
18.725 PROBLEM SET 5

Due date: Friday, October 29 in lecture. Late work will be accepted only with a
medical note or for another Institute-approved reason. You are strongly encouraged
to work with others, but the final write-up should be entirely your own and based
on your own understanding.

Read through all the problems. Write solutions to the “Required Problems”, 1, 2,
3, and 4, together with 2 others of your choice to a total of 6 problems. One or two
more optional problems may be added to the problem set soon.

Required Problem 1: Let F : (X,OX) → (Y,OY ) be a dominant, separated
morphism of irreducible algebraic varieties, i.e., F (X) ⊂ Y is dense. The morphism
F is generically finite if the induced map of fields of fractions, F# : k(Y ) → k(X),
is a finite, algebraic field extension. The next two problems prove the following
proposition. This proposition reduces to the case that (X,OX) and (Y,OY ) are
affine varieties.

Proposition 0.1. For every generically finite morphism F : (X,OX) → (Y,OY ),
there exists a dense open subset U ⊂ Y such that F : F−1(U) → U is a finite
morphism.

(a) Prove it suffices to consider the case when (Y,OY ) is an affine variety.

(b) Prove the following lemma.

Lemma 0.2. Let F : (X,OX) → (Y,OY ) be a separated morphism. If Z ⊂ X is
a locally closed subset such that F |Z : (Z,OZ) → (Y,OY ) is proper, then Z ⊂ X is
closed.

Sketch: Prove ∆X/Y : X → X ×Y X is closed and π1 : X ×Y Z → X are closed.
Deduce that ∆X/Y |Z : Z → X ×Y Z is closed, thus Z = π1(∆X/Y |Z(Z)) ⊂ X is
closed.

(c) Back to the proposition, let V ⊂ X be a dense open such that F |V : V → Y
is finite. By Required Problem 4(c) from Problem Set 4, F |V is proper. Use
(b) to prove V ⊂ X is open and closed, thus all of X. Deduce it suffices to
prove the proposition after replacing X by a dense open affine W ⊂ X (with
V = W ∩ F−1(U)).

Required Problem 2: This is the follow-up to Required Problem 1. You may
assume all parts of that problem. Thus F : (X,OX) → (Y,OY ) is a generically
finite morphism of affine varieties. Let a1, . . . , an ∈ k[X] be generators for k[X]
as a k-algebra. Because k(X)/k(Y ) is an algebraic extension, each ai satisfies
a polynomial equation with coefficients in k[Y ]. Clearing denominators, each ai

satisfies a polynomial equation fi(t) with coefficient in k[Y ],

fi(t) = ci,dit
di + · · ·+ ci,1t+ ci,0,

where each ci,di
6= 0. Define c = c1,d1 · · · cn,dn

. Prove that for U = D(c) ⊂ Y and
F−1(U) = D(F#(c)) ⊂ X, F : F−1(U) → U is a finite morphism.
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Required Problem 3: Let F : (X,OX) → (Y,OY ) be a quasi-compact, separated
morphism of algebraic varieties. For every p ∈ X, denote Xp = F−1(F (p)). For
every integer e ≥ 0, define Ue(X,F ) = {p ∈ X|dim(Xp, p) ≤ e}. In this problem,
you will prove the following proposition (if you get stuck, the reference in Eisenbud
is Theorem 14.8). This problem has many parts. Do the parts you can; it will be
graded generously.

Proposition 0.3. For every integer e ≥ 0, Ue(X,F ) ⊂ X is an open subset.

(a) Prove it suffices to consider the case where (Y,OY ) is affine and (X,OX) is
affine.

(a) Prove the following simple lemma from topology.

Lemma 0.4. Let U ⊂ X be a subset of a topological space such that for every
closed subset C ⊂ X containing X − U and intersecting U , there is a nonempty
relatively open subset O ⊂ C contained in U ∩ C. Then U ⊂ X is open.

Hint: For the closure C of X − U , prove C ∩ U = ∅, hence U = X − C is open.

(b) Let Z ⊂ X be a closed set containing X − Ue(X,F ). Prove Ue(Z,F |Z) =
Ue(X,F ) ∩ Z. Combined with (a), reduce Proposition 0.3 to the proposition.

Proposition 0.5. For every integer e ≥ 0, if Ue(X,F ) ⊂ X is nonempty, it
contains a nonempty open subset of X.

