
18.725 SOLUTIONS TO PROBLEM SET 2

Remark: Solutions are only given for some problems. For problems for which
there is no solution given, if you did not write it up this week, you may write it up
as one of the optional problems for next week.

Products: For every pair of objects X, Y in a category C, a product of (X, Y )
is a triple (U, π1, π2) of an object U , a morphism π1 : U → X and a morphism
π2 : U → Y such that for every object T the following is a bijection,

(π1, π2) : HomC(T,U) → HomC(T,X)×HomC(T, Y ), f 7→ (π1 ◦ f, π2 ◦ f).

Required Problem 1 Problem 3 from PS# 1 proves every pair in the category of
affine algebraic sets has a product. Prove this affine algebraic set is also a product
of the pair in the category of quasi-affine algebraic sets, i.e., the universal property
holds for every quasi-affine algebraic set T . (Hint: Every quasi-affine algebraic set
is a union of open affine sets. Combine with the gluing lemma and Problem 3(c).)

Solution: There are at least 2 solutions, one hinted at above. First is the short
solution. The solution of Exercise 3 from PS 1 proves for every pair of affine
algebraic sets, (X, Y ), affine algebraic sets, there exists an affine algebraic set U
and morphisms π1 : U → X, π2 : U → Y such that for every reduced k-algebra A,
the following set map is a bijection,

(π∗1 , π∗2) :Homk−alg(k[U ], A) −−−−→ Homk−alg(k[X], A)×Homk−alg(k[Y ], A).

For every quasi-affine algebraic set T there is a commutative diagram of set maps,

HomQ-Aff(T,U)
(π1◦−,π2◦−)−−−−−−−−→ HomQ-Aff(T,X)×HomQ-Aff(T, Y )y y

Homk−alg(k[U ],OT (T ))
(π∗1 ,π∗2 )−−−−−→ Homk−alg(k[X],OT (T ))×Homk−alg(k[Y ],OT (T ))

By Prop. 4.8, the vertical arrows are bijections. Because OT (T ) is a reduced k-
algebra, the bottom horizontal arrow is a bijection. Therefore the top horizontal
arrow is a bijection.

Injectivity: Here is the second solution. Let T be a quasi-affine algebraic set.
There is a collection of open subsets T1, . . . , Tr that are isomorphic to affine alge-
braic sets. Let F,G : T → U be morphisms such that (π1◦F, π2◦F ) = (π1◦G, π2◦G).
For every i = 1, . . . , r, denote by Fi, Gi : Ti → U the restriction of F , resp. G to
Ti. By restriction, (π1 ◦ Fi, π2 ◦ Fi) = (π1 ◦Gi, π2 ◦Gi). Since Ti is affine, Exercise
3 from PS 1 proves Fi = Gi. By the uniqueness part of Prop. 4.10 (the gluing
lemma), F = G.

Surjectivity: Let FX : T → X, FY : T → Y be regular morphisms. For every
i = 1, . . . , r, denote the restrictions to Ti by FX,i : Ti → X, resp. FY,i : Ti → Y .
By Exercise 3 from PS 1, there exists a unique morphism Fi : T → U such that
(π1 ◦ Fi, π2 ◦ Fi) = (FX,i, FY,i). For every 1 ≤ i, j ≤ r and every point p ∈ Ti ∩ Tj ,
there exists an open affine Ti,j,k ⊂ Ti ∩ Tj containing p. Again by Exercise 3 from
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PS 1, the restriction of each Fi and Fj to this open affine set is the unique regular
morphisms whose compositions with π1, resp. π2, is the restriction of FX , resp.
FY . Therefore the restrictions to Ti,j,k of Fi and Fj are equal. By the gluing lemma
again, the restrictions to Ti ∩ Tj of Fi and Fj are equal. So by the gluing lemma,
there exists a unique morphism F : T → U whose restriction to Ti is Fi for every
i. Again by the gluing lemma, (π1 ◦ F, π2 ◦ F ) = (FX , FY ).

Problem 2 Prove every pair in the category of quasi-affine algebraic sets has a
product.

