18.725 PROBLEM SET 2

Due date: Friday, September 24 in lecture. Late work will be accepted only with a medical note or for another Institute-approved reason. You are strongly encouraged to work with others, but the final write-up should be entirely your own and based on your own understanding.
Read through all the problems. Write solutions to the "Required Problems", 1, 3,4 , and 5 , together with 2 others of your choice to a total of 6 problems. Difficult problems are labeled "Difficult Problems", and there is one "Very Difficult Problem".

Products: For every pair of objects X, Y in a category \mathcal{C}, a product of (X, Y) is a triple $\left(U, \pi_{1}, \pi_{2}\right)$ of an object U, a morphism $\pi_{1}: U \rightarrow X$ and a morphism $\pi_{2}: U \rightarrow Y$ such that for every object T the following is a bijection,

$$
\left(\pi_{1}, \pi_{2}\right): \operatorname{Hom}_{\mathcal{C}}(T, U) \rightarrow \operatorname{Hom}_{\mathcal{C}}(T, X) \times \operatorname{Hom}_{\mathcal{C}}(T, Y), \quad f \mapsto\left(\pi_{1} \circ f, \pi_{2} \circ f\right)
$$

Required Problem 1 Problem 3 from PS\# 1 proves every pair in the category of affine algebraic sets has a product. Prove this affine algebraic set is also a product of the pair in the category of quasi-affine algebraic sets, i.e., the universal property holds for every quasi-affine algebraic set T. (Hint: Every quasi-affine algebraic set is a union of open affine sets. Combine with the gluing lemma and Problem 3(c).)
Problem 2 Prove every pair in the category of quasi-affine algebraic sets has a product.
Fiber products: For every pair of morphisms $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ in a category \mathcal{C}, a fiber product of (f, g) is a triple $\left(U, g^{\prime}, f^{\prime}\right)$ of an object U and morphisms $g^{\prime}: U \rightarrow X, f^{\prime}: U \rightarrow Y$ such that,
(i) $f \circ g^{\prime}=g \circ f^{\prime}$, and
(ii) for every triple $\left(V, g^{\prime \prime}, f^{\prime \prime}\right)$ satisfying $f \circ g^{\prime \prime}=g \circ f^{\prime \prime}$ there exists a unique morphism $u: V \rightarrow U$ such that $g^{\prime \prime}=g^{\prime} \circ u$ and $f^{\prime \prime}=f^{\prime} \circ u$.

Let \mathcal{C} be a category in which every pair (X, Y) has a product, denoted $\left(X \times Y, \pi_{1}, \pi_{2}\right)$ (this hypothesis holds in Problem 3), and for every pair of morphisms $f: U \rightarrow X$, $g: U \rightarrow Y$, denote by $f \times g: U \rightarrow X \times Y$ the unique morphism such that $\pi_{1} \circ(f \times g)=f, \pi_{2} \circ(f \times g)=g$; this is not standard notation, but will be less confusing for the following problem. For every object Z, the diagonal morphism of Z is $\mathrm{Id}_{Z} \times \mathrm{Id}_{Z}: Z \rightarrow Z \times Z$.

Required Problem 3 (a) Let $\left(U, g^{\prime}, f^{\prime}\right)$ be a fiber product of (f, g). Denote by $h: U \rightarrow Z$ the morphism $f \circ g^{\prime}=g \circ f^{\prime}$. Prove $\left(U, g^{\prime} \times f^{\prime}, h\right)$ is a fiber product of the pair of morphisms $\left(f \circ \pi_{1}\right) \times\left(g \circ \pi_{2}\right): X \times Y \rightarrow Z \times Z$ and $\Delta_{Z}: Z \rightarrow Z \times Z$.
(b) Conversely, i.e., without assuming existence of a fiber product of (f, g), let (U, e, h) be a fiber product of the pair of morphisms $\left(f \circ \pi_{1}\right) \times\left(g \circ \pi_{2}\right): X \times Y \rightarrow Z \times Z$ and $\Delta_{Z}: Z \rightarrow Z \times Z$. Define $g^{\prime}=\pi_{1} \circ e$ and $f^{\prime}=\pi_{2} \circ e$. Prove $\left(U, g^{\prime}, f^{\prime}\right)$ is a fiber product of (f, g).

