18.725 SOLUTIONS TO PROBLEM SET 1

Required Problem 1 Do Exercise 1.11 from the notes for Lecture 1. Try to use the Nullstellensatz only when necessary.
Solution:(i) Clearly $\mathbb{I}(\emptyset)=k\left[x_{1}, \ldots, x_{n}\right]$. The Strong Nullstellensatz implies $\mathbb{I}\left(\mathbb{A}_{k}^{n}\right)=\mathbb{I}(\mathbb{V}(\{0\}))=\operatorname{rad}\{0\}=\{0\}$. This can also be proved by induction on n. For $n=0$, it is trivial. Let $n>0$ and assume the result known for $n-1$. For every $f \in k\left[x_{1}, \ldots, x_{n}\right]-\{0\}$, expand it as $f=\sum_{i=0}^{d} g_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{i}$ where $g_{d} \neq 0$. By the induction hypothesis, there exists $\left(a_{1}, \ldots, a_{n-1}\right) \in \mathbb{A}_{k}^{n-1}$ such that $g_{d}\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$. The polynomial $f\left(a_{1}, \ldots, a_{n-1}, x_{n}\right)=\sum_{i=0}^{d} g_{i} x_{n}^{i}$ has degree d, so at most d roots. Since k is infinite there exists $a_{n} \in k$ such that $f\left(a_{1}, \ldots, a_{n-1}, a_{n}\right) \neq 0$, i.e., $f \notin \mathbb{I}\left(\mathbb{A}_{k}^{n}\right)$.
(ii) For every $f \in \mathbb{I}(W)$, since f vanishes on W it also vanishes on V, i.e., $f \in \mathbb{I}(V)$.
(iii) Denote $V=\cap_{\lambda} V_{\lambda}$ and denote $I=\sum_{\lambda} \mathbb{I}\left(V_{\lambda}\right)$. By Exercise 1.3(iii), $V=\mathbb{V}(I)$. By the Strong Nullstellensatz, $\mathbb{I}(V)=\mathbb{I}(\mathbb{V}(I))=\operatorname{rad}(I)$.
(iv) By (ii), $\mathbb{I}(V \cup W) \subset \mathbb{I}(V) \cap \mathbb{I}(W)$. By Exercise 1.3(ii), $\mathbb{V}(\mathbb{I}(V) \cap \mathbb{I}(W)) \supset$ $V \cup W$, so that by (ii) again, $\mathbb{I}(V) \cap \mathbb{I}(W) \subset \mathbb{I}(\mathbb{V}(\mathbb{I}(V) \cap \mathbb{I}(W))) \subset \mathbb{I}(V \cup W)$. Thus $\mathbb{I}(V \cup W)=\mathbb{I}(V) \cap \mathbb{I}(W)$.
(v) Clearly $V \subset \mathbb{V}(\mathbb{I}(V))$. For every Zariski closed W containing $V, \mathbb{I}(W) \subset \mathbb{I}(V)$ by (ii), and $\mathbb{V}(\mathbb{I}(V)) \subset \mathbb{V}(\mathbb{I}(W))=W$ by Exercise 1.3 (ii). Thus $\mathbb{V}(\mathbb{I}(W))$ is the smallest Zariski closed set containing V.
Required Problem 2 (a) Prove that \mathbb{A}_{k}^{1} with the Zariski topology is not Hausdorff.

Solution: The zero locus of a polynomial function on \mathbb{A}_{k}^{1} is all of \mathbb{A}_{k}^{1} or a finite set. So the intersection of any 2 nonempty open subsets is the complement of a finite set, and thus nonempty.
(b) Prove that any bijection $F: \mathbb{A}_{k}^{1} \rightarrow \mathbb{A}_{k}^{1}$ is a homeomorphism with respect to the Zariski topology.
Solution: The preimage under F of a finite set is a finite set, and of \mathbb{A}_{k}^{1} is \mathbb{A}_{k}^{1}. Thus F is continuous. Since F^{-1} is a bijection, it is also continuuous and F is a homeomorphism.

