18.725 PROBLEM SET 3

Due date: Friday, October 1 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.
Read through all the problems. Write solutions to the "Required Problems", 1, 2, 3 , and 4 , together with 2 others of your choice to a total of 6 problems. The last 5 problems on this problem set are taken from Problem Set 2 (the solutions to these problems were not given). You can use them for the non-required problems only if you did not use them for Problem Set 2.

Required Problem 1: Let V be a quasi-affine algebraic set and let $U \subset V$ be a closed subset. For every quasi-affine algebraic set T and every function $F: T \rightarrow U$, prove F is regular iff the induced function $F: T \rightarrow V$ is regular (this has already been used implicitly a few times in the course; do not simply quote the result from someplace it was used).
Required Problem 2: Let V be a quasi-affine algebraic set and let $U \subset V$ be an open subset. For every quasi-affine algebraic set T and every function $F: T \rightarrow U$, prove F is regular iff the induced function $F: T \rightarrow V$ is regular (this has already been used implicitly a few times in the course; do not simply quote the result from someplace it was used). Not to be written up: Conclude that for every subset $U \subset V$ that is a quasi-affine algebraic set and every $F: T \rightarrow U, F$ is regular iff the induced function $F: T \rightarrow V$ is regular.
Required Problem 3: Let V be a quasi-affine algebraic set. By Problem 2 on Problem Set 2, there exists a product $\left(V \times V, \pi_{1}, \pi_{2}\right)$ for (V, V) in the category of quasi-affine algebraic sets. Define $\Delta_{V}: V \rightarrow V \times V$ to be the unique morphism such that $\pi_{1} \circ \Delta_{V}=\pi_{2} \circ \Delta_{V}=\mathrm{Id}_{V}$. Prove the image of Δ_{V} is a Zariski closed subset of $V \times V$. (Hint: First consider the case that $V=\mathbb{A}_{k}^{n}$.)

Required Problem 4: Consider the action of \mathbb{G}_{m} on $X=\mathbb{A}_{k}^{3}$ by $m_{X}\left(\lambda,\left(a_{1}, a_{2}, a_{3}\right)\right)=$ $\left(\lambda^{-1} a_{1}, a_{2}, \lambda a_{3}\right)$.
(a) Determine the associated grading of $k[X]=k\left[x_{1}, x_{2}, x_{3}\right]$, and in particular write a finite set of generators of the k-subalgebra $k[X]_{0} \subset k[X]$.
(b) Find an affine algebraic set Y and a morphism $F: X \rightarrow Y$ such that F^{*} : $k[Y] \rightarrow k[X]$ is injective with image $k[X]_{0}$. Prove that $F\left(m_{X}(\lambda, p)\right)=F(p)$ for every $\lambda \in \mathbb{G}_{m}$ and every $p \in X$.

Problem 5: For the morphism F in Problem 4, write down all elements $q \in Y$ such that $F^{-1}(q)$ is not a single orbit of \mathbb{G}_{m}, and for each element q write the decomposition of $F^{-1}(q)$ as a union of \mathbb{G}_{m}-orbits.

Problem 6: Let $F: X \rightarrow Y$ be a regular morphism of quasi-affine algebraic sets. Let $\left(X \times Y, \pi_{1}, \pi_{2}\right)$ be a product of (X, Y) in the category of quasi-affine algebraic sets. Define $\Gamma_{F}: X \rightarrow X \times Y$, the graph morphism of F, to be the unique morphism
such that $\pi_{1} \circ \Gamma_{F}=\operatorname{Id}_{X}$ and $\pi_{2} \circ \Gamma_{F}=F$. Prove the image of Γ_{F} is a Zariski closed subset of $X \times Y$. (Hint: Can you use Problem 3?)
Problem 7. A weighted projective space: Consider the action of \mathbb{G}_{m} on $X=\mathbb{A}^{3}$ by $m_{X}\left(\lambda,\left(a_{0}, a_{1}, a_{2}\right)\right)=\left(a_{0}, \lambda a_{1}, \lambda^{2} a_{2}\right)$. Define $V=X-\mathbb{V}\left(x_{1}, x_{2}\right)$, and define $F: V \rightarrow \mathbb{P}_{k}^{3}$ by $F\left(a_{0}, a_{1}, a_{2}\right)=\left[a_{1}^{2}, a_{2}, a_{0} a_{1}^{2}, a_{0} a_{2}\right]$.
(a) Prove that F is a well-defined function on V.
(b) Prove that every nonempty fiber of F is an orbit.
(c) Find the ideal of the Zariski closure of Image (F) and give an element in the Zariski closure of Image (F) that is not in Image (F).
Problem 8: This problem gives another example of an affine group variety. Let $n \geq 1$ be an integer and choose coordinates on $\mathbb{A}_{k}^{n^{2}}$ of the form $x_{i, j}, 1 \leq i, j \leq n$. Define the determinant polynomial det $\in k\left[x_{i, j} \mid 1 \leq i, j \leq n\right]$ in the usual way,