Coproducts: For every pair of objects X, Y of a category \mathcal{C}, a coproduct of (X, Y) is a triple $\left(U, q_{1}, q_{2}\right)$ of an object U and a pair of morphisms $q_{1}: X \rightarrow U, q_{2}: Y \rightarrow U$ such that for every object T the following is a bijection,

$$
\left(q_{1}, q_{2}\right): \operatorname{Hom}_{\mathcal{C}}(U, T) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, T) \times \operatorname{Hom}_{\mathcal{C}}(Y, T), \quad f \mapsto\left(f \circ q_{1}, f \circ q_{2}\right)
$$

Required Problem 4(a) Let $n \geq 0$ be an integer, let $U=\mathbb{V}\left(x_{n+1}\left(x_{n+1}-1\right)\right) \subset$ \mathbb{A}_{k}^{n+1}, let $q_{1}: \mathbb{A}_{k}^{n} \rightarrow U$ be $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{n}, 0\right)$ and let $q_{2}: \mathbb{A}_{k}^{n} \rightarrow U$ be $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}, \ldots, a_{n}, 1\right)$. Prove $\left(U, q_{1}, q_{2}\right)$ is a coproduct of $\left(\mathbb{A}_{k}^{n}, \mathbb{A}_{k}^{n}\right)$ in the category of quasi-affine algebraic sets. (Hint: For every pair of regular functions f_{1} and f_{2} on $\mathbb{A}_{k}^{n}, f\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=x_{n+1} f_{2}\left(x_{1}, \ldots, x_{n}\right)+\left(1-x_{n+1}\right) f_{1}\left(x_{1}, \ldots, x_{n}\right)$ is a regular function on \mathbb{A}_{k}^{n+1} such that $q_{1}^{*} f=f_{1}$ and $q_{2}^{*} f=f_{2}$.)
(b) Assuming part (a), deduce every pair (X, Y) of quasi-affine algebraic sets has a coproduct $\left(U, q_{1}, q_{2}\right)$. (Hint: Embed in a large affine variety and use (a).)

Some problems on irreducibility:

Required Problem 5(a) Prove every nonempty open subset of an irreducible topological space is dense.
(b) Let $Y \subset X$ be a subset of a topological space, irreducible with the relative topology. Prove the closure of Y is also irreducible with the relative topology.
(c) Prove the image of an irreducible topological space under a continuous map is irreducible with the relative topology from the target.
Problem 6 Assuming Problem 5, prove the irreducible components of $\mathbb{V}\left(\left\langle x_{1}-\right.\right.$ $\left.\left.x_{2} x_{3}, x_{1} x_{3}-x_{2}^{2}\right\rangle\right) \subset \mathbb{A}_{k}^{3}$ are $V_{1}=\left\{(0,0, a) \mid a \in \mathbb{A}_{k}^{1}\right\}$ and $V_{2}=\left\{\left(b^{3}, b^{2}, b\right) \mid b \in \mathbb{A}_{k}^{1}\right\}$. This is the "affine hyperplane section $x_{4}=1$ " of the example from lecture on $9 / 13$.
Problem 7 Find the irreducible components of $\mathbb{V}\left(\left\langle x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right\rangle\right) \subset \mathbb{A}_{k}^{3}$.
Difficult Problem 8 For every integer $n \geq 1$ and every collection S of nonempty subsets of $\{1, \ldots, n\}$, define $m(S) \subset S$ to be the collection of subsets of $\{1, \ldots, n\}$ minimal among those in S, and define S^{\vee} to be the collection of all nonempty subsets $A \subset\{1, \ldots, n\}$ such that for every $B \in S, A \cap B \neq \emptyset$.
(a) Prove $m(S)^{\vee}=S^{\vee}, S \subset\left(S^{\vee}\right)^{\vee}$ and $m\left(\left(S^{\vee}\right)^{\vee}\right)=m(S)$.
(b) Define $I_{S} \subset k\left[x_{1}, \ldots, x_{n}\right]$ to be the ideal $\left\langle m_{A} \mid A \in S\right\rangle$, where $m_{A}=\prod_{i \in A} x_{i}$. Prove the set of irreducible components of $\mathbb{V}\left(I_{S}\right)$ is in bijection with $m\left(S^{\vee}\right)$.