Required Problem 3 Let $V \subset \mathbb{A}_{k}^{m}$ and $W \subset \mathbb{A}_{k}^{n}$ be affine algebraic sets with $\mathbb{I}(V)=I \subset k\left[x_{1}, \ldots, x_{m}\right]$ and $\mathbb{I}(W)=J \subset k\left[y_{1}, \ldots, y_{n}\right]$ respectively. Define $K \subset k\left[z_{1}, \ldots, z_{m}, z_{m+1}, \ldots, z_{m+n}\right]$ to be the ideal,

$$
K=\left\langle f\left(z_{1}, \ldots, z_{m}\right) \mid f\left(x_{1}, \ldots, x_{m}\right) \in I\right\rangle+\left\langle g\left(z_{m+1}, \ldots, z_{m+n}\right) \mid g\left(y_{1}, \ldots, y_{n}\right) \in J\right\rangle
$$

(a) Prove the map
$\left(\pi_{1}, \pi_{2}\right): \mathbb{A}_{k}^{m+n} \rightarrow \mathbb{A}_{k}^{m} \times \mathbb{A}_{k}^{n},\left(z_{1}, \ldots, z_{m}, z_{m+1}, \ldots, z_{m+n}\right) \mapsto\left(\left(z_{1}, \ldots, z_{m}\right),\left(z_{m+1}, \ldots, z_{m+n}\right)\right)$,
restricts to a bijection from $\mathbb{V}(K)$ to $V \times W$.

Solution: First of all, $\pi_{1}^{*}(\mathbb{I}(V))$ and $\pi_{2}^{*}(\mathbb{I}(W))$ are contained in K, thus $\pi_{1}(\mathbb{V}(K)) \subset$ V and $\pi_{2}(\mathbb{V}(K)) \subset W$. For every $p=\left(a_{1}, \ldots, a_{m}\right) \in V$ and $q=\left(b_{1}, \ldots, b_{n}\right) \in$ W, all generators of K are zero on $r=\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)$, i.e., $r \in \mathbb{V}(K)$ is an element such that $\left(\pi_{1}, \pi_{2}\right)(r)=(p, q)$. Hence $\left(\pi_{1}, \pi_{2}\right)$ is surjective. Finally, $\left(\pi_{1}, \pi_{2}\right): \mathbb{A}_{k}^{m+n} \rightarrow \mathbb{A}_{k}^{m} \times \mathbb{A}_{k}^{n}$ is injective, thus also $\left(\pi_{1}, \pi_{2}\right): \mathbb{V}(K) \rightarrow V \times W$ is injective.
(b) Prove the projections $\pi_{1}: \mathbb{V}(K) \rightarrow V, \pi_{2}: \mathbb{V}(K) \rightarrow W$ are regular morphisms.

Solution: The coordinates of π_{1} and π_{2} are usual coordinates on \mathbb{A}_{k}^{m+n}, which are polynomials.
(c) For every affine algebraic set T prove the following set map is a bijection,

$$
\begin{gathered}
\left(\pi_{1}^{*}, \pi_{2}^{*}\right): \text { Regular morphisms }(T, \mathbb{V}(K)) \rightarrow \text { Regular morphisms }(T, V) \times \operatorname{Regular} \text { morphisms }(T, W), \\
(f: T \rightarrow \mathbb{V}(K)) \mapsto\left(\left(\pi_{1} \circ f: T \rightarrow V\right),\left(\pi_{2} \circ f: T \rightarrow W\right)\right)
\end{gathered}
$$

In other words, the pair of regular morphisms $\left(\pi_{1}, \pi_{2}\right)$ is a product of V and W in the category of affine algebraic sets.
Solution: By the correspondence between polynomial mappings and k-algebra homomorphisms, it suffices to prove for every reduced k-algebra A the following set map is a bijection,

$$
\operatorname{Hom}_{k-\mathrm{alg}}\left(k\left[z_{1}, \ldots, z_{m+n}\right] / K, A\right) \rightarrow \operatorname{Hom}_{k-\operatorname{alg}}(k[V], A) \times \operatorname{Hom}_{k-\operatorname{alg}}(k[W], A) .
$$

First this is proved injective, then surjective. Let $\phi_{1}, \phi_{2}: k\left[z_{1}, \ldots, z_{m+n}\right] / K \rightarrow A$ be k-algebra homomorphisms giving equal k-algebra homomorphisms $\pi_{1}^{*} \phi_{i}: k[V] \rightarrow A$ and $\pi_{2}^{*} \phi_{i}: k[W] \rightarrow A$. In particular, for every $j=1, \ldots, m, \phi_{1}\left(\overline{z_{j}}\right)=\phi_{2}\left(\overline{z_{j}}\right)$ since both equal the image in A of $\overline{x_{i}} \in k[V]$. Similarly, for $j=m+1, \ldots, m+n$, $\phi_{1}\left(\overline{z_{j}}\right)=\phi_{2}\left(\overline{z_{j}}\right)$. Thus for every polynomial $p \in k\left[z_{1}, \ldots, z_{m+n}\right]$,

$$
\phi_{1}(\bar{p})=p\left(\phi_{1}\left(z_{1}\right), \ldots, \phi_{1}\left(z_{m+n}\right)\right)=p\left(\phi_{2}\left(z_{1}\right), \ldots, \phi_{2}\left(z_{m+n}\right)\right)=\phi_{2}(\bar{p}) .
$$

