variable instead of t is to make
this compatible with the Rees algebra, p. 170).

(a) Denote by prX,f : Yf → X the restriction of prX : X × Ar
k → X and denote

by Gf : D(f) → Yf the morphism induced by IdX × Ff . Prove the composition
G#

f ◦ pr#X : A → A[1/f ] is the usual k-algebra homomorphism i : A → A[1/f ].

Solution: The composition prX ◦ Gf = IdX |D(f) by definition of Gf . Therefore
G#

f ◦ pr#X = (prX ◦ Gf )# is the usual k-algebra homomorphism i of restriction to
D(f).

(b) Prove that (IdX × Ff )# : k[Yf ] → A[1/f ] is injective and the image is the
subring of A[1/f ] generated by A and {g/f |g ∈ I}. Prove this is the smallest
k-subalgebra AI,f ⊂ A[1/f ] containing i(A) and such that i(I) · AI,f equals the
principal ideal 〈f〉Af .

Solution: Denote φf = (IdX × Ff )# : A[x1, . . . , xr] → A[1/f ], the unique A-
algebra homorphism such that φf (xj) = fj/f for every j = 1, . . . , r. The image of
φf is the smallest subalgebra generated by i(A) and f1/f, . . . , fr/f . Because every
element of I is an A-linear combination of f1, . . . , fr, the image of φf is AI,f .

By Problem 13(b) from Problem Set 1, k[Yf ] = A[x1, . . . , xr]/ker(φf ) so that G#
f :

k[Yf ] → AI,f is an isomorphism.

Since i(I)AI,f is generated by i(f1), . . . , i(fr), and since every i(fj) = i(f) · (fj/f),
i(I)AI,f is the principal ideal 〈i(f)〉AI,f . Let B ⊂ A[1/f ] be any A-subalgebra
such that i(I)B is 〈i(f)〉B. Then for every fj , i(fj) = i(f)b for some b ∈ B. In
A[1/f ], b = fj/f is the unique element such that i(f)b = i(fj). Therefore fj/f ∈ B
for j = 1, . . . , r, i.e., AI,f ⊂ B.

(c) Denote by αf : AI,f⊗ABIA → AI,f the unique homomorphism of AI,f -algebras
such that for every g ∈ I, αf (1⊗ (g/t)) = g/f ; in particular αf (1⊗ (f/t)) = 1. Let
(H : T → X, β) be a pair of a regular morphism of algebraic varieties H : T → X
together with a homomorphism of OT (T )-algebras β : OT (T ) ⊗A BIA → OT (T )
such that β(1⊗ (f/t)) = 1. Prove there is a unique regular morphism φ : T → Yf

such that
(i) H = prX,f ◦ φ, and
(ii) via the canonical isomorphisms OT (T ) ⊗AI,f

(AI,f ⊗A BIA) ∼= OT (T ) ⊗A

BIA and OT (T )⊗AI,f
AI,f

∼= OT (T ), β equals IdOT (T )⊗αf : OT (T )⊗AI,f

(AI,f ⊗A BIA) → OT (T )⊗AI,f
AI,f .

Hint: Use the universal property of affine varieties together with Proposition 8.5.

Solution: First let’s prove there exists an AI,f -algebra homomorphism αf : AI,f⊗A

