18.725 PROBLEM SET 4

Due date: Friday, October 15 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.
Read through all the problems. Write solutions to the "Required Problems", 1, 2, 3 , and 4 , together with 2 others of your choice to a total of 6 problems. One or two more optional problems may be added to the problem set early next week.
Required Problem 1: Let F be an element of $k\left[X_{0}, \ldots, X_{n}\right]_{e}$. Prove the Euler identity,

$$
e \cdot F\left(X_{0}, \ldots, X_{n}\right)=X_{0} \frac{\partial F}{\partial X_{0}}+\cdots+X_{n} \frac{\partial F}{\partial X_{n}}
$$

Remark: This isn't a proof, but to see where this identity comes from, differentiate with respect to t both sides of the identity,

$$
t^{e} F(X)=F(t X)
$$

Required Problem 2: Let X_{0}, X_{1}, X_{2} be homogeneous coordinates on \mathbb{P}_{k}^{2}. Let $\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ be a copy of \mathbb{P}_{k}^{2} with homogeneous coordinates Y_{0}, Y_{1}, Y_{2}. Denote by $\left(\mathbb{P}_{k}^{2} \times\right.$ $\left.\left(\mathbb{P}_{k}^{2}\right)^{\vee}, \pi_{1}, \pi_{2}\right)$ a product of $\left(\mathbb{P}_{k}^{2},\left(\mathbb{P}_{k}^{2}\right)^{\vee}\right)$. Define $\Lambda \subset \mathbb{P}_{k}^{2} \times\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ to be,

$$
\left\{\left(\left[a_{0}, a_{1}, a_{2}\right],\left[b_{0}, b_{1}, b_{2}\right]\right) \mid a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}=0\right\}
$$

A projective line in \mathbb{P}_{k}^{2} is $\mathbb{V}(s)$ for any nonzero $s \in k\left[X_{0}, X_{1}, X_{2}\right]_{1}$.
(a) Prove there is a bijection between $\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ and the set of lines in \mathbb{P}_{k}^{2} defined by $q \in\left(\mathbb{P}_{k}^{2}\right)^{\vee} \mapsto \pi_{1}\left(\Lambda \cap \pi_{2}^{-1}(q)\right)$.
(b) Let $F \in k\left[X_{0}, X_{1}, X_{2}\right]_{e}$ be an irreducible polynomial. Denote $C=\mathbb{V}(F) \subset \mathbb{P}_{k}^{2}$. Let $p=\left[a_{0}, a_{1}, a_{2}\right]$ be an element of C. A line $L \subset \mathbb{P}_{k}^{2}$ is tangent to C at p if $p \in L$ and the restriction of F to L has a repeated root at p. Assuming char (k) does not divide e, prove the line L associated to $\left[b_{0}, b_{1}, b_{2}\right] \in\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ is tangent to C at $\left[a_{0}, a_{1}, a_{2}\right]$ iff the following matrix has rank 1 ,

$$
\left(\begin{array}{ccc}
(\partial F) /\left(\partial X_{0}\right)\left(a_{0}, a_{1}, a_{2}\right) & (\partial F) /\left(\partial X_{1}\right)\left(a_{0}, a_{1}, a_{2}\right) & (\partial F) /\left(\partial X_{2}\right)\left(a_{0}, a_{1}, a_{2}\right) \\
b_{0} & b_{1} & b_{2}
\end{array}\right)
$$

(Hint: After a change of coordinates, arrange that $\left(a_{0}, a_{1}, a_{2}\right)=(1,0,0)$ and $\left(b_{0}, b_{1}, b_{2}\right)=(0,0,1)$. Combine this with the Euler identity from Problem 1.)
(c) A line $L \subset \mathbb{P}_{k}^{2}$ is tangent to C if there exists $p \in L$ such that L is tangent to C at p. Using (b) and the universal closedness of \mathbb{P}_{k}^{2}, prove the following subset of $\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ is Zariski closed,

$$
\left\{q \mid \pi_{1}\left(\Lambda \cap \pi_{2}^{-1}(q)\right) \text { is tangent to } C\right\} .
$$