So $\phi_{1}=\phi_{2}$, i.e., $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)$ is injective.
Next, let $\phi_{V}: k[V] \rightarrow A$ and $\phi_{W}: k[W] \rightarrow A$ be k-algebra homomorphisms. Define a k-algebra homomorphism $\widetilde{\phi}: k\left[z_{1}, \ldots, z_{n}\right] \rightarrow A$ by,

$$
\widetilde{\phi}\left(z_{i}\right)=\left\{\begin{array}{rr}
\phi_{V}\left(\overline{x_{i}}\right), & 1 \leq i \leq m \\
\phi_{W}\left(\overline{y_{j-m}}\right), & m+1 \leq i \leq n
\end{array}\right.
$$

For every $f \in I$,

$$
\begin{gathered}
\widetilde{\phi}\left(f\left(z_{1}, \ldots, z_{m}\right)\right)=f\left(\widetilde{\phi}\left(z_{1}\right), \ldots, \widetilde{\phi}\left(z_{m}\right)\right)= \\
f\left(\phi_{V}\left(\overline{x_{1}}\right), \ldots, \phi_{V}\left(\overline{x_{m}}\right)\right)=\phi_{V}\left(\overline{f\left(x_{1}, \ldots, x_{m}\right)}\right)=\phi_{V}(0)=0 .
\end{gathered}
$$

Similarly, for every $g \in J, \widetilde{\phi}\left(g\left(z_{m+1}, \ldots, z_{m+n}\right)\right)=0$. Therefore K is contained in the kernel of $\widetilde{\phi}$. So it factors through a k-algebra homomorphism $\phi: k\left[z_{1}, \ldots, z_{m+n}\right] / K \rightarrow$ A. By construction $\pi_{1}^{*} \phi=\phi_{V}, \pi_{2}^{*} \phi=\phi_{W}$. Therefore $\left(\pi_{1}^{*}, \pi_{2}^{*}\right)$ is also surjective.
Required Problem 4(a) Prove the induced topology on every subset of a Noetherian topological space is Noetherian.

Solution: Let X be a Noetherian topological space, let $Y \subset X$ be a subset, and let \mathcal{C} be a nonempty collection of closed subset of Y. The collection \mathcal{D} of closures in X of sets in \mathcal{C} contains a minimal closes set V. The intersection $V \cap Y$ is in \mathcal{C}. For every $W \subset V \cap Y$ in \mathcal{C}, the closure of W in X is in \mathcal{D} and a subset of V, thus equals V. So $W=V \cap Y$, i.e., $V \cap Y$ is a minimal closed set in \mathcal{C}.
(b) Prove every Noetherian topological space is quasi-compact. (Hint: Given an open covering \mathcal{U} of X by open subsets, consider the collection of closed subsets that are complements of unions of finite subsets.)
Solution: Because X is Noetherian, the collection \mathcal{C} of complements of unions of finite subsets of \mathcal{U} contains a minimal closed set V; say $V=X-\left(\cup_{i=1}^{n} U_{i}\right)$ for U_{1}, \ldots, U_{n} in \mathcal{U}. Every element of X is contained in some set U in \mathcal{U}. Since $V-U=X-\left(U \cup\left(\cup_{i} U_{i}\right)\right), V-U \subset V$ is in \mathcal{C} so that $V-U=V$. So every element of X is not in V, i.e. $V=\emptyset$. Therefore $\left(U_{1}, \ldots, U_{n}\right)$ is a finite subcovering of \mathcal{U}.

Problem 5 Give an example of a Jacobson ring that is not a finitely-generated algebra over a field. Prove your example is a Jacobson ring.
Solution: The ring of integers \mathbb{Z} is a Jacobson ring: the only prime ideal that is not a maximal ideal is (0), which is the intersection over all primes p of $\cap p \mathbb{Z}$.

