18.725 PROBLEM SET 2

Due date: Friday, September 24 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.

Read through all the problems. Write solutions to the "Required Problems", 1, 3, 4, and 5, together with 2 others of your choice to a total of 6 problems. Difficult problems are labeled "Difficult Problems", and there is one "Very Difficult Problem".

Products: For every pair of objects X, Y in a category C, a *product of* (X, Y) is a triple (U, π_1, π_2) of an object U, a morphism $\pi_1 : U \to X$ and a morphism $\pi_2 : U \to Y$ such that for every object T the following is a bijection,

 (π_1, π_2) : Hom_{\mathcal{C}} $(T, U) \to$ Hom_{\mathcal{C}} $(T, X) \times$ Hom_{\mathcal{C}} $(T, Y), f \mapsto (\pi_1 \circ f, \pi_2 \circ f).$

Required Problem 1 Problem 3 from PS# 1 proves every pair in the category of affine algebraic sets has a product. Prove this affine algebraic set is also a product of the pair in the category of quasi-affine algebraic sets, i.e., the universal property holds for every quasi-affine algebraic set T. (**Hint:** Every quasi-affine algebraic set is a union of open affine sets. Combine with the gluing lemma and Problem 3(c).)

Problem 2 Prove every pair in the category of quasi-affine algebraic sets has a product.

Fiber products: For every pair of morphisms $f : X \to Z$ and $g : Y \to Z$ in a category C, a *fiber product of* (f,g) is a triple (U,g',f') of an object U and morphisms $g': U \to X$, $f': U \to Y$ such that,

- (i) $f \circ g' = g \circ f'$, and
- (ii) for every triple (V, g'', f'') satisfying $f \circ g'' = g \circ f''$ there exists a unique morphism $u: V \to U$ such that $g'' = g' \circ u$ and $f'' = f' \circ u$.

Let C be a category in which every pair (X, Y) has a product, denoted $(X \times Y, \pi_1, \pi_2)$ (this hypothesis holds in Problem 3), and for every pair of morphisms $f: U \to X$, $g: U \to Y$, denote by $f \times g: U \to X \times Y$ the unique morphism such that $\pi_1 \circ (f \times g) = f$, $\pi_2 \circ (f \times g) = g$; this is not standard notation, but will be less confusing for the following problem. For every object Z, the *diagonal morphism of* Z is $\mathrm{Id}_Z \times \mathrm{Id}_Z: Z \to Z \times Z$.

Required Problem 3 (a) Let (U, g', f') be a fiber product of (f, g). Denote by $h: U \to Z$ the morphism $f \circ g' = g \circ f'$. Prove $(U, g' \times f', h)$ is a fiber product of the pair of morphisms $(f \circ \pi_1) \times (g \circ \pi_2) : X \times Y \to Z \times Z$ and $\Delta_Z : Z \to Z \times Z$.

(b) Conversely, i.e., without assuming existence of a fiber product of (f,g), let (U, e, h) be a fiber product of the pair of morphisms $(f \circ \pi_1) \times (g \circ \pi_2) : X \times Y \to Z \times Z$ and $\Delta_Z : Z \to Z \times Z$. Define $g' = \pi_1 \circ e$ and $f' = \pi_2 \circ e$. Prove (U, g', f') is a fiber product of (f, g). **Coproducts:** For every pair of objects X, Y of a category C, a *coproduct of* (X, Y) is a triple (U, q_1, q_2) of an object U and a pair of morphisms $q_1 : X \to U, q_2 : Y \to U$ such that for every object T the following is a bijection,

 $(q_1, q_2) : \operatorname{Hom}_{\mathcal{C}}(U, T) \to \operatorname{Hom}_{\mathcal{C}}(X, T) \times \operatorname{Hom}_{\mathcal{C}}(Y, T), \quad f \mapsto (f \circ q_1, f \circ q_2).$

Required Problem 4(a) Let $n \ge 0$ be an integer, let $U = \mathbb{V}(x_{n+1}(x_{n+1}-1)) \subset \mathbb{A}_k^{n+1}$, let $q_1 : \mathbb{A}_k^n \to U$ be $(a_1, \ldots, a_n) \mapsto (a_1, \ldots, a_n, 0)$ and let $q_2 : \mathbb{A}_k^n \to U$ be $(a_1, \ldots, a_n) \mapsto (a_1, \ldots, a_n, 1)$. Prove (U, q_1, q_2) is a coproduct of $(\mathbb{A}_k^n, \mathbb{A}_k^n)$ in the category of quasi-affine algebraic sets. (**Hint:** For every pair of regular functions f_1 and f_2 on \mathbb{A}_k^n , $f(x_1, \ldots, x_n, x_{n+1}) = x_{n+1}f_2(x_1, \ldots, x_n) + (1 - x_{n+1})f_1(x_1, \ldots, x_n)$ is a regular function on \mathbb{A}_k^{n+1} such that $q_1^*f = f_1$ and $q_2^*f = f_2$.)