BIA → AI,f such that αf (1 ⊗ (g/t)) = g/f for every g ∈ I. This is equivalent
to an A-algebra homomorphism, α̃f : BIA → AI,f such that α̃f (g/t) = g/f for
every g ∈ I. There is a unique A-algebra homomorphism A[t, 1/t] → A[1/f ] such
that t 7→ f . The restriction to BIA ⊂ A[t, 1/t] is an A-algebra homomorphism
whose image is contained in AI,f ⊂ A[1/f ]. Denote this by α̃f : BIA → AI,f .
By construction, for every g ∈ I, α̃f (g/t) = g/f . Because BIA is generated as an
A-algebra by I/t, it is clear that α̃f is the unique A-algebra homomorphism with
this property.
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The next step is to prove α̃f is an isomorphism. One way to prove this is to relate
AI,f to the graded localization (BIA[1/(f/t)])0. By construction, α̃f ((f/t)−1) = 0,
i.e., α̃f factors through an A-algebra homomorphism, BIA/〈(f/t) − 1〉 → AI,f .
By Proposition 8.5, BIA/〈(f/t) − 1〉 ∼= (BIA[1/(f/t)])0. Denote the associated
A-algebra homomorphism, α̂f : (BIA[1/(f/t)])0 → AI,f . The inclusion BIA ⊂
A[t, 1/t] induces an A-algebra homomorphism BIA[1/(f/t)] → A[t, 1/t, 1/f ]. The
kernel is 〈b ∈ BIA|∃r > 0, frb = 0〉. As elements in A[t, 1/t], frb = 0 iff
(f/t)rb = 0 iff b is in the kernel of BIA → BIA[1/(f/t)]. Therefore BIA[1/(f/t)] →
A[t, 1/t, 1/f ] is injective. Clearly (BIA[1/(f/t)])0 = A[1/f ] ∩ (BIA[1/(f/t)])0
inside A[t, 1/t, 1/f ]. In other words, the composition of α̂f with the inclusion
AI,f ⊂ A[1/f ] is the injective A-algebra homomorphism (BIA[1/(f/t)])0 → A[1/f ];
thus α̂f , and hence α̃f , is injective. The image of α̃f is an A-subalgebra of AI,f

that contains I/f , thus it is all of AI,f . So α̃f is also surjective, i.e., α̃f is an
isomorphism of A-algebras.

Now let (H : T → X, β) be a pair as above. Consider the induced A-algebra
homomorphism β̃ : BIA → OT (T ), β̃(b) = β(1 ⊗ b). Because β(1 ⊗ (f/t)) = 1,
β̃ factors through BIA/〈(f/t) − 1〉. Denote by φ# the composition β̃ ◦ (α̃f )−1 :
AI,f → OT (T ). This is clearly the unique A-algebra homomorphism such that
IdOT (T ) ⊗AI,f

αf : OT (T ) ⊗AI,f
(AI,f ⊗A BIA) → OT (T ) ⊗AI,f

AI,f equals β via
the obvious isomorphims. By the universal property of affine varieties, there exists
a unique regular morphism φ : T → Yf whose associated pullback homomorphism is
φ#. Because φ# is a homomorphism of A-algebras, prX,f ◦φ = F . Thus φ : T → Yf

is the unique regular morphism such that prX,f ◦φ = F and such that the pullback
of αf by φ equals β.

Required Problem 4: This problem continues the previous problem. Again,
you are encouraged to approach this problem in the way that makes most sense to
you. You do not need to write out all details, but you should understand how your
approach settles the details.

(a) For every ordered pair (f, g) ∈ I× I, define Yf,g ⊂ Yf to be D(g/f). Denote by
α′g,f : k[Yf,g]⊗A BIA → k[Yf,g] the unique k[Yf,g]-algebra homomorphism commut-
ing with αf and the AI,f -module homomorphisms AI,f → AI,f [(g/f)−1] = k[Yf,g],
AI,f ⊗A BIA → k[Yf,g] ⊗A BIA. Denote by α′′g,f the unique Z≤0-graded k[Yf,g]-
algebra automorphisms,

α′′g,f : k[Yf,g]⊗A BIA → k[Yf,g]⊗A BIA,

a/tn 7→ (g/f)−n · a/tn.

Denote αg,f = α′g,f ◦ α′′g,f . Prove the pair (prX,f |Yf,g
: Yf,g → X, αg,f ) satisfies

the condition in (c) of Problem 3 for g ∈ I. Deduce existence of a unique regular
morphism φg,f : Yg,f → Yg such that prX,g ◦ φg,f = prX,f |Yf,g

and φ∗g,fαg = αg,f .