Solution: Let (X, Y ) be a pair of quasi-affine algebraic sets. Denote by X and Y
the Zariski closures of each. Let (U, π1, π2) be a product for (X,Y ), which exists by
Exercise 3 from PS 1 and the previous exercise. Because π1 and π2 are continuous,
U := π−1

1 (X) ∩ π−1
2 (Y ) ⊂ U is an open subset, i.e., U is a quasi-affine algebraic

set. Define π1 : U → X, π2 : U → Y to be the regular morphisms obtained by
restricting π1 and π2. The claim is that (U, π1, π2) is a product of (X, Y ).

Injectivity: Let T be a quasi-affine algebraic set and let F,G : T → U be mor-
phisms such that (π1 ◦ F, π2 ◦ F ) = (π1 ◦ G, π2 ◦ G). Denote by F ,G : T → U
the morphisms obtained from F , resp. G, by composing with the inclusion. Then
(π1 ◦F , π2 ◦F ) = (π1 ◦G, π2 ◦G). By the uniqueness part of the universal property,
F = G. Therefore F = G.

Surjectivity: Let FX : T → X, FY : T → Y be regular morphisms. Denote by
FX : T → X and FY : T → Y the morphisms obtained from FX , resp. FY , by
composing with the inclusions. By the existence part of the universal property,
there exists a regular morphism F : T → U such that (π1 ◦F , π2 ◦F ) = (FX , FY ).
Since the images of FX , resp. FY , are contained in X, resp. Y , the image of F is
contained in U . Denote by F : T → U the induced map. Because the composition
with inclusion into U is regular, also F is a regular morphism (this is non-trivial,
but easy). And (π1 ◦ F, π2 ◦ F ) equals (FX , FY ).

Fiber products: For every pair of morphisms f : X → Z and g : Y → Z in
a category C, a fiber product of (f, g) is a triple (U, g′, f ′) of an object U and
morphisms g′ : U → X, f ′ : U → Y such that,

(i) f ◦ g′ = g ◦ f ′, and
(ii) for every triple (V, g′′, f ′′) satisfying f ◦ g′′ = g ◦ f ′′ there exists a unique

morphism u : V → U such that g′′ = g′ ◦ u and f ′′ = f ′ ◦ u.

Let C be a category in which every pair (X, Y ) has a product, denoted (X×Y, π1, π2)
(this hypothesis holds in Problem 3), and for every pair of morphisms f : U → X,
g : U → Y , denote by f × g : U → X × Y the unique morphism such that
π1 ◦ (f × g) = f , π2 ◦ (f × g) = g; this is not standard notation, but will be less
confusing for the following problem. For every object Z, the diagonal morphism of
Z is IdZ × IdZ : Z → Z × Z.

Required Problem 3 (a) Let (U, g′, f ′) be a fiber product of (f, g). Denote by
h : U → Z the morphism f ◦ g′ = g ◦ f ′. Prove (U, g′ × f ′, h) is a fiber product of
the pair of morphisms (f ◦ π1)× (g ◦ π2) : X × Y → Z × Z and ∆Z : Z → Z × Z.

Solution: First of all,

((f ◦ π1)× (g ◦ π2)) ◦ (g′, f ′) = (f ◦ g′)× (g ◦ f ′) = h× h = ∆Z ◦ h.
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Injectivity: Let T be an object and let F,G : T → U be morphisms such that
((g′×f ′)◦F, h◦F ) = ((g′×f ′)◦G, h◦G). Then in particular, g′◦F = π1◦(g′×f ′)◦F =
π1 ◦ (g′ × f ′) ◦G = g′ ◦G, and similarly f ′ ◦ F = f ′ ◦G. By the uniqueness part of
the fiber product, F = G.

Surjectivity: Let a : T → X × Y and b : T → Z be morphisms such that
((f ◦ π1)× (g ◦ π2)) ◦ a = ∆Z ◦ b. Then,

f ◦ π1 ◦ a = π1 ◦ ((f ◦ π1)× (g ◦ π2)) ◦ a = π1 ◦∆Z ◦ b = b.

Similarly, g ◦π2 ◦a = b. So, in particular, f ◦ (π1 ◦a) = g ◦ (π2 ◦a). Therefore there
exists a unique morphism F : T → U such that (g′ ◦ F, f ′ ◦ F ) = (π1 ◦ a, π2 ◦ a).
Therefore (g′ × f ′) ◦ F = (π1 ◦ a)× (π2 ◦ a) = a. Also,

h ◦ F = π1 ◦ [∆Z ◦ h] ◦ F = π1 ◦ [((f ◦ π1)× (g ◦ π2)) ◦ (g′, f ′)] ◦ F =
π1 ◦ ((f ◦ π1)× (g ◦ π2)) ◦ a = π1 ◦∆Z ◦ b = b.