(b) Assuming part (a), deduce every pair (X, Y) of quasi-affine algebraic sets has a coproduct (U, q_1, q_2) . (Hint: Embed in a large affine variety and use (a).)

Some problems on irreducibility:

Required Problem 5(a) Prove every nonempty open subset of an irreducible topological space is dense.

(b) Let $Y \subset X$ be a subset of a topological space, irreducible with the relative topology. Prove the closure of Y is also irreducible with the relative topology.

(c) Prove the image of an irreducible topological space under a continuous map is irreducible with the relative topology from the target.

Problem 6 Assuming Problem 5, prove the irreducible components of $\mathbb{V}(\langle x_1 - x_2x_3, x_1x_3 - x_2^2 \rangle) \subset \mathbb{A}^3_k$ are $V_1 = \{(0, 0, a) | a \in \mathbb{A}^1_k\}$ and $V_2 = \{(b^3, b^2, b) | b \in \mathbb{A}^1_k\}$. This is the "affine hyperplane section $x_4 = 1$ " of the example from lecture on 9/13.

Problem 7 Find the irreducible components of $\mathbb{V}(\langle x_1x_2, x_1x_3, x_2x_3 \rangle) \subset \mathbb{A}^3_k$.

Difficult Problem 8 For every integer $n \ge 1$ and every collection S of nonempty subsets of $\{1, \ldots, n\}$, define $m(S) \subset S$ to be the collection of subsets of $\{1, \ldots, n\}$ minimal among those in S, and define S^{\vee} to be the collection of all nonempty subsets $A \subset \{1, \ldots, n\}$ such that for every $B \in S$, $A \cap B \neq \emptyset$.

(a) Prove $m(S)^{\vee} = S^{\vee}, S \subset (S^{\vee})^{\vee}$ and $m((S^{\vee})^{\vee}) = m(S)$.

(b) Define $I_S \subset k[x_1, \ldots, x_n]$ to be the ideal $\langle m_A | A \in S \rangle$, where $m_A = \prod_{i \in A} x_i$. Prove the set of irreducible components of $\mathbb{V}(I_S)$ is in bijection with $m(S^{\vee})$.

Images of some morphisms:

Problem 9 For every pair of integers $m, n \ge 0$, the affine Segre mapping $F : \mathbb{A}_k^m \times \mathbb{A}_k^n \to \mathbb{A}_k^{mn}$ is as follows. Let x_1, \ldots, x_m be coordinates on \mathbb{A}_k^m , let y_1, \ldots, y_n be coordinates on \mathbb{A}_k^n and let $z_{i,j}, 1 \le i \le m, 1 \le j \le n$ be coordinates on \mathbb{A}_k^{nn} . Then $F^*z_{i,j} = x_iy_j$. Find an ideal $I \subset k[z_{i,j}]$ such that $\mathbb{V}(I) = \text{Image}(F)$. (Hint: The generators of I are homogeneous degree 2 binomials.)

Problem 10 For every pair of integers $n, d \ge 0$, define $N = \binom{n+d}{d}$, and define the affine Veronese mapping $F : \mathbb{A}_k^n \to \mathbb{A}_k^N$ as follows. Let x_1, \ldots, x_n be coordinates on \mathbb{A}_k^n and let z_{i_1,\ldots,i_n} be coordinates on \mathbb{A}_k^N where (i_1,\ldots,i_n) runs through all *n*-tuples of nonnegative integers with $i_1 + \cdots + i_n = d$. Then $F^*z_{i_1,\ldots,i_n} = x_1^{i_1}x_2^{i_2}\ldots x_n^{i_n}$. Find an ideal $I \subset k[z_{i_1,\ldots,i_n}]$ such that $\mathbb{V}(I) = \text{Image}(F)$. (**Hint:** The generators of I are homogeneous degree 2 binomials.)

Difficult Problem 11 For every integer $n \geq 2$, define $N = \binom{n}{2}$ and define $F : \mathbb{A}_{k}^{2n} \to \mathbb{A}_{k}^{N}$ as follows. Let $x_{1,1}, \ldots, x_{1,n}, x_{2,1}, \ldots, x_{2,n}$ be coordinates on \mathbb{A}_{k}^{2n} and let $z_{i,j}, 1 \leq i < j \leq n$ be coordinates on \mathbb{A}_{k}^{N} . Then $F^{*}z_{i,j} = x_{1,i}x_{2,j} - x_{1,j}x_{2,i}$. The image of this morphism is the *affine cone over the Grassmannian* **Grass**(2, n). Find an ideal $I \subset k[z_{i,j}]$ such that $\mathbb{V}(I) = \text{Image}(F)$. (**Hint:** Interpret elements of \mathbb{A}_{k}^{2n} as $2 \times n$ matrices; interpret elements of \mathbb{A}_{k}^{N} as elements of the exterior square of the *n*-space, which also give anti-symmetric $n \times n$ matrices, and take Pfaffians of appropriate 4×4 -submatrices of this $n \times n$ -matrix. The generators are homogeneous degree 2 trinomials.)