Sketch: Denote V = X − Z. For every p ∈ X and every irreducible component
T ⊂ Xp containing p, if T ∩ V is nonempty, prove dim(T ) ≤ e. Conclude if
p ∈ Ue(Z,F |Z), every irreducible component of Xp has dimension ≤ e.

(c) By considering the restriction of F to each irreducible component of X, reduce
Proposition 0.5 to the case that X and Y are irreducible and F is dominant.

(d), e = 0 If U0(X,F ) is nonempty, use Corollary 17.4 (Eisenbud, Theorem
10.10) to prove dim(X) = dim(Y ), thus k(X)/k(Y ) is algebraic by Corollary 18.5
(Eisenbud, Theorem A). Assuming Required Problem 2, prove U0(X,F ) contains
a nonempty open subset of X. Deduce Proposition 0.3 for e = 0.

(e), e > 0 Let p ∈ Ue(X,F ). Let f1, . . . , fe ∈ mpXp be a system of parameters.
There exists an open subset p ∈ V ⊂ X and elements g1, . . . , ge ∈ OX(V ) whose
germs at p are f1, . . . , fe. Define G = (g1, . . . , ge) : V → Ae

k, and consider F ×G :
X → Y × Ae

k. Prove p ∈ U0(X,F × G) ⊂ Ue(X,F ). Assuming (d) which proves
Proposition 0.3 for e = 0, prove Ue(X,G) contains an open subset of X, thus
proving Proposition 0.3.

Required Problem 4: Before solving this problem, read through Problem 5
(although you don’t have to solve it). Let X be an algebraic variety. Let n ≥ 0 be
an integer.

Definition 0.6. An Abelian cone ζ is a vector bundle of rank n on X if for every
point p ∈ X there exists an open subset p ∈ U ⊂ X such that π−1(U) is isomorphic
to U × An as an Abelian cone over U .
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(a) Let ζ = (π : E → X,+, ·, 0) be a vector bundle of rank n on X and let
F : Y → X be a regular morphism. Denote EY := Y ×X E, and πY : EY → Y
is the projection. Prove there are “natural” choices of +, ·, and 0 such that (πY :
EY → Y,+, ·, 0) is a vector bundle of rank n on Y . This is the pullback vector
bundle, denoted F ∗ζ. Indicate why F ∗ is a functor from the category of vector
bundles on X to the category of vector bundles on Y (but you don’t have to prove
this). Of course the same is true for Abelian cones as well – prove this if you prefer.

(b) Given a second regular morphism G : Z → Y , prove there is a natural iso-
morphism of functors from the category of vector bundles on X to the category of
vector bundles on Z, θG,F (ζ) : G∗F ∗ζ → (F ◦G)∗ζ. Given a third regular morphism
H : W → Z, prove that,

θH,G◦F (ζ) ◦H∗(θG,F (ζ)) = θH◦G,F (ζ) ◦ θH,G(F ∗ζ).

(c) For every integer n ≥ 0, let X = Pn
k , let ζ be the trivial vector bundle of rank

n+ 1, i.e., Pn
k × An+1

k , and denote,

E = {([a0, . . . , an], (b0, . . . , bn)) ∈ Pn
k×An+1

k |for every 0 ≤ i < j ≤ n, ajbi−aibj = 0}.
Prove that E is a sub-Abelian cone of ζ and is, in fact, a vector bundle of rank 1
on X. This is the tautological rank 1 subbundle on Pn

k .

Problem 5, Abelian cones: Let X be an algebraic variety.

Definition 0.7. An Abelian cone over X is a datum ζ = (π,+, ·, 0) of a regular
morphism of algebraic varieties π : E → X, a regular morphism + : E ×X E → E,
denoted (e1, e2) 7→ e1+e2, a regular morphism · : A1

k×E → E, denoted (λ, e) 7→ λ·e,
and a regular morphism 0 : X → E, denoted x 7→ 0x, satisfying the following
axioms.

(i) For every (e1, e2) ∈ E ×X E, π(e1 + e2) = π(e1) = π(e2); for every e ∈ E
and λ ∈ A1

k, π(λ · e) = π(e); and for every x ∈ X, π(0x) = x.
(ii) For every x ∈ X, denoting Ex = π−1(x), there exists an integer n ≥ 0

(depending on x) such that the datum (Ex,+, ·, 0x) is isomorphic to the
standard datum (An,+, ·, 0).

The variety E is called the total space, the morphism π is the projection, and the
morphism 0 is the zero section. If ζ, η are Abelian cones over X, a homomorphism
of cones from ζ to η is a regular morphism F : Eζ → Eη such that πη ◦ F = πzeta,
such that F (e1 + e2) = F (e1) + F (e2), and such that F (λ · e) = λ · F (e), for every
e1, e2, e and λ.