Images of some morphisms:

Problem 9 For every pair of integers $m, n \geq 0$, the affine Segre mapping F : $\mathbb{A}_{k}^{m} \times \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{m n}$ is as follows. Let x_{1}, \ldots, x_{m} be coordinates on \mathbb{A}_{k}^{m}, let y_{1}, \ldots, y_{n} be coordinates on \mathbb{A}_{k}^{n} and let $z_{i, j}, 1 \leq i \leq m, 1 \leq j \leq n$ be coordinates on $\mathbb{A}_{k}^{m n}$. Then $F^{*} z_{i, j}=x_{i} y_{j}$. Find an ideal $I \subset k\left[z_{i, j}\right]$ such that $\mathbb{V}(I)=$ Image (F). (Hint: The generators of I are homogeneous degree 2 binomials.)
Problem 10 For every pair of integers $n, d \geq 0$, define $N=\binom{n+d}{d}$, and define the affine Veronese mapping $F: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{N}$ as follows. Let x_{1}, \ldots, x_{n} be coordinates on \mathbb{A}_{k}^{n} and let $z_{i_{1}, \ldots, i_{n}}$ be coordinates on \mathbb{A}_{k}^{N} where $\left(i_{1}, \ldots, i_{n}\right)$ runs through all n-tuples of nonnegative integers with $i_{1}+\cdots+i_{n}=d$. Then $F^{*} z_{i_{1}, \ldots, i_{n}}=x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}$. Find an ideal $I \subset k\left[z_{i_{1}, \ldots, i_{n}}\right]$ such that $\mathbb{V}(I)=\operatorname{Image}(F)$. (Hint: The generators of I are homogeneous degree 2 binomials.)

Difficult Problem 11 For every integer $n \geq 2$, define $N=\binom{n}{2}$ and define F : $\mathbb{A}_{k}^{2 n} \rightarrow \mathbb{A}_{k}^{N}$ as follows. Let $x_{1,1}, \ldots, x_{1, n}, x_{2,1}, \ldots, x_{2, n}$ be coordinates on $\mathbb{A}_{k}^{2 n}$ and let $z_{i, j}, 1 \leq i<j \leq n$ be coordinates on \mathbb{A}_{k}^{N}. Then $F^{*} z_{i, j}=x_{1, i} x_{2, j}-x_{1, j} x_{2, i}$. The image of this morphism is the affine cone over the Grassmannian $\operatorname{Grass}(2, n)$. Find an ideal $I \subset k\left[z_{i, j}\right]$ such that $\mathbb{V}(I)=\operatorname{Image}(F)$. (Hint: Interpret elements of $\mathbb{A}_{k}^{2 n}$ as $2 \times n$ matrices; interpret elements of \mathbb{A}_{k}^{N} as elements of the exterior square of the n-space, which also give anti-symmetric $n \times n$ matrices, and take Pfaffians of appropriate 4×4-submatrices of this $n \times n$-matrix. The generators are homogeneous degree 2 trinomials.)

Problem 12 Give an example of a regular morphism of affine varieties $F: V \rightarrow W$ whose image is not a quasi-affine algebraic set.
Problem 13: Proposition 4.8 can fail if W is not affine Let $V=\mathbb{A}_{k}^{2}$, let $W=\mathbb{A}_{k}^{2}-\mathbb{V}\left(x_{1}, x_{2}\right)$ and let $i: W \rightarrow V$ be the inclusion. Prove that $i^{*}: \mathcal{O}_{V}(V) \rightarrow$ $\mathcal{O}_{W}(W)$ is an isomorphism, but there is no inverse of i, i.e., Proposition 4.8 fails for V and W.