Solution: It is not obvious that there exists a homomorphism α′′g,f as above. There
is certainly a unique A-algebra homomorphism χ : AI,f ⊗A BIA → A[t, 1/t, 1/f, /g]
such that χ(1 ⊗ (a/t)) = f/g · a/t. It needs to be checked this factors through
(AI,f ⊗A BIA)[1/(g/f)]. The induced homomorphism (AI,f ⊗A BIA)[1/(g/f)] →
A[t, 1/t, 1/f, 1/g] is injective by a similar argument to the one in Problem 3(c). The
image χ(AI,f ⊗{1}) is contained in the image of (AI,f ⊗A BIA)[1/(g/f)]. And for
every a ∈ I, χ(1 ⊗ (a/t)) = 1/(g/f) · a/t, which is in the image. Therefore the
image of χ is in (AI,f ⊗A BIA)[1/(g/f)]. Also denote by χ the induced A-algebra
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homomorphism χ : AI,f ⊗A BIA → (AI,f ⊗A BIA)[1/(g/f)]. Because χ(g/f ⊗1) =
g/f ⊗ 1 is invertible, there is an induced AI,f [1/(g/f)]-algebra homomorphism
α′′g,f : (AI,f ⊗A BIA)[1/(g/f)] → (AI,f ⊗A BIA)[1/(g/f)].

The homomorphism α′g,f ◦ α′′g,f : (AI,f [1/(g/f)]) ⊗A BIA → AI,f [1/(g/f)] is an
AI,f [1/(g/f)]-algebra homomorphism such that for every a ∈ I, α′g,f ◦ α′′g,f (1 ⊗
(a/t)) = α′g,f (1/(g/f)⊗ (a/t)) = 1/(g/f) · a/f . In particular, 1⊗ (g/t) 7→ 1/(g/f) ·
g/f = 1. So (prX,f : Yf,g → X, αg,f ) satisfies the hypotheses of Problem 3(c) for
g ∈ I. Therefore there is a unique regular morphism φg,f : Yf,g → Yg such that
prX,g ◦ φg,f = prX,f and φ∗g,fαg = αg,f .

(b) Prove that φg,f (Yf,g) ⊂ Yg,f and prove that φg,f and φf,g are inverse isomor-
phisms Yf,g

∼= Yg,f .

Solution: The pullback homomorphism φ#
g,f : AI,g → AI,f [1/(g/f)] is an A-

algebra homomorphism. In particular, f = φ#
g,f (g · f/g) = g · φ#

g,f (f/g). Therefore
φ#

g,f (f/g) = 1/(g/f), which is invertible. So the image of φg,f is contained in
D(f/g) = Yg,f . Both φf,g ◦ φg,f : Yf,g → Yf and the inclusion morphism are
regular morphisms that commute with projection to X and pullback αf to α′g,f .
So, by the universal property, they are equal. Therefore, for every (f, g) ∈ I × I,
φf,g ◦ φg,f : Yf,g → Yf,g equals the identity morphism. In particular, this also
holds for (g, f). Thus φg,f : Yf,g → Yg,f and φf,g : Yg,f → Yf,g are inverse regular
morphisms.

(c) For every triple (f, g, h) ∈ I×I×I, prove φ−1
g,f (Yg,h) = Yf,g∩Yf,h and prove φh,g◦

φg,f |Yf,g∩Yf,h
= φh,f |Yf,g∩Yf,h

. Therefore the collection ((Yf |f ∈ I), (Yf,g|(f, g) ∈
I × I), (φg,f |(f, g) ∈ I × I)) satisfies the gluing lemma for objects. Denote the
induced family of morphisms by (φf : Yf → Y ). The variety Y is the blowing up of
X along the ideal I.

Solution: This is very similar to the last part. To see that φh,g ◦ φg,f = φh,f ,
observe that both pullback αh to the restriction of αf to Yf,g ∩Yf,h. So by the uni-
versal property they are equal. This is the main step in proving that the collection
satisfies the gluing lemma for objects.

(d) Prove the collection of morphisms (prX,f ◦ φ−1
f : φf (Yf ) → X|f ∈ I) satisfies

the gluing lemma for morphisms. The induced morphism prX : Y → X is the
projection morphism. The restriction prX : pr−1

X (X − V(I)) → (X − V(I)) is an
isomorphism.

Solution: The morphisms φg,f commute with projection to X. Therefore the
collection of morphisms (prX,f ◦ φ−1

f : φf (Yf ) → X|f ∈ I) satisfies the gluing
lemma for morphisms.