Required Problem 3: Let k be an algebraically closed field and let R be a finitely generated, reduced k-algebra. Define the max spectrum of R, $\operatorname{Spec}_{\max }(R)$, to be the set of k-algebra homomorphisms $\phi: R \rightarrow k$. For every element $r \in R$, there
is a mapping $\tilde{r}: \operatorname{Spec}_{\max }(R) \rightarrow \mathbb{A}_{k}^{1}=k$ by $\tilde{r}(\phi)=\phi(r)$. Define the Zariski topology on Spec $\max ^{(R)}$ to be the weakest topology such that \tilde{r} is continuous (with respect to the Zariski topology on \mathbb{A}_{k}^{1}) for every $r \in R$. Denote by \mathcal{F} the sheaf on $\operatorname{Spec}_{\max }(R)$ of all continuous maps from open subsets to \mathbb{A}_{k}^{1}. Define the structure sheaf of Spec ${ }_{\text {max }}(R), \mathcal{O}$, to be the smallest subsheaf of \mathcal{F} such that,
(i) for every nonempty open subset $U \subset \operatorname{Spec}_{\max }(R)$, the constant mappings are in $\mathcal{O}(U)$,
(ii) for every open subset $U \subset \operatorname{Spec}_{\text {max }}(R)$ and every $g \in \mathcal{O}(U)$ that is everywhere nonzero, also $1 / g \in \mathcal{O}(U)$, and
(iii) for every $r \in R, \tilde{r} \in \mathcal{O}\left(\operatorname{Spec}_{\text {max }}(R)\right)$.
(a) Prove that a basis for the topology on $\operatorname{Spec}_{\max }(R)$ is given by the basic open affines, $D(r):=\{\phi: R \rightarrow k \mid \phi(r) \neq 0\}$.
(b) Prove that for every open U, every continuous map $g: U \rightarrow \mathbb{A}_{k}^{1}$ and every point $\phi \in U$, there exists a neighborhood $p \in V \subset U$ such that $\left.g\right|_{V}$ is in $\mathcal{O}(V)$ iff there exist $h, s \in R$ such that $\phi \in D(s) \subset U$ and $\left.g\right|_{D(s)}=\tilde{h} / \tilde{r}$. Using Theorem 4.5, prove that for every $s \in R, \mathcal{O}(D(s)) \cong R[1 / s]$.
(c) Prove that $\left(\operatorname{Spec}_{\max }(R), \mathcal{O}\right)$ is an affine variety. Not to be written up: What is the universal property of this affine variety?

Required Problem 4: Let $F: X \rightarrow Y$ be a regular morphism of affine algebraic sets.
(a) For every element $y \in Y$, denote by $\mathfrak{m}_{y} \subset k[Y]$ the corresponding maximal ideal. Prove there is a bijection between the elements of $F^{-1}(\{y\})$ and the maximal ideals of $k[X] / F^{*}\left(\mathfrak{m}_{y}\right) k[X]$.
(b) If F is a finite morphism, and if $F^{-1}(\{y\})$ is empty, prove there exists $g \in$ $k[Y]$ such that $g(y) \neq 0$ and $F^{*}(g)=0$, i.e., $F^{*}(g) \cdot k[X]=\{0\}$. (Hint: Apply Nakayama's lemma to the finitely-generated $k[Y]$-module $k[X]$.)
(c) If F is a finite morphism, conclude that $F(X) \subset Y$ is a closed subset: if $y \in Y-F(X)$, then there exists $g \in k[Y]$ such that $y \in D(g) \subset Y-F(X)$. Not to be written up: Combined with Corollary 14.19, conclude that finite morphisms of algebraic varieties are universally closed.

Problem 5 (a): Assume $\operatorname{char}(k) \neq 2$. Prove the subset of $\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ parametrizing lines tangent to $C=\mathbb{V}\left(X_{0}^{2}+X_{1}^{2}+X_{2}^{2}\right)$ is $\mathbb{V}\left(Y_{0}^{2}+Y_{1}^{2}+Y_{2}^{2}\right)$. For a "general" element $p \in \mathbb{P}_{k}^{2}$, how many tangent lines to C contain p ?
(b) Let $F \in k\left[X_{0}, X_{1}, X_{2}\right]_{e}$ be an irreducible polynomial. Define $U=\mathbb{V}(F)-$ $\mathbb{V}\left(\partial F / \partial X_{0}, \partial F / \partial X_{1}, \partial F / \partial X_{2}\right)$. Prove the following mapping $U \rightarrow\left(\mathbb{P}_{k}^{2}\right)^{\vee}$ is a regular morphism whose image is contained in the set of lines tangent to $\mathbb{V}(F)$ (this mapping is the Gauss map):

$$
[p] \in U \mapsto\left[\left(\partial F / \partial X_{0}\right)(p),\left(\partial F / \partial X_{1}\right)(p),\left(\partial F / \partial X_{2}\right)(p)\right]
$$