Therefore F : T → U is a morphism such that ((g′ × f ′) ◦ F, h ◦ F ) = (a, b).

(b) Conversely, i.e., without assuming existence of a fiber product of (f, g), let
(U, e, h) be a fiber product of the pair of morphisms (f◦π1)×(g◦π2) : X×Y → Z×Z
and ∆Z : Z → Z ×Z. Define g′ = π1 ◦ e and f ′ = π2 ◦ e. Prove (U, g′, f ′) is a fiber
product of (f, g).

Solution: First of all,

f ◦ g′ = f ◦ π1 ◦ e = π1 ◦ ((f ◦ π1)× (g ◦ π2)) ◦ e = π1 ◦∆Z ◦ h = h,

and similarly,

g ◦ f ′ = g ◦ π2 ◦ e = π2 ◦ ((f ◦ π1)× (g ◦ π2)) ◦ e = π2 ◦∆Z ◦ h = h.

Therefore, f ◦ g′ = g ◦ f ′.

Injectivity: Let T be an object and let F,G : T → U be morphisms such that
(f ′◦F, g′◦F ) = (f ′◦G, g′◦G). By the uniqueness part of the product, e◦F = e◦G.
Thus also,

h◦F = π1◦∆Z◦h◦F = π1◦((f◦π1)×(g◦π2))◦e◦F = π1◦((f◦π1)×(g◦π2))◦e◦G = · · · = h◦G.

Therefore, by the uniqueness part of the fiber product, F = G.

Surjectivity: Let FX : T → X and FY : T → Y be morphisms such that f ◦FX =
g◦FY . Denote FZ = f ◦FX = g◦FY . Then FX×FY : T → X×Y and FZ : T → Z
are morphisms satisfying,

π1 ◦∆Z ◦ FZ = FZ = f ◦ FX = π1 ◦ ((f ◦ π1)× (g ◦ π2)) ◦ (FX × FY ).

Similarly π1◦∆Z ◦FZ = π1◦((f ◦π1)×(g◦π2))◦(FX×FY ). By the uniqueness part
of the product, ∆Z ◦FZ = ((f ◦π1)× (g ◦π2))◦ (FX ×FY ). By the existence part of
the fiber product, there exists a morphism F : T → U such that e ◦F = (FX ×FY )
and h ◦ F = FZ . Then,

g′ ◦ F = π1 ◦ e ◦ F = π1 ◦ (FX × FY ) = FX ,

and similarly f ′ ◦ F = FY .

Coproducts: For every pair of objects X, Y of a category C, a coproduct of (X, Y )
is a triple (U, q1, q2) of an object U and a pair of morphisms q1 : X → U , q2 : Y → U
such that for every object T the following is a bijection,

(q1, q2) : HomC(U, T ) → HomC(X, T )×HomC(Y, T ), f 7→ (f ◦ q1, f ◦ q2).
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Required Problem 4(a) Let n ≥ 0 be an integer, let U = V(xn+1(xn+1 − 1)) ⊂
An+1

k , let q1 : An
k → U be (a1, . . . , an) 7→ (a1, . . . , an, 0) and let q2 : An

k → U be
(a1, . . . , an) 7→ (a1, . . . , an, 1). Prove (U, q1, q2) is a coproduct of (An

k , An
k ) in the

category of quasi-affine algebraic sets. (Hint: For every pair of regular functions f1

and f2 on An
k , f(x1, . . . , xn, xn+1) = xn+1f2(x1, . . . , xn) + (1− xn+1)f1(x1, . . . , xn)

is a regular function on An+1
k such that q∗1f = f1 and q∗2f = f2.)

Solution: To better organize the solution, the main argument is stated as a lemma.

Lemma 0.1. (i) A subset V ⊂ U is open, resp. closed, iff the subsets q−1
1 (V ), q−1

2 (V ) ⊂
An

k are open, resp. closed. Therefore a subset V ⊂ U is a quasi-affine al-
gebraic subset of An+1

k iff the subsets q−1
1 (V ), q−1

2 (V ) ⊂ An
k is quasi-affine.