Next consider prX : pr−1
X (X − V(I)) → (X − V(I)). For every f ∈ I, D(f) is an

open subset of X−V(I). Consider prX,f : pr−1
X,f (D(f)) → D(f). The induced map

of k-algebras is A[1/f ] → AI,f [1/f ] = A[I/f ][1/f ]. This is clearly an isomorphism
of k-algebras, therefore prX,f : pr−1

X,f (D(f)) → D(f) is an isomorphism of varieties.
Define p−1

f : D(f) → pr−1
X (X − V(I)) to be the composition of pr−1

X,f : D(f) →
pr−1

X,f (D(f)) with φf . Because the morphisms φg,f commute with projection to X,
the collection (p−1

f : D(f) → pr−1
X (X − V(I))|f ∈ I) satisfies the gluing lemma
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for morphisms. Define p−1 : (X − V(I)) → pr−1
X (X − V(I)) to be the induced

morphism. By construction, prX ◦ p−1 is the identity morphism on X − V(I).
Moreover for every f ∈ I, the restriction of p−1 ◦ prX to φf (pr−1

X,f (D(f))) is the
inclusion morphism. So by the uniqueness part of the gluing lemma, p−1 ◦ prX is
the identity morphism on pr−1

X (X − V(I)). Thus p−1 = pr−1
X is an inverse of prX ,

i.e., prX : pr−1
X (X − V(I)) → (X − V(I)) is an isomorphism.

(e) For every p ∈ Y , prove the ideal pr#XI · OY,p is a principal ideal in OY,p.

Solution: For every p ∈ Y , there exists f ∈ I and q ∈ Yf such that p = φf (q). So
it suffices to prove for every f ∈ I and every q ∈ Yf , pr#X,fI · OYf ,q is a principal
ideal in OYf ,q. In fact pr#X,fI ·OYf

(Yf ) is the principal ideal 〈f〉OYf
(Yf ) by Problem

3(b). So the image in the localization is also the principal ideal generated by f .

Problem 5: This problem continues the previous two problems. Let g1, . . . , gs ∈ I
be any other choice of generators, and define (pr′I,f : Y ′

f → X|f ∈ I) and pr′X :
Y ′ → X in the analogous manner as above with this choice of generators. Use the
universal property of (Yf → X, αf ) to prove the variety Y ′

f is canonically isomor-
phic to Yf . Deduce that Y ′ is canonically isomorphic to Y , and the isomorphism
commutes with prX and pr′X .

Problem 6: Let X = An+1
k , and let I = 〈x0, . . . , xn〉 ⊂ k[x1, . . . , xn]. Let E ⊂

An+1
k × Pn

k be the tautological rank 1 subbundle from Problem 4(c) on Problem
Set 5. Denote by πAn+1

k
: E → An+1

k and πPn
k

: E → Pn
k the projections. Let

prX : Y → An+1
k be the blowing up of An+1

k along I.

(a) For every f ∈ I1, define Ef = π−1
Pn

k
(D+(f)). Prove that π#

An+1
k

(I) · OE(Ef ) is a

principal ideal generated by π#

An+1
k

(f). Use Problem 3(c) to deduce existence of a
morphism ηf : Ef → Yf .

Solution: By the construction of Pn
k , D+(f) is canonically isomorphic to the affine

variety with coordinate ring k[x0/f, . . . , xn/f ] ⊂ k[x0, . . . , xn, 1/f ]. To distinguish
the elements xi/f ∈ k[D+(f)] from fractions that will occur, denote these elements
by [xi/f ]. By definition, Ef ⊂ An+1

k ×D+(f) is the closed subvariety V(x·[y/f ]−y ·
[x/f ]|x, y ∈ k[x0, . . . , xn]1). In particular, the projection morphism prAn+1

k
: Ef →

An+1
k is a regular morphism of affine varieties with pullback morphism,

pr#An+1
k

: k[x0, . . . , xn] → k[x0, . . . , xn, [x0/f ], . . . , [xn/f ]]/〈xi− f · [xi/f ]|0 ≤ i ≤ n〉.

Clearly there is a unique k[x0, . . . , xn]-algebra homomorphism vf : k[x0, . . . , xn][x0/f, . . . , xn/f ] →
k[Ef ] factoring pr#An+1

k

, and vf is an isomorphism. So there is a unique isomorphism

ηf : Ef → Yf commuting with projection to An+1
k .

(b) Prove the collection of morphisms (φf ◦ ηf : Ef → Y |f ∈ I) satisfies the
hypotheses for the gluing lemma for morphisms. Denote by η : E → Y the induced
morphism.