Problem 6 Denote $f(X, Y)=C_{2,0,0} X^{2}+C_{1,1,0} X Y+C_{0,2,0} Y^{2}+C_{1,0,1} X+C_{0,1,1} Y+$ $C_{0,0,2}$ for coefficients $C_{i, j, k} \in k$ satisfying $\left(C_{2,0,0}, C_{1,1,0}, C_{0,2,0}\right) \neq(0,0,0)$.
(a) Prove $\mathbb{V}(f) \subset \mathbb{A}_{k}^{2}$ is nonempty.

Solution: It is not hard to prove this directly, but it also follows from the Weak Nullstellensatz: because f is not constant, it it is not invertible and therefore is contained in a maximal ideal, which is $\mathbb{I}(p)$ for some $p \in \mathbb{V}(f)$.
(b) If the following symmetric matrix M is invertible, prove f is irreducible (and thus $\mathbb{V}(f)$ is irreducible).

$$
M=\left(\begin{array}{rrr}
2 C_{2,0,0} & C_{1,1,0} & C_{1,0,1} \\
C_{1,1,0} & 2 C_{0,2,0} & C_{0,1,1} \\
C_{1,0,1} & C_{0,1,1} & 2 C_{0,0,2}
\end{array}\right)
$$

Solution: Assume f is reducible. The matrix M will be proved singular. Because degree $(f)=2, f=g_{1} g_{2}$ for linear polynomials g_{1} and g_{2}. The rows of the matrix M are the coefficients of X, Y and the constant coefficient in $\partial f / \partial X, \partial f / \partial Y$ and $2 f-X \partial f / \partial X-Y \partial f / \partial Y$. Expanding this in g_{1} and g_{2}, all three are constant linear combinations of g_{1} and g_{2}; thus the three rows are linearly dependent.
(c) If M has rank at least 2 , prove f is not the square of a linear polynomial (and thus $\mathbb{V}(f)$ is not a line).

Solution: Assume $f=g^{2}$. By the same argument as above, the three rows of M are the coefficients of constant multiples of g so that M has rank at most 1 .
Problem 7 With notation from Problem 6 and assuming $\operatorname{char}(k) \neq 2$, prove that $\mathbb{V}(f)$ is a line if M has rank 1 , and that $\mathbb{V}(f)$ is reducible if M has rank 2. Don't write up: What if $\operatorname{char}(k)=2$?

Solution: Assume first M has rank 1. Because $\left(C_{2,0,0}, C_{1,1,0}, C_{0,2,0}\right) \neq(0,0,0)$, at least one of $\partial f / \partial X$ or $\partial f / \partial Y$ is nonzero; say $\partial f / \partial X \neq 0$. The other 2 rows are multiples of $\partial f / \partial X$, i.e., there exist $a, b \in k$ such that,

$$
\begin{array}{cl}
\partial f / \partial Y & =a \partial f / \partial X \\
2 f-X \partial f / \partial X-Y \partial f / \partial Y & =b \partial f / \partial X
\end{array}
$$

Substituting in,

$$
2 f=(X+a Y+b) \partial f / \partial X
$$

Partial differentiating both sides with respect to X and cancelling,

$$
\partial f / \partial X=(X+a Y+b) \partial^{2} f / \partial X^{2}
$$

Therefore,

$$
2 f=(X+a Y+b)\left(\partial^{2} f / \partial X^{2}\right)
$$

and $\mathbb{V}(f)=\mathbb{V}(2 f)=\mathbb{V}(X+a Y+b)$ is a line.
Next suppose that M has rank 2. Then there exists $(u, v, w) \neq(0,0,0)$ and a linear relation,

$$
u \partial f / \partial X+v \partial f / \partial Y+w(2 f-X \partial f / \partial X-Y \partial f / \partial Y)=0
$$

If $w=0$ then, after a linear change of coordinates, the relation gives $\partial f / \partial Y=0$. Therefore $f=C_{2,0,0} X^{2}+C_{1,0,1} X+C_{0,0,2}$, which is the equation of 2 parallel lines. If $w \neq 0$, then after translating to $(u / w, v / w), f$ has no constant or linear terms, i.e., f is the equation of 2 lines intersecting in $(u / w, v / w)$.

Difficult Problem 8 With notation as in Problem 3, prove that K is a radical ideal. Warning: You will need to use that k is algebraically closed; for k not a perfect field there are examples where the ideals I and J are radical, but K is not radical.