(ii) For every quasi-affine algebraic subset V ⊂ U and every function g on V ,
g is regular iff g ◦ q1 is regular on q−1

1 (U) and g ◦ q2 is regular on q−1
2 (U).

(iii) For each integer n ≥ 0, (U, q1, q2) is a coproduct of (An
k , An

k ).

Proof. (i) Denote by An
k t An

k the coproduct of (An
k , An

k ) in the category of topo-
logical spaces. Denote by q1 t q2 : An

k t An
k → U the continuous map deter-

mined by (q1, q2). This is a bijection of sets. To prove it is a homeomorphism,
it suffices to prove it is open. Because the sets D(s), s ∈ k[x1, . . . , xn] form
a basis for the topology of An

k , it suffices to prove q1(D(s)) and q2(D(s)) are
both open for every s. Since q1(D(s)) = D((1 − xn+1)s(x1, . . . , xn)) ∩ U and
q2(D(s)) = D(xn+1s(x1, . . . , xn)) ∩ U , q1 t q2 is a homeomorphism. In particular,
a subset V ⊂ U is an open subset of a closed subset iff q−1

1 (V ), q−1
2 (V ) ⊂ An

k are
open subsets of closed subsets.

(ii) It suffices to prove for every x ∈ q−1
1 (V ) and every y ∈ q−1

2 (V ), that g is
regular at x and at y. Because g ◦ q1 is regular at x, there exist polynomials
h, s ∈ k[x1, . . . , xn] such that s(x) 6= 0 and the restriction of g ◦ q1 to q−1

1 (V )∩D(s)
equals h/s. Denote s̃ = (1 − xn+1)s(x1, . . . , xn) and h̃ = (1 − xn+1)h(x1, . . . , xn).
Then D(s̃) ∩ V = q1(D(s)) ∩ V , so it contains q1(x), and the restriction of g to
D(s̃) ∩ V equals h̃/s̃, i.e., g is regular at q1(x). A very similar argument proves g
is regular at q2(y).

(iii) Injectivity of (q1, q2) is clear. Let T be a quasi-affine algebraic set and let
F1, F2 : An

k → T be regular morphisms. There is a unique set map F : U → T such
that F ◦ q1 = F1 and F ◦ q2 = F2. The issue is whether F is regular. For every
regular function g on T , g ◦ F ◦ q1 = g ◦ F1 is regular because F1 is regular, and
g ◦ F ◦ q2 = g ◦ F2 is regular because F2 is regular. So by (ii), g ◦ F is regular.
Therefore F is a regular morphism. �

(b) Assuming part (a), deduce every pair (X, Y ) of quasi-affine algebraic sets has
a coproduct (U, q1, q2). (Hint: Embed in a large affine variety and use (a).)

Solution: Most of the work is already done in the lemma (which is why the
solution is organized this way). Let X ⊂ Al

k and Y ⊂ Am
k be quasi-affine al-

gebraic subsets. Let n be an integer n ≥ l,m. Define i1 : Al
X → An

k , resp.
i2 : Am

k → An
k , to be the regular morphism (a1, . . . , al) 7→ (a1, . . . , al, 0, . . . , 0),

resp. (a1, . . . , am) 7→ (a1, . . . , am, 0, . . . , 0). The image of i1, resp. i2, is the affine
algebraic set V(xl+1, . . . , xn), resp. V(xm+1, . . . , xn). And the projection mor-
phism π1 : An

k → Al
k, resp. π2 : An

k → Am
k , by (a1, . . . , an) 7→ (a1, . . . , al), resp.

(a1, . . . , an) 7→ (a1, . . . , am), restricts on Image(i1) to an inverse of i1, resp. restricts
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on Image(i2) to an inverse of i2. The upshot is that i1 and i2 are isomorphisms to
affine algebraic subsets of An

k . Therefore the restriction of i1 to X, resp. of i2 to
Y , are isomorphisms to quasi-affine algebraic subsets of An

k . Since i1 : X → i1(X)
and i2 : Y → i2(Y ) are isomorphisms, every coproduct (W, r1, r2) of (i1(X), i2(Y ))
determines a coproduct (W, r1 ◦ i1, r2 ◦ i2) of (X, Y ). Hence, after replacing X and
Y by i1(X) and i2(Y ), assume X, Y are quasi-affine algebraic subsets of An

k .