Solution: Let f, g ∈ k[x0, . . . , xn]1 be nonzero elements. The intersection Ef ∩Eg

is an open affine subset of both Ef and Eg. The pullback map k[Ef ] → k[Ef ∩Eg]
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factors through the localization,

k[x0, . . . , xn, [x0/f ], . . . , [xn/f ]]/〈xi − f · [xi/f ]|0 ≤ i ≤ n〉 →
(k[x0, . . . , xn, [x0/f ], . . . , [xn/f ]]/〈xi − f · [xi/f ]|0 ≤ i ≤ n〉)[1/[g/f ]],

and the induced homomorphism wf : k[Ef ][1/[g/f ]] → k[Ef ∩ Eg] is an iso-
morphism. Similarly for k[Eg] → k[Ef ∩ Eg]. The induced isomorphism wg,f :
k[Eg][1/[f/g]] → k[Ef ][1/[g/f ]] maps [h/g] to [h/f ]/[g/f ].

The image ηf (Ef ∩ Eg) is precisely Yf,g, and ηg(Ef ∩ Eg) = Yg,f . The induced
homomorphism η#

f : k[x0, . . . , xn][x0/f, . . . , xn/f ][1/(g/f)] → k[Ef ][1/[g/f ]] is an
isomorphism, and η#

f ◦φ#
g,f = wg,f ◦η#

g . Hence φg ◦φg,f ◦ηf |Ef∩Eg
= φf ◦ηf |Ef∩Eg

equals φg ◦ηg|Ef∩Eg . Therefore the collection satisfies the hypotheses for the gluing
lemma for morphisms.

(c) For every i = 1, . . . , n, prove that ηxi : Exi → Yxi is an isomorphism. Deduce
that η : E → Y is an isomorphism. In particular, deduce that prX : Y → X is a
projective morphism.

Solution: As proved in (a), every morphism ηf is an isomorphism. For every f ,
define e−1

f : Yf → E to be the composition of η−1
f with the inclusion Ef ⊂ E.

By the same argument as in (b), the collection of morphisms (e−1
f : Yf → E|f ∈

k[x0, . . . , xn]1) satisfies the gluing lemma for morphisms, and so defines a morphism
e−1 : Y → E. Restricting to the open subsets Ef ⊂ E and Yf ⊂ Y , e−1 ◦ η = IdE

and η ◦ e−1 = IdY . Therefore η : E → Y is an isomorphism.

Because E ⊂ An+1
k ⊂ Pn

k is a closed subvariety, the projection prAn+1
k

: E →
An+1

k is (strongly) projective (by definition of strongly projective). Because η is an
isomorphism that commutes with projection to An+1

k , also prAn+1
k

: Y → An+1
k is a

projective morphism.

Problem 7: Let F : X ′ → X be a regular morphism of affine varieties, let I ⊂ k[X]
be an ideal, and denote I ′ = F#(I) · k[X ′]. Let prX : Y → X be the blowing up of
X along I, and let prX′ : Y ′ → X ′ be the blowing up of X ′ along I ′.

(a) For every f ∈ I, denote f ′ = F#(f) ∈ I ′. Consider the composition F ◦prX′,f ′ :
Y ′

f ′ → X. Prove that

(F ◦ prX′,f ′)
#(I) · k[Y ′

f ′ ] = pr#X′,f ′(I
′) · k[Y ′

f ′ ]

is a principal ideal generated by (F ◦ prX′,f ′)#(f). Use Problem 3(c) to deduce
existence of a morphism FI,f : Y ′

f ′ → Yf such that prX,f ◦ Ff = F ◦ prX′,f ′ .

Solution: Denote A = k[X] and A′ = k[X ′]. The composition of the pullback
homomorphism F# : A → A′ with the inclusion A′ → A′[1/f ′] is a homomorphism
mapping f to an invertible element. So there is a unique homomorphism F#

f :
A[1/f ] → A′[1/f ′] factoring F#. Since F#(A), F#(I/f) ⊂ A′

I′,f ′ and since I/f

generates AI,f as an A-algebra, F#(AI,f ) ⊂ A′
I′,f ′ , i.e., there is an induced A-

algebra homomorphism F#
I,f : AI,f → A′

I′,f ′ . By the universal property of affine
varieties, there is a unique regular morphism FI,f : Y ′

f ′ → Yf whose pullback
homomorphism is F#

I,f . There is a canonical surjection of graded A′-algebras, A′⊗A

BIA → BI′A
′ whose restriction to degree 1 graded pieces is the canonical surjection

A′ ⊗A I → I ′ = I · A′. The regular morphism FI,f is the unique morphism from
9



Problem 3(c) such that F ∗
I,fαf is the composition of this canonical surjection with

α′f ′ .