Problem 6: Let R be a finitely-generated k-algebra that is not necessarily reduced. Repeat the definition of $\operatorname{Spec}_{\max }(R)$ and $\mathcal{O}^{\text {red }}$ as in Problem 3 (except that, for reasons that will become clear, the sheaf is denoted $\mathcal{O}^{\text {red }}$ instead of $\mathcal{O})$. Prove $\left(\operatorname{Spec}_{\max }(R), \mathcal{O}^{\text {red }}\right)$ is an affine variety, and identify the k-algebra $\mathcal{O}^{\text {red }}\left(\operatorname{Spec}_{\max }(R)\right)$.

Problem 7: Another proof of existence of sheafification Let X be a topological space and let \mathcal{F} be a presheaf of sets. Define the éspace étalè as a set in Definition 10.8, $p:|\mathcal{F}| \rightarrow X$.
(a) Let $U \subset X$ be an open set, $p \in U$ an element and $f, g \in \mathcal{F}(U)$ elements whose images are equal in the stalk \mathcal{F}_{p}. Prove there exists an open neighborhood $p \in V \subset U$ such that $\left.f\right|_{V}=\left.g\right|_{V}$.
(b) For every open set $U \subset X$ and every $f \in \mathcal{F}(U)$, define $D(U, f) \subset|\mathcal{F}|$ to be the set of pairs $\left(p, f_{p}\right)$ of an element $p \in U$ and the image f_{p} of f in \mathcal{F}_{p}. Prove these sets form the basis for a topology on $|\mathcal{F}|$, called the natural topology.
(c) For every open set $U \subset X$ and every $f \in \mathcal{F}(U)$, prove the induced set map $\tilde{f}: U \rightarrow|\mathcal{F}|$ is continuous with respect to the natural topology on $|\mathcal{F}|$.
(d) Denote by \mathcal{F}^{+}the sheaf of sections of the continuous mapping $p:|\mathcal{F}| \rightarrow X$ as in Example 10.4(ii). By (c) there is a presheaf homomorphism $\phi: \mathcal{F} \rightarrow \mathcal{F}^{+}$. Prove this is a sheafification of \mathcal{F}.

Problem 8 Let \mathcal{A} and \mathcal{B} be categories. An adjoint pair of functors is a pair of functors $(L, R), L: \mathcal{A} \rightarrow \mathcal{B}, R: \mathcal{G} \rightarrow \mathcal{A}$, together with a rule associating to every object A of \mathcal{A} and every object B of \mathcal{B} a bijection,

$$
\eta_{A, B}: \operatorname{Hom}_{\mathcal{B}}(L(A), B) \rightarrow \operatorname{Hom}_{\mathcal{A}}(A, R(B)),
$$

which is a natural bijection in the sense that for every object A of \mathcal{A}, resp. every object B of \mathcal{B}, the induced transformation of functors $\mathcal{B} \rightarrow$ Sets,

$$
\eta_{A, *}: \operatorname{Hom}_{\mathcal{B}}(L(A), *) \Rightarrow \operatorname{Hom}_{\mathcal{A}}(A, R(*)) \text {, }
$$

is a natural transformation, resp. the induced transformation of contravariant functors $\mathcal{A} \rightarrow$ Sets,

$$
\eta(*, B): \operatorname{Hom}_{\mathcal{B}}(L(*), B) \Rightarrow \operatorname{Hom}_{\mathcal{A}}(*, R(B))
$$

is a natural transformation.
(a) Let $\mathcal{A}=$ Sets and let $\mathcal{B}=$ Groups, Rings, or $R-\operatorname{modules}$. Define $R: \mathcal{B} \rightarrow \mathcal{A}$ to be the functor that sends each object to its underlying set of elements. Prove there is a functor $L: \mathcal{A} \rightarrow \mathcal{B}$ and a natural bijection η so that (L, R) is an adjoint pair. Hint: For each \mathcal{B}, there is a notion of a free object.
(b) In each case above, prove that (L, R) has the additional property that a morphism $f: B \rightarrow B^{\prime}$ in \mathcal{B} is an isomorphism iff $R(f)$ is an isomorphism (this is not an axiom for an adjoint pair).