Let (U, q1, q2) be the coproduct of (An
k , An

k ) from part (a). By part (i) of the lemma,
W = q1(X) ∪ q2(Y ) is a quasi-affine algebraic subset of An+1

k . Define r1 : X → W ,
resp. r2 : Y → W , to be the restriction of q1 to X, resp. of q2 to Y . These are
regular morphisms. The claim is that (W, r1, r2) is a coproduct of (X, Y ). For
every quasi-affine algebraic set T , it is clear that the set map (q1, q2) is injective.
It remains to prove it is surjective. Let FX : X → T and FY : Y → T be regular
morphisms. There is a unique set map F : W → T such that FX = F ◦ r1 and
FY = F ◦ r2; the issue is whether F is regular. For every regular function g on
T , g ◦ F ◦ r1 = g ◦ FX is regular because FX is regular, and g ◦ F ◦ r2 = g ◦ FY

is regular because FY is regular. Therefore, by part (ii) of the lemma, g ◦ F is a
regular function on W , i.e., F : W → T is a regular morphism.

Some problems on irreducibility:

Required Problem 5(a) Prove every nonempty open subset of an irreducible
topological space is dense.

Solution: Let U be a nonempty open subset of an irreducible topological space
X. Denote by U the closure of U in X. Then (X − U,U) is a decomposition of
X. Because X is irreducible, one of these sets equals X. Since U is nonempty,
X − U 6= U , therefore U = X.

(b) Let Y ⊂ X be a subset of a topological space, irreducible with the relative
topology. Prove the closure of Y is also irreducible with the relative topology.

Solution: Denote by Y the closure of Y . Let (Y 1, . . . , Y r) be a finite decomposition
of Y . For each i = 1, . . . , r, denote Yi = Y i ∩ Y . Then (Y1, . . . , Yr) is a finite
decomposition of Y . Because Y is irreducible, there exists i such that Y = Yi.
Then Y i is a closed subset of X containing Y , so Y ⊂ Y i. Because also Y i ⊂ Y , Y
equals Y i, i.e., Y is irreducible.

(c) Prove the image of an irreducible topological space under a continuous map is
irreducible with the relative topology from the target.

Solution: Let X be an irreducible topological space, and let f : X → Y be a
continuous map of topological spaces. Let (Z1, . . . , Zr) be a finite decomposition
of f(X) with the relative topology. Because f is continuous, for each i = 1, . . . , r,
the subset Xi := f−1(Zi) ⊂ X is closed. Therefore (X1, . . . , Xr) is a finite de-
composition of X. Because X is irreducible, there exists i such that X = Xi, i.e.,
f(X) ⊂ Zi. Since also Zi ⊂ f(X), f(X) equals Zi, i.e., f(X) is irreducible.

Problem 6 Assuming Problem 5, prove the irreducible components of V(〈x1 −
x2x3, x1x3 − x2

2〉) ⊂ A3
k are V1 = {(0, 0, a)|a ∈ A1

k} and V2 = {(b3, b2, b)|b ∈ A1
k}.

This is the “affine hyperplane section x4 = 1” of the example from lecture on 9/13.

Solution: Consider f, g : A1
k → A3

k by f(a) = (0, 0, a) and g(b) = (b3, b2, b). These
are regular morphisms, hence continuous for the Zariski topologies. Because every
2 nonempty open subset of A1

k intersect, A1
k is irreducible. Therefore V1 = f(A1

k)
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and V2 = g(A1
k) are irreducible by (iii) or Problem 5. Also V1 = V(x1, x2) and

V2 = V(x1 − x3
3, x2 − x2

3). So to prove (V1, V2) is an irreducible decomposition of
V , it suffices to prove V = V1 ∪ V2.

It is easy to see V1, V2 ⊂ V . Let (a1, a2, a3) be an element of V . Assume first
a1 = 0. Then a2

2 = a1a3 = 0 so that a2 = 0. Therefore (a1, a2, a3) = (0, 0, a3),
which is in V1. Next assume a1 6= 0. Because a1 = a2a3, also a2, a3 6= 0. Define
b = a1/a2. Then a3 = a1/a2 = b, a2 = a2

2/a2 = (a1a3)/a2 = a3(a1/a2) = b2, and
a1 = a2(a1/a2) = b2(b) = b3. So (a1, a2, a3) = (b3, b2, b), which is in V2. Therefore
V = V1 ∪ V2.

Problem 7 Find the irreducible components of V(〈x1x2, x1x3, x2x3〉) ⊂ A3
k.