(b) Prove the collection of morphisms (φf ◦ FI,f : Y ′
f ′ → Y |f ∈ I) satisfies the

hypotheses for the gluing lemma for morphisms. Denote by FI : Y ′ → Y the
induced morphism.

Solution: Let f, g ∈ I. Clearly F−1
I,f (Yf,g) = Y ′

f ′,g′ and F−1
I,g (Yg,f ) = Y ′

g′,f ′ . To
prove that FI,g ◦ φ′g′,f ′ = φg,f ◦ FI,f , compare the pullbacks of αg.

(c) Consider the morphism, prX × FI : Y ′ → X ′ ×X Y . Prove this is a closed
immersion whose image is the Zariski closure of the open subset (X ′−V(I ′))×X−V(I)

pr−1
X (X − V(I)) ∼= (X ′ − V(I ′)). Hint: For every f ∈ I, consider prX × FI :

F−1
I (Yf ) → X ′×X Yf . Using that (X ′×X Yf |f ∈ I) is an open covering of X ′×X Y ,

deduce the result.

Solution: To prove a regular morphism H : S → T is a closed immersion, it suffices
to prove for some open covering (Ti) of T , that every morphism H : H−1(Ti) → Ti

is a closed immersion. In this case, this reduces to proving that every morphism
prX ×FI,f : Y ′

f ′ → X ′×X Yf is a closed immersion. The pullback map on algebras
is,

(prX × FI,f )# : A′ ⊗A A[I/f ] → A′[I ′/f ′].
It is clear this is surjective. So denoting the kernel by Qf , prX ×FI,f is an isomor-
phism to V(Qf ), i.e., prX × FI,f is a closed immersion.

(d) In particular, bringing the construction full circle, let f1, . . . , fr ∈ I be gen-
erators, and define F = (f1, . . . , fr) : X → Ar

k. Show this morphism satisfies the
hypotheses of the problem with X replaced by Ar

k, with F : X ′ → X replaced by
F : X → Ar

k, with I replaced by 〈x1, . . . , xr〉 and with I ′ replaced by I. Combining
(c) with Problem 6(c), deduce that prX : Y → X is a projective morphism.

Solution: By Problem 6(c), the blowing up of 〈x1, . . . , xr〉 in Ar
k is prAr

k
: E → Ar

k.
As sketched, the choices above together with (c) determine a closed immersion of
Y inside X ×Ar

k
E. Because prAr

k
: E → Ar

k is strongly projective, also prX :
X ×Ar

k
E → X is strongly projective (“the base change of a closed immersion is

a closed immersion”). Also, the composition of a closed immersion and a closed
immersion is a closed immersion. Therefore the composition Y → X ×Ar

k
E → X

is strongly projective, i.e., prX : Y → X is strongly projective.

Problem 8: Let X = A2
k, and for every integer n ≥ 1, let In = 〈xn, yn〉 ⊂ k[x, y].

Let prX,n : Yn → X be the blowing up of X along In.

(a) If m divides n, prove there exists a unique regular morphism Fm,n : Yn → Ym

such that prX,m ◦ Fm,n = prX,n.

Solution: Using Problem 6 and Problem 7, for every integer n ≥ 1, Yn = V(xnvn−
ynun) ⊂ A2

k × P1
k where (un, vn) are homogeneous coordinates on P1

k. If m divides
n, say n = lm, define Fm,n : Yn → Ym by ((x, y), [un, vn]) 7→ ((x, y), [ul

n, vl
n]). It is

straightforward to check this is well-defined and is a regular morphism.