Problem 12 Give an example of a regular morphism of affine varieties $F: V \to W$ whose image is not a quasi-affine algebraic set.

Problem 13: Proposition 4.8 can fail if W is not affine Let $V = \mathbb{A}_k^2$, let $W = \mathbb{A}_k^2 - \mathbb{V}(x_1, x_2)$ and let $i: W \to V$ be the inclusion. Prove that $i^* : \mathcal{O}_V(V) \to \mathcal{O}_W(W)$ is an isomorphism, but there is no inverse of i, i.e., Proposition 4.8 fails for V and W.

Very Difficult Problem 14 Prove there exists a quasi-affine algebraic set V such that $\mathcal{O}_V(V)$ is not a finitely-generated k-algebra. The examples I am aware of all have dimension ≥ 4 . (Warning: This problem would be more appropriate at the end of 18.726. I mention it now because you can understand it, and it is a problem to keep in mind as the semester goes on.)

Problem 15 Prove the k-algebra $\mathcal{O}_V(V)$ of every quasi-affine algebraic set V is a subalgebra of a finitely-generated k-algebra.

Problem 16, An open affine that is not a basic open affine, I Together with the next problem, this problem gives an open subset of an affine algebraic set, itself isomorphic to an affine algebraic set, but not a basic open affine D(s). In both problems, assume $\operatorname{char}(k) \neq 2$ and let *i* denote a solution of $x^2 + 1$ in *k*. Let $C \subset \mathbb{A}^2_k$ be the affine nodal plane cubic, $C = \mathbb{V}(y^2 - x^2(x-1))$ Let $(a_0, b_0) \in C$ and define $F : D(x - a_0) \to \mathbb{A}^3_k$ by $F(a, b) = (a, b, (b + b_0)/(a - a_0))$.

(a) Prove there exists a regular morphism $G: C - \{(a_0, b_0)\} \to \mathbb{A}^3_k$ whose restriction to $D(x-a_0 \text{ equals } F.$ (Hint: Expand the defining equation of C in the coordinates $x - a_0$ and $y - b_0$.)

(b) Prove the image of G is an affine algebraic subset of \mathbb{A}^3_k .

(c) Prove the projection $\pi : \mathbb{A}_k^3 \to \mathbb{A}_k^2$, $\pi(a, b, c) = (a, b)$ restricts on the image of G to an inverse morphism to G. Therefore $C - \{a_0, b_0\}$ is an open subset of C, itself isomorphic to an affine algebraic set.

Difficult Problem 17, An open affine that is not a basic open affine, II This problem continues Problem 16; again char $(k) \neq 2$. Consider the morphism $H : \mathbb{A}_k^1 \to C$ by $H(u) = (u^2 + 1, u(u^2 + 1))$. Let t be a coordinate on \mathbb{A}_k^1 .

(a) Prove $H^* : k[C] \to k[t]$ maps k[C] isomorphically to the subalgebra of functions $f(t) \in k[t]$ such that f(i) = f(-i).

(b) For (b), (c) and (d), assume $(a_0, b_0) \in C - \{(0, 0)\}$. Prove the ideal of k[t] generated by $H^*(\langle x - a_0, y - b_0 \rangle)$ is the principal ideal $\langle a_0t - b_0 \rangle$.

(c) If there is an element $s \in k[V]$ such that $\mathbb{V}(s) = \{(a_0, b_0)\}, H^*(s) = c(at - b)^n$ for some nonzero constant $c \in k$ and integer $n \ge 1$. (Hint: Consider the image of

s in $k[V][1/xy] \cong k[t][1/(t^2+1)]$. Use this to express H^*s as $c(t^2+1)^r(at-b)^n$ for some $r \ge 0$, and then use that $s(0,0) \ne 0$.)

(d) Deduce that $(a_0i - b_0)^n = (-a_0i - b_0)^n$, because $c(at - b)^n$ is in the image of H^* . Therefore for every $(a_0, b_0) \in C - \{(0, 0)\}$, if $(b_0 - ia_0)/(b_0 + ia_0)$ is not a root of unity, then $C - \{(a_0, b_0)\}$ is of the form D(s) for no element $s \in k[V]$ (in fact these are equivalent conditions).