Solution: This is a special case of the next problem. The irreducible components
are V1 ∪ V2 ∪ V3, where V1 = {(a, 0, 0)|a ∈ k}, V2 = {(0, a, 0)|a ∈ k}, and V3 =
{(0, 0, a)|a ∈ k}.

Difficult Problem 8 For every integer n ≥ 1 and every collection S of nonempty
subsets of {1, . . . , n}, define m(S) ⊂ S to be the collection of subsets of {1, . . . , n}
minimal among those in S, and define S∨ to be the collection of all nonempty
subsets A ⊂ {1, . . . , n} such that for every B ∈ S, A ∩B 6= ∅.

(a) Prove m(S)∨ = S∨, S ⊂ (S∨)∨ and m((S∨)∨) = m(S).

Solution: Since every set in S contains a set in m(S), a subset A ⊂ {1, . . . , n}
intersects every set in S iff it intersects every set in m(S), i.e., S∨ = m(S)∨. Every
set in S intersects every subset A ⊂ {1, . . . , n} which intersects every set in S, i.e.,
S ⊂ (S∨)∨. In particular, m(S) ⊂ (S∨)∨. Let B ⊂ {1, . . . , n} be a subset that
contains no set in m(S). Consider A = {1, . . . , n} − B. For every set C in m(S),
because C 6⊂ B, A ∩ C 6= ∅. Hence A is in S∨, and A ∩ C = ∅. Therefore A is not
in (S∨)∨. So every set in (S∨)∨ contains a set in m(S), proving m((S∨)∨) = m(S).

(b) Define IS ⊂ k[x1, . . . , xn] to be the ideal 〈mA|A ∈ S〉, where mA =
∏

i∈A xi.
Prove the set of irreducible components of V(IS) is in bijection with m(S∨).

Solution: For every set B in m(S∨), define IB = 〈xi|i ∈ B〉 and VB = V(IB).
For every A ∈ S, there exists i ∈ A ∩ B so that mA ∈ 〈xi〉 ⊂ IB . Therefore
IS ⊂ IB , implying VB ⊂ V(IS). Of course VB is isomorphic to an affine space Am

k ,
where m = n − card(B). So each VB is irreducible. Also, if B1, B2 are distinct
elements of m(S∨), there exists i ∈ B2 − B1. Let p ∈ An

k be the element whose
only nonzero coordinate is the ith coordinate, which is 1. Then p ∈ VB1 − VB2

so that VB2 6⊂ VB1 . By symmetry VB1 6⊂ VB2 , therefore (VB |B ∈ m(S∨)) is an
indecomposable decomposition of ∪BVB .

Finally, suppose that p ∈ V(IS). Let C be the set of elements 1 ≤ i ≤ n such that
the ith coordinate of p is zero. For every A ∈ S, because mA(p) = 0, for at least
one i ∈ A, xi(p) = 0, i.e., A ∩ C 6= ∅. Therefore C ∈ S∨. Let B ∈ m(S∨) be a
set contained in C. Then p ∈ VB . Therefore (VB |B ∈ m(S∨)) is the irreducible
decomposition of V(IS).

Images of some morphisms:

Problem 9 For every pair of integers m,n ≥ 0, the affine Segre mapping F :
Am

k ×An
k → Amn

k is as follows. Let x1, . . . , xm be coordinates on Am
k , let y1, . . . , yn

be coordinates on An
k and let zi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n be coordinates on Amn

k .
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Then F ∗zi,j = xiyj . Find an ideal I ⊂ k[zi,j ] such that V(I) = Image(F ). (Hint:
The generators of I are homogeneous degree 2 binomials.)

Solution: Denote by I the ideal,

I = 〈zi1,j1zi2,j2 − zi3,j3zi4,j4 |{i1, i2} = {i3, i4} and {j1, j2} = {j3, j4}〉.
It is easy to see Image(F ) ⊂ V(I), i.e., the pullback by F of each generator of I
is zero. Let p be an element in V(I). If p = 0, then p = F (0). Thus assume
p 6= 0, i.e., there exists (i0, j0) such that zi0,j0(p) 6= 0. For every i = 1, . . . ,m,
define ai = zi,j0(p)/zi0,j0(p). For every j = 1, . . . , n, define bj = zi0,j(p). Define
q = (a1, . . . , am) and r = (b1, . . . , bn). For every i = 1, . . . ,m and j = 1, . . . , n,

zi,j(p)zi0,j0(p) = zi,j0(p)zi0,j(p), i.e., zi,j(p) = aibj .