$$
\operatorname{det}=\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

where sgn : $\mathfrak{S}_{n} \rightarrow\{+1,-1\}$ is the unique nontrivial group homomorphism. Define $\mathbf{G} \mathbf{L}_{n} \subset \mathbb{A}_{k}^{n^{2}}$ to be $D(\operatorname{det})$. Define $m: \mathbf{G} \mathbf{L}_{n} \times \mathbf{G L}_{n} \rightarrow \mathbb{A}_{k}^{n^{2}}$ to be $m\left(\left(a_{i, j}\right),\left(b_{i, j}\right)\right)=$ $\left(c_{i, j}\right)$, where $c_{i, j}=\sum_{h=1}^{n} a_{i, h} b_{h, j}$. Define $e \in \mathbf{G} \mathbf{L}_{n}$ to be the unique element such that $x_{i, j}(e)=1$ iff $i=j$ and is 0 otherwise.
(a) Prove the image of m is contained in $\mathbf{G} \mathbf{L}_{n}$.
(b) Prove there exists a regular morphism $i: \mathbf{G L}_{n} \rightarrow \mathbf{G} \mathbf{L}_{n}$ such that for every $A \in \mathbf{G L}_{n}, m(A, i(A))=e$.
(c) Prove the regular morphism det: $\mathbf{G} \mathbf{L}_{n} \rightarrow \mathbb{G}_{m}$ is a group homomorphism.

Problem 9: Assume $\operatorname{char}(k) \neq 2$. A projective plane conic is a proper closed subset $C \subset \mathbb{P}_{k}^{2}$ of the form $\mathbb{V}\left(a_{2,0,0} X_{0}^{2}+a_{1,1,0} X_{0} X_{1}+a_{1,0,1} X_{0} X_{2}+a_{0,2,0} X_{1}^{2}+\right.$ $\left.a_{0,1,1} X_{1} X_{2}+a_{0,0,2} X_{2}^{2}\right)$. Determine the analogue of Problem 6 from Problem Set 1 for projective plane conics, and solve the corresponding problem. How does your answer compare to the answer to Problem 6 from Problem Set 1?
Problem 10: Let $d \geq 1$ be an integer and assume that $\operatorname{char}(k)$ does not divide d. Define $\mu_{d} \subset \mathbb{A}_{k}^{1}$ to be $\mathbb{V}\left(x^{d}-1\right)$.
(a) Prove this is a subgroup of \mathbb{G}_{m}.
(b) Let $n \geq 0$ be an integer, and restrict the standard action of \mathbb{G}_{m} on $\mathbb{A}_{k}^{n}-\{0\}$ to an action of μ_{d} on $\mathbb{A}_{k}^{n}-\{0\}$. Prove the Veronese morphism from Problem 9 on Problem Set 2 is a quotient of this action in the sense that every nonempty fiber is an orbit under μ_{n}.
Difficult Problem 11: Problem 10 from Problem Set 2. (I've decided this is rather difficult after all.)
Difficult Problem 12: Problem 11 from Problem Set 2.
Very Difficult Problem 13: Problem 14 from Problem Set 2.
Problem 14: Problem 16 from Problem Set 2.
Difficult Problem 15: Problem 17 from Problem Set 2.