(b) If m 6= n, prove there does not exist an isomorphism Fm,n : Yn → Ym such that
prX,m ◦ Fm,n = prX,n. This shows that for ideals I, J ⊂ k[X] with V(I) = V(J), it
is not necessarily true that the blowing up of X along I equals the blowing up of
X along J .
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Solution: Let p be the least common multiple of m and n. There exist unique
morphisms Fm,p : Yp → Ym and Fn,p : Yp → Yn as in (a). These morphisms satisfy
F−1

m,p(Ym,xm) = F−1
n,p(Yn,xn) = Yp,xp . The induced morphisms of affine varieties

have pullback morphisms,

k[x, y, (y/x)p] ⊂ k[x, y, (y/x)m],
k[x, y, (y/x)p] ⊂ k[x, y, (y/x)n]

Considered as subrings of k[x, y, 1/x] ⊂ k(A2
k), k[x, y, (y/x)m] 6= k[x, y, (y/x)n].

Therefore there is no isomorphism of Yn,xn and Yp,xp commuting with projection
to A2

k.

Problem 9, The twenty-seven lines on a cubic surface I: A classical result,
that continues to inspire algebraic geometers, is that every smooth cubic hypersur-
face in P3

k over an algebraically closed field k contains 27 lines. Off the Building 2
corridor on the first floor there is a display case containing models of surfaces, one
of which is a real cubic surface containing 27 real lines (the maximum possible).
This problem and the next give an example of a cubic surface for which you can
compute the equations of the 27 lines.

Assume char(k) does not divide 6. Let F (x0, x1, x2, x3) = x3
0 + x3

1 + x3
2 + x3

3 and
let X = V(F ) ⊂ P3

k. For each pairing {0, 1, 2, 3} = {{i, j}, {k, l}}, for each pair of
elements, [ai, aj ], [ak, al] ∈ P1

k, consider the line V(aixi + ajxj , akxk + alxl) ⊂ P3
k.

Among all such lines, which ones are contained in X? Prove X contains at least 27
lines.

Solution: The cubic surface in this example is called the Fermat cubic surface
(more generally any hypersurface V(xd

0 +· · ·+xd
n) ⊂ Pn

k is called a Fermat hypersur-
face in analogy with the famous Fermat plane curves). Without loss of generality,
assume ai = ak = 1. Then homogeneous coordinates on the line are xj and xl.
With respect to these coordinates, the pullback of F is x3

j +(−ajx
3
j )+x3

l +(−alx
3
l ) =

(1− a3
j )x

3
j + (1− a3

k)x3
k. This is the zero polynomial iff a3

j = 0 and a3
k = 0. Let ω

be a nontrivial solution of t2 + t + 1. The 27 lines of this form contained in X are
displayed in Table 1 (on the last page).

There is an action of Z/3Z × Z/3Z × Z/3Z on P3
k (or better, of µ3 × µ3 × µ3 on

P3
k), by (e1, e2, e3) · [x0, x1, x2, x3] = [x0, ω

e1x1, ω
e2x2, ω

e3x3]. The pullback of F
is x3

0 + (ωe1x1)3 + (ωe2x2)3 + (ωe3x3)3 = x3
0 + x3

1 + x3
2 + x3

3. Therefore the action
maps X to itself, i.e., there action restricts to an action on X. There is an induced
action on the set of lines on X, and the 27 lines above are a (faithful) orbit of that
action.

Problem 10, The twenty-seven lines on a cubic surface II: This problem
continues the previous problem and proves the 27 lines from the previous problem
are the only lines on X.

(a) Prove that every line M ⊂ X intersects one of the 27 lines L identified in the
previous problem. Hint: Find 3 lines L1, L2, L3 from the previous problem and a
hyperplane H ⊂ P3

k such that H ∩ X = L1 ∪ L2 ∪ L3. Apply Problem 9(a) from
Problem Set 5 to M and H.

Solution: For instance L1 ∪ L2 ∪ L3 = V(x0 + x1) ∩ X. By Problem 9(a) from
Problem Set 5, M intersects H. Because M ⊂ X, M intersects H ∩X. Therefore
M intersects L1, L2 or L3.
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(b) Find a change-of-coordinates that preserves X and maps L to the line V(x0 +
x1, x2 + x3). Prove there exists a hyperplane H = V(a(x0 + x1) + b(x2 + x3))
containing L and M .

Solution: The change of variables is just the action of (0, 0, e3) on P3
k for some

choice of e3 ∈ Z/3Z. If M equals L, we are done. Thus assume L and M are
distinct.