Thus p = F (q, r), which is in Image(F ). So V(I) = Image(F ). It is not necessary
to prove this, and it is not obvious, but I is a radical ideal.

Problem 10 For every pair of integers n, d ≥ 0, define N =
(
n+d

d

)
, and define the

affine Veronese mapping F : An
k → AN

k as follows. Let x1, . . . , xn be coordinates on
An

k and let zi1,...,in be coordinates on AN
k where (i1, . . . , in) runs through all n-tuples

of nonnegative integers with i1 + · · · + in = d. Then F ∗zi1,...,in = xi1
1 xi2

2 . . . xin
n .

Find an ideal I ⊂ k[zi1,...,in
] such that V(I) = Image(F ). (Hint: The generators

of I are homogeneous degree 2 binomials.)

Difficult Problem 11 For every integer n ≥ 2, define N =
(
n
2

)
and define F :

A2n
k → AN

k as follows. Let x1,1, . . . , x1,n, x2,1, . . . , x2,n be coordinates on A2n
k and

let zi,j , 1 ≤ i < j ≤ n be coordinates on AN
k . Then F ∗zi,j = x1,ix2,j − x1,jx2,i.

The image of this morphism is the affine cone over the Grassmannian Grass(2, n).
Find an ideal I ⊂ k[zi,j ] such that V(I) = Image(F ). (Hint: Interpret elements of
A2n

k as 2× n matrices; interpret elements of AN
k as elements of the exterior square

of the n-space, which also give anti-symmetric n×n matrices, and take Pfaffians of
appropriate 4×4-submatrices of this n×n-matrix. The generators are homogeneous
degree 2 trinomials.)

Problem 12 Give an example of a regular morphism of affine varieties F : V → W
whose image is not a quasi-affine algebraic set.

Solution: There are many solutions. Let V ⊂ A3
k be V(〈x(xz−1), y(xz−1), z(xz−

1)〉), let W = A2
k and let F : V → W be F (a, b, c) = (a, b). Observe the irreducible

components of V are V1 = {(a, b, 1/a)|a ∈ k − {0}, b ∈ k} and V2 = {(0, 0, 0)}.
Therefore F (V ) = {(a, b)|a ∈ k − {0}, b ∈ k} ∪ {(0, 0)}. Of course the Zariski
closure of F (V ) is all of W = A2

k. So if F (V ) is quasi-affine, then A2
k − V is a

Zariski closed subset. But A2
k−V = {(0, b)|b ∈ k−{0}}. This is not Zariski closed;

the Zariski closure of V(x) = {(0, b)|b ∈ k}. Therefore F (V ) is not a quasi-affine
algebraic subset of W .

Problem 13: Proposition 4.8 can fail if W is not affine Let V = A2
k, let

W = A2
k −V(x1, x2) and let i : W → V be the inclusion. Prove that i∗ : OV (V ) →

OW (W ) is an isomorphism, but there is no inverse of i, i.e., Proposition 4.8 fails
for V and W .

Solution: It is easy to see i∗ is injective; the difficult part is proving i∗ is surjective.
Let g be a regular function on W . Chasing through the definition of regular func-
tion, there exists a collection of pairs of polynomials in k[x, y], (h1, s1), . . . , (hr, sr)
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such that W ⊂ D(s1)∪ · · · ∪D(sr) and such that the restriction of g to W ∩D(si)
equals hi/si for each i = 1, . . . , r. Throw out all pairs such that si = 0. Then each
of the fractions hi/si ∈ k(x, y) is defined, and hi/si = hj/sj for every 1 ≤ i < j ≤ r.
Write this fraction as h/s where h, s ∈ k[x, y] have no common irreducible factors:
this makes sense because k[x, y] is a unique factorization domain. The claim is that
s is a constant. The proof is by contradiction.