(a) For every integer n ≥ 0, for E = X × An
k and π = π1 : X × An

k → X, prove
there is a “natural” choice of +, · and 0 so that (π,+, ·, 0) is an Abelian cone. This
is called the trivial vector bundle of rank n.

Let ζ be an Abelian cone overX. The sheaf of sections of ζ is the sheaf of sets Esec on
X whose sections over each open U ⊂ X are the regular morphisms s : U → π−1(U)
such that π ◦ s = IdU . The sheaf of functionals of ζ is the sheaf of sets Efunc

on X whose sections over each open U ⊂ X are the Abelian cone morphisms
F : π−1(U) → U × A1

k.

(b) Prove that for every open subset U ⊂ X, the morphisms + and · naturally
determine a structure of OX(U)-module on Esec(U) and Efunc(U), and for every
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inclusion V ⊂ U , the restriction maps Esec(U) → Esec(V ) and Efunc(U) → Efunc(V )
are homomorphisms of OX(U)-modules. Such a sheaf is called a sheaf of OX-
modules.

(c) Let F : Eζ → Eη be a homomorphism of Abelian cones over X. Prove there
are induced homomorphisms of sheaves of OX -modules, F∗ : Eζ,sec → Eη,sec and
F ∗ : Eη,func → Eζ,func.

(d) Let X = A1
k, let ξ be the trivial vector bundle of rank 1, X × A1

k, whose total
space is just A2

k. Denote by E ⊂ A2
k the closed subvariety V(xy). Prove that E is

a sub-Abelian cone of ζ. Denote this by η.

(e) Denote by ζ the trivial vector bundle on X of rank 0, i.e., X ×A0
k, and denote

by F : ζ → η the unique homomorphism of Abelian cones over X. Prove that F∗ is
an isomorphism, but F ∗ is not an isomorphism. Because the sheaves of functionals
“detect” homomorphisms of Abelian cones that sheaves of sections do not detect,
they are used more often in algebraic geometry (sheaves of sections are frequently
used for vector bundles, especially in other branches of geometry, but rarely used
for Abelian cones that are not vector bundles).

Problem 6: Let X be a variety and let ζ = (π : E → X,+, ·, 0) be an Abelian cone
on X. For every open set U ⊂ X there is a pairing 〈−,−〉U : Efunc(U)× Esec(U) →
OX(U) which maps a pair (F, s) of a functional F : π−1(U) → U×A1

k and a section
s : U → π−1(U) to the regular function pr2 ◦ F ◦ s.
(a) Prove 〈−,−〉U is bilinear for the action of OX(U) on each module.

(b) Prove that for every inclusion V ⊂ U , 〈F |V , s|V 〉V = (〈F, s〉U )|V . Deduce that
for every element x ∈ X, there is a pairing of stalks 〈−,−〉x : (Efunc)x × (Esec)x →
OX,x.

(c) If ζ is a vector bundle, prove that for every x ∈ X, the pairing 〈−,−〉x is
a perfect pairing, i.e., the following induced homomorphisms of OX,x-modules are
isomorphisms,

(Esec)x → HomOX,x
((Efunc)x,OX,x),

(Efunc)x → HomOX,x
((Esec)x,OX,x).

Problem 7, The universal property of projective space: Let n ≥ 0 be an
integer, and let η = (π : E → Pn,+, ·, 0) be the tautological rank 1 subbundle on
Pn

k , and let φ : E → Pn
k ×An+1

k be the inclusion. This is a homomorphism of vector
bundles on Pn

k such that for every x ∈ Pn
k , the induced map φx : Ex → An+1

k is
injective.

(a) Let X be a variety, let ζ = (π : L→ X,+, ·, 0) be a vector bundle of rank 1 on
X, and let ψ : L→ X×An+1

k be a homomorphism of vector bundles on X such that
for every x ∈ X, the induced map φx : Ex → An+1

k is injective. Let U = L− 0(X),
the complement of the zero section, and denote by G : U → Pn

k the composition,

U
φ−→ X × (An+1

k − {0}) π2−→ (An+1
k − {0}) π−→ Pn

k .

Prove there exists a unique morphism F : X → Pn
k such that F ◦ π = G. Hint:

Use the gluing lemma to reduce to the case that L ∼= X ×A1
k and compose G with

any section disjoint from the zero section.