After the coordinate change, consider the affine cones AL, AM ⊂ A4
k. These are

2-dimensional vector spaces. Because L ∩ M 6= ∅, the intersection contains a 1-
dimensional subspace. Because L 6= M , the intersection has dimension exactly 1.
So the span has dimension 2. This is the affine cone over a hyperplane H containing
L ∪ M . Every hyperplane containing L is of the form V(a(x0 + x1) + b(x2 + x3))
for some [a, b] ∈ P1

k.

(c) Without loss of generality, assume b 6= 0 and rewrite the defining equation of
H as (x2 + x3) = a(x0 + x1). For homogeneous coordinates on H, use u = x0 + x1,
v = x0 − x1 and w = x2 − x3. Prove the restriction of F to H is of the form,

F |H = uG(u, v, w) = u(cu(a)u2 + cv(a)v2 + cw(a)w2),

for particular polynomials cu(t), cv(t), cw(t) ∈ k[t]. Therefore H ∩ X = L ∪
V(G(u, v, w)).

Solution: Expanding F in u, v and w gives,

4F = (x0 + x1)((x0 + x1)2 + 3(x0 − x1)2) + (x2 + x3)((x2 + x3)2 + 3(x2 − x3)2) =
u(u2 + 3v2) + au(a2u2 + 3w2) = u((1 + a3)u2 + 3v2 + 3aw2).

Thus cu(t) = 1 + t3, cv = 3 and cw = 3t.

(d) Use Problem 6 from Problem Set 1 to determine the values of a for which
V(G(u, v, w)) ⊂ H contains a line M . Prove that all of these cases are already
accounted for by the 27 lines from Problem 9.

Solution: By Problem 6 from Problem Set 1, V(G(u, v, w)) contains a line iff
cu(a) = 0, cv(a) = 0 or cw(a) = 0. The third happens iff a = 0, the second never
happens, and the first happens iff a = −1,−ω or −ω2.

In each of these 4 possibilities, we have,

V(x2 + x3) ∩X = L1 ∪ L4 ∪ L7,
V((x0 + x1) + (x2 + x3)) ∩X = L1 ∪ L10 ∪ L19,

V(ω(x0 + x1) + (x2 + x3)) ∩X = L1 ∪ L18 ∪ L27,
V(ω2(x0 + x1) + (x2 + x3)) ∩X = L1 ∪ L14 ∪ L23.

Since every line is accounted for by the 27 lines, and using that the 27 lines are an
orbit of the action of Z/3Z× Z/3Z× Z/3Z, it follows that these are the only lines
on X.

12



L1 = V(x0 + x1, x2 + x3),
L2 = V(x0 + x1, x2 + ωx3),
L3 = V(x0 + x1, x2 + ω2x3),
L4 = V(x0 + ωx1, x2 + x3),
L5 = V(x0 + ωx1, x2 + ωx3),
L6 = V(x0 + ωx1, x2 + ω2x3),
L7 = V(x0 + ω2x1, x2 + x3),
L8 = V(x0 + ω2x1, x2 + ωx3),
L9 = V(x0 + ω2x1, x2 + ω2x3),
L10 = V(x0 + x2, x1 + x3),
L11 = V(x0 + x2, x1 + ωx3),
L12 = V(x0 + x2, x1 + ω2x3),
L13 = V(x0 + ωx2, x1 + x3),
L14 = V(x0 + ωx2, x1 + ωx3),
L15 = V(x0 + ωx2, x1 + ω2x3),
L16 = V(x0 + ω2x2, x1 + x3),
L17 = V(x0 + ω2x2, x1 + ωx3),
L18 = V(x0 + ω2x2, x1 + ω2x3),
L19 = V(x0 + x3, x1 + x2),
L20 = V(x0 + x3, x1 + ωx2),
L21 = V(x0 + x3, x1 + ω2x2),
L22 = V(x0 + ωx3, x1 + x2),
L23 = V(x0 + ωx3, x1 + ωx2),
L24 = V(x0 + ωx3, x1 + ω2x2),
L25 = V(x0 + ω2x3, x1 + x2),
L26 = V(x0 + ω2x3, x1 + ωx2),
L27 = V(x0 + ω2x3, x1 + ω2x2)

Figure 1. The 27 lines on the Fermat cubic surface
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