Very Difficult Problem 14 Prove there exists a quasi-affine algebraic set V such that $\mathcal{O}_{V}(V)$ is not a finitely-generated k-algebra. The examples I am aware of all have dimension ≥ 4. (Warning: This problem would be more appropriate at the end of 18.726. I mention it now because you can understand it, and it is a problem to keep in mind as the semester goes on.)
Problem 15 Prove the k-algebra $\mathcal{O}_{V}(V)$ of every quasi-affine algebraic set V is a subalgebra of a finitely-generated k-algebra.

Problem 16, An open affine that is not a basic open affine, I Together with the next problem, this problem gives an open subset of an affine algebraic set, itself isomorphic to an affine algebraic set, but not a basic open affine $D(s)$. In both problems, assume $\operatorname{char}(k) \neq 2$ and let i denote a solution of $x^{2}+1$ in k. Let $C \subset \mathbb{A}_{k}^{2}$ be the affine nodal plane cubic, $C=\mathbb{V}\left(y^{2}-x^{2}(x-1)\right)$ Let $\left(a_{0}, b_{0}\right) \in C$ and define $F: D\left(x-a_{0}\right) \rightarrow \mathbb{A}_{k}^{3}$ by $F(a, b)=\left(a, b,\left(b+b_{0}\right) /\left(a-a_{0}\right)\right)$.
(a) Prove there exists a regular morphism $G: C-\left\{\left(a_{0}, b_{0}\right)\right\} \rightarrow \mathbb{A}_{k}^{3}$ whose restriction to $D\left(x-a_{0}\right.$ equals F. (Hint: Expand the defining equation of C in the coordinates $x-a_{0}$ and $y-b_{0}$.)
(b) Prove the image of G is an affine algebraic subset of \mathbb{A}_{k}^{3}.
(c) Prove the projection $\pi: \mathbb{A}_{k}^{3} \rightarrow \mathbb{A}_{k}^{2}, \pi(a, b, c)=(a, b)$ restricts on the image of G to an inverse morphism to G. Therefore $C-\left\{a_{0}, b_{0}\right\}$ is an open subset of C, itself isomorphic to an affine algebraic set.

Difficult Problem 17, An open affine that is not a basic open affine, II This problem continues Problem 16; again $\operatorname{char}(k) \neq 2$. Consider the morphism $H: \mathbb{A}_{k}^{1} \rightarrow C$ by $H(u)=\left(u^{2}+1, u\left(u^{2}+1\right)\right)$. Let t be a coordinate on \mathbb{A}_{k}^{1}.
(a) Prove $H^{*}: k[C] \rightarrow k[t]$ maps $k[C]$ isomorphically to the subalgebra of functions $f(t) \in k[t]$ such that $f(i)=f(-i)$.
(b) For (b), (c) and (d), assume $\left(a_{0}, b_{0}\right) \in C-\{(0,0)\}$. Prove the ideal of $k[t]$ generated by $H^{*}\left(\left\langle x-a_{0}, y-b_{0}\right\rangle\right)$ is the principal ideal $\left\langle a_{0} t-b_{0}\right\rangle$.
(c) If there is an element $s \in k[V]$ such that $\mathbb{V}(s)=\left\{\left(a_{0}, b_{0}\right)\right\}, H^{*}(s)=c(a t-b)^{n}$ for some nonzero constant $c \in k$ and integer $n \geq 1$. (Hint: Consider the image of
s in $k[V][1 / x y] \cong k[t]\left[1 /\left(t^{2}+1\right)\right]$. Use this to express $H^{*} s$ as $c\left(t^{2}+1\right)^{r}(a t-b)^{n}$ for some $r \geq 0$, and then use that $s(0,0) \neq 0$.)
(d) Deduce that $\left(a_{0} i-b_{0}\right)^{n}=\left(-a_{0} i-b_{0}\right)^{n}$, because $c(a t-b)^{n}$ is in the image of H^{*}. Therefore for every $\left(a_{0}, b_{0}\right) \in C-\{(0,0)\}$, if $\left(b_{0}-i a_{0}\right) /\left(b_{0}+i a_{0}\right)$ is not a root of unity, then $C-\left\{\left(a_{0}, b_{0}\right)\right\}$ is of the form $D(s)$ for no element $s \in k[V]$ (in fact these are equivalent conditions).