By way of contradiction, assume s is not a constant. By the Nullstellensatz V(s) 6=
∅. Because rad〈s〉 6= 〈x, y〉, also V(s) 6= {(0, 0)}. Hence there exists p ∈ V(s) −
{(0, 0)} such that s(p) = 0. Because p ∈ W , there exists i such that si(p) 6= 0.
Since sih = shi, s divides sih in k[x, y]. Because no irreducible factor of s divides
any irreducible factor of h, s divides si, i.e., si = uis for some ui ∈ k[x, y]. But
then si(p) = ui(p)s(p) = 0, which is a contradiction. Therefore s is a constant and
f/s ∈ k[x, y], i.e., g is in the image of i∗.

Very Difficult Problem 14 Prove there exists a quasi-affine algebraic set V such
that OV (V ) is not a finitely-generated k-algebra. The examples I am aware of all
have dimension ≥ 4. (Warning: This problem would be more appropriate at the
end of 18.726. I mention it now because you can understand it, and it is a problem
to keep in mind as the semester goes on.)

Problem 15 Prove the k-algebra OV (V ) of every quasi-affine algebraic set V is a
subalgebra of a finitely-generated k-algebra.

Solution: Let V ⊂ An
k be a quasi-affine algebraic set. Denote by V the Zariski clo-

sure. Because a basis for the topology of V consists of basic open affines, there exist
elements s1, . . . , sr ∈ k[V ] such that V = D(s1)∪ · · · ∪D(sr). As proved in lecture,
OD(s)(D(s)) = k[V ][xn+1]/〈xn+1s− 1〉. Consider the k-algebra homomorphism,

φ : OV (V ) →
r∏

i=1

k[V ][xn+1]/〈xn+1s− 1〉,

that sends a regular function g on V to (g1, . . . , gr), where gi is the restriction of g
to D(si). By the gluing lemma, φ is an injective k-algebra homomorphism. Each
factor k[V ][xn+1]〈xn+1s−1〉 is a finitely-generated k-algebra, and a finite product of
finitely-generated k-algebras is a finitely-generated k-algebra (essentially as proved
in Problem 4).

Problem 16, An open affine that is not a basic open affine, I Together
with the next problem, this problem gives an open subset of an affine algebraic set,
itself isomorphic to an affine algebraic set, but not a basic open affine D(s). In
both problems, assume char(k) 6= 2 and let i denote a solution of x2 + 1 in k. Let
C ⊂ A2

k be the affine nodal plane cubic, C = V(y2 − x2(x − 1)) Let (a0, b0) ∈ C
and define F : D(x− a0) → A3

k by F (a, b) = (a, b, (b + b0)/(a− a0)).

(a) Prove there exists a regular morphism G : C−{(a0, b0)} → A3
k whose restriction

to D(x−a0 equals F . (Hint: Expand the defining equation of C in the coordinates
x− a0 and y − b0.)

(b) Prove the image of G is an affine algebraic subset of A3
k.

(c) Prove the projection π : A3
k → A2

k, π(a, b, c) = (a, b) restricts on the image of G
to an inverse morphism to G. Therefore C − {a0, b0} is an open subset of C, itself
isomorphic to an affine algebraic set.
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Difficult Problem 17, An open affine that is not a basic open affine, II
This problem continues Problem 16; again char(k) 6= 2. Consider the morphism
H : A1

k → C by H(u) = (u2 + 1, u(u2 + 1)). Let t be a coordinate on A1
k.

(a) Prove H∗ : k[C] → k[t] maps k[C] isomorphically to the subalgebra of functions
f(t) ∈ k[t] such that f(i) = f(−i).

(b) For (b), (c) and (d), assume (a0, b0) ∈ C − {(0, 0)}. Prove the ideal of k[t]
generated by H∗(〈x− a0, y − b0〉) is the principal ideal 〈a0t− b0〉.
(c) If there is an element s ∈ k[V ] such that V(s) = {(a0, b0)}, H∗(s) = c(at− b)n

for some nonzero constant c ∈ k and integer n ≥ 1. (Hint: Consider the image of
s in k[V ][1/xy] ∼= k[t][1/(t2 + 1)]. Use this to express H∗s as c(t2 + 1)r(at− b)n for
some r ≥ 0, and then use that s(0, 0) 6= 0.)

(d) Deduce that (a0i− b0)n = (−a0i− b0)n, because c(at− b)n is in the image of
H∗. Therefore for every (a0, b0) ∈ C −{(0, 0)}, if (b0 − ia0)/(b0 + ia0) is not a root
of unity, then C − {(a0, b0)} is of the form D(s) for no element s ∈ k[V ] (in fact
these are equivalent conditions).
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