Problem 9: Let $\mathcal{A}=$ Sets, let \mathcal{B} be a category, and let (L, R, η) be an adjoint pair such that for every morphism $f: B \rightarrow B^{\prime}$ in \mathcal{B}, f is an isomorphism iff $R(f)$ is an isomorphism. Let X be a topological space, and let \mathcal{F} be a presheaf of objects in \mathcal{B} on X.
(a) Prove that \mathcal{F} is a sheaf iff the presheaf of sets $R(\mathcal{F})$ on X is a sheaf.
(b) Prove that \mathcal{F} satisfies Axiom (A) from Definition 10.1 iff \mathcal{F} satisfies Axiom (A') from Remark 10.2.

Difficult Problem 10: Let $F: \mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{3}$ be the regular morphism $\left[a_{0}, a_{1}\right] \mapsto$ $\left[a_{0}^{3}, a_{0}^{2} a_{1}, a_{0} a_{1}^{2}, a_{1}^{3}\right]$. Denote by $C \subset \mathbb{P}_{k}^{3}$ the image of F (which is a projective subvariety by Problem 10 from PS\# 2). For every element $p=\left[b_{0}, b_{1}, b_{2}, b_{3}\right] \in \mathbb{P}_{k}^{3}-F\left(\mathbb{P}_{k}^{1}\right)$, define a morphism $G_{p}: C \rightarrow \mathbb{P}_{k}^{5}$ by
$\left[c_{0}, c_{1}, c_{2}, c_{3}\right] \mapsto\left[b_{1} c_{0}-b_{0} c_{1}, b_{2} c_{0}-b_{0} c_{2}, b_{3} c_{0}-b_{0} c_{3}, b_{2} c_{1}-b_{1} c_{2}, b_{3} c_{1}-b_{1} c_{3}, b_{3} c_{2}-b_{2} c_{3}\right]$.
(a) Prove there exists a linear embedding $H: \mathbb{P}_{k}^{2} \subset \mathbb{P}_{k}^{5}$ whose image contains the image of G_{p}.
(b) With respect to your linear embedding, find the equation of the plane curve $C_{p}=H^{-1}\left(G_{p}(C)\right)$ for $p=[1,0,0,1]$. Write down all the elements $q \in C_{p}$ where there is not a unique tangent line to C_{p} at q.
(c) A secant line to C is a projective line in \mathbb{P}^{3} that intersects C in at least 2 distinct points. How many secant lines to C contain p ? Not to be written up: What if p is another (general) element of \mathbb{P}_{k}^{3} ? How many secant lines to C contain p ? Pay special attention if you go to Alexei Oblomkov's PUMA-GRASS lecture.

Problem 11: For every integer $n \in \mathbb{Z}$, define X_{n} to be a copy of the affine variety $\mathbb{V}(x y) \in \mathbb{A}^{2}$, define $X_{n, n+1} \subset X_{n}$ to be $D(x)$ and $X_{n, n-1} \subset X_{n}$ to be $D(y)$. Define $\phi_{n}: X_{n, n+1} \rightarrow X_{n+1, n}$ to be the regular morphism $(a, 0) \mapsto(0,1 / a)$. If $|m-n|>1$, define $X_{m, n}=\emptyset$ and define $\phi_{m, n}$ to be the empty mapping.
(a) Prove that the collection $\left(\left\{X_{n}\right\},\left\{X_{m, n}\right\},\left\{\phi_{m, n}\right\}\right)$ satisfy the axioms for Lemma 12.11, the Gluing Lemma for spaces with functions. Denote by X the associated space with functions.
(b) Prove that X is a connected algebraic variety that is not quasi-compact.