(b) Prove there exists a unique isomorphism θ : L→ F ∗E such that ψ = F ∗φ ◦ θ.
This is the universal property of projective space: morphisms from a variety X to Pn

k
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are in natural bijective correspondence to the set of pairs (L,ψ) up to precomposing
ψ with an automorphism of L.

Problem 8: Let X be a variety, and let ζ, resp. ζ and η, be vector bundles on
X. For each of the following functors, resp. bifunctors, on the category of k-vector
spaces, define a natural analogue for ζ, resp. ζ and η, i.e., an analogous functor,
resp. bifunctor, on the category of vector bundles on X. Observe that even if X,
the total space of ζ and the total space of η are quasi-projective, it is not obvious
that the total space of each of the new vector bundles is quasi-projective (although
this turns out to be true). This is one justification of working in the larger category
of algebraic varieties.

(a) Duals, V 7→ V ∨ := Homk(V, k).

(b) Hom, (V,W ) 7→ Homk(V,W ).

(c) Tensor product, (V,W ) 7→ V ⊗k W.

Problem 9, Another definition of dimension I: Let X ⊂ Pn
k be a nonempty

projective algebraic subset.

(a) Prove that if dim(X) > 0, then for every f ∈ k[x0, . . . , xn]1 − {0}, the cor-
responding hyperplane H = V(f) ⊂ Pn

k intersects X. Hint: If X ∩ H = ∅ then
X ⊂ D(f) ∼= An

k , which, combined with universal closedness, implies X is a finite
set.

(b) If dim(X) = d, combine (a) with Krull’s Hauptidealsatz to conclude that for
every d hyperplanesH1, . . . ,Hd ⊂ Pn

k , the intersectionH1∩· · ·∩Hd∩X is nonempty.

Problem 10, Another definition of dimension II: This continues Problem
9, which you may now assume. If dim(X) = d, prove there exist hyperplanes
H1, . . . ,Hd+1 ⊂ Pn

k such that H1 ∩ · · · ∩Hd+1 ∩X is empty. Deduce the following,

dim(X) = min{d ≥ 0|∃ hyperplanes H1, . . . ,Hd+1 ⊂ Pn
k s.t. H1∩· · ·∩Hd+1∩X = ∅}.

Hint: Work by induction on d. Let S ⊂ X be a finite set of elements of X
intersecting every irreducible component of X, and let H ⊂ Pn

k be a hyperplane
not intersecting S. Prove that H ∩X is either empty (if d = 0), or else has smaller
dimension than X.

Problem 11, An irreducible, separated variety that is not quasi-compact:
Thanks to Genya for inspiring this problem. For every integer n ≥ 0, define Un =
A2

k −{(0, 0)} with coordinates (xn, yn), for every pair of integers 0 < m < n, define
Um,n = D(xm) ⊂ Um, define Un,m = D(xn) ⊂ Un, define φm,n : Um,n → Un,m to
be (am, bm) 7→ (am, bm/a

n−m
m ), and define φn,m : Un,m → Um,n to be (an, bn) 7→

(an, a
n−m
n bn).

(a) For every pair of integers 0 ≤ m < n, prove φm,n and φn,m are inverse isomor-
phisms.

(b) Prove the datum ((Um), (Um,n), (φm,n)) satisfies the hypotheses of the gluing
lemma for varieties. Denote the associated variety by (U, (φm : Um → U)).

(c) To prove that U is separated, it suffices to prove for every pair of integers 0 ≤
m ≤ n, that φm(D(∗m))∩φn(D(−n)) is affine and OU (φm(D(∗m))∩φn(D(−n))) is
generated as a k-algebra by OUm

(D(∗m)) and OUn
(D−n), for ∗ = x, y and − = x, y.

Check this, in particular, for ∗ = y,− = y.
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(d) Prove that all the open sets φm(D(xmym)) ⊂ U are equal. This is an irreducible
open subset that is dense in each φm(Um), thus it is dense in U . Conclude that U
is irreducible of dimension 2.

(e) Prove that U is not quasi-compact. Hint: Consider φm((0, 1)) ∈ U .

(f) You don’t have to do this part, it is just motivational. For every integer n ≥ 0,
define Fn : Un → A2

k by Fn(an, bn) = (an, a
n
nbn). Prove that the morphisms Fn

satisfy the gluing lemma for morphisms. Denote the corresponding morphism by
G : U → A2

k. Prove that G is an isomorphism over A2
k − (0, 0). What is the fiber of

G over (0, 0) ∈ A2
k?
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