Solution: First comes a lemma of interest in its own right.
Lemma 0.1. If V and W are irreducible, then K is a prime ideal.
Proof. It suffices to prove for every pair $f^{\prime}, f^{\prime \prime} \in k\left[z_{1}, \ldots, z_{m+n}\right]$ not in $K, f^{\prime} f^{\prime \prime}$ is not in K. Together f^{\prime} and $f^{\prime \prime}$ involves only finitely many monomials, whose $\left(z_{1}, \ldots, z_{m}\right)$-parts map to elements in $k[V]$ spanning a finite dimensional k-vector space, and whose $\left(z_{m+1}, \ldots, z_{m+n}\right)$-parts map to elements in $k[W]$ spanning a finite dimensional k-vector space. Denote by $a_{1}, \ldots, a_{r} \in k\left[z_{1}, \ldots, z_{m}\right]$ elements mapping to a basis for the finite dimensional k-subspace of $k[V]$, and by $b_{1}, \ldots, b_{s} \in$ $k\left[z_{m+1}, \ldots, z_{m+n}\right]$ elements mapping to a basis for the finite dimensional k-subspace of $k[W]$. Modulo K, f^{\prime} is congruent to $g^{\prime}=\sum_{i, j} c_{i, j}^{\prime} a_{i} b_{j}$ and $f^{\prime \prime}$ is congruent to $g^{\prime \prime}=\sum_{i, j} c_{i, j}^{\prime \prime} a_{i} b_{j}$ for elements $c_{i, j}^{\prime}, c_{i, j}^{\prime \prime} \in k$. Because $f^{\prime}, f^{\prime \prime}$ are not in K, also $g^{\prime}, g^{\prime \prime}$ are not in K. To prove $f^{\prime} f^{\prime \prime}$ is not in K, it suffices to prove $g^{\prime} g^{\prime \prime}$ is not in K.
Because $g^{\prime} \neq 0, \sum_{i} c_{i, j_{1}}^{\prime} a_{i} \neq 0$ for some j_{1}; denote this $\alpha_{j_{1}}^{\prime}$. Because $g^{\prime \prime} \neq 0$, $\sum_{i} c_{i, j_{2}}^{\prime \prime} a_{i} \neq 0$ for some j_{2}; denote this $\alpha_{j_{2}}^{\prime \prime}$. The images ${\overline{\alpha^{\prime}}}_{j_{1}}, \overline{\alpha^{\prime \prime}}{ }_{j_{2}} \in k[V]$ are nonzero because a_{1}, \ldots, a_{r} map to k-linearly independent elements. Because $k[V]$ is an integral domain, $\overline{\alpha^{\prime}}{ }_{j_{1}} \overline{\alpha^{\prime \prime}} j_{2} \neq 0$, i.e., there exists $p=\left(p_{1}, \ldots, p_{m}\right) \in V$ such that ${\overline{\alpha^{\prime}}}_{j_{1}}(p),{\overline{\alpha^{\prime \prime}}}_{j_{2}}(p) \neq 0$. Denote by $g^{\prime}(p), g^{\prime \prime}(p) \in k[W]$ the elements obtained by substituting in $z_{i}=a_{i}$ for $i=1, \ldots, m$ and $z_{m+i}=\overline{y_{i}}$ for $i=1, \ldots, n$. Each is a linear combination of the k-linearly independent elements $\bar{b}_{1}, \ldots, \bar{b}_{s}$, and the coefficients of $\bar{b}_{j_{1}}$ in $g^{\prime}(p)$ and of $\bar{b}_{j_{2}}$ in $g^{\prime \prime}(p)$ are nonzero, i.e., $g^{\prime}(p), g^{\prime \prime}(p) \neq 0$. Because $k[W]$ is an integral domain, $g^{\prime}(p) g^{\prime \prime}(p) \neq 0$, i.e., there exists $q \in W$ such that $g^{\prime}(p, q) g^{\prime \prime}(p, q) \neq 0$. By Problem $3, r=(p, q)$ is in $\mathbb{V}(K)$, therefore $g^{\prime} g^{\prime \prime}$ is not in K.

If either $V=\emptyset$ or $W=\emptyset$, the problem is trivial; hence assume both nonempty. Let V_{1}, \ldots, V_{r} be the irreducible components of V, and let W_{1}, \ldots, W_{s} be the irreducible components of W. For each $1 \leq i \leq r$ and $1 \leq j \leq s$, denote by $K_{i, j} \subset$ $k\left[z_{1}, \ldots, z_{m+n}\right]$ the ideal determined by $\mathbb{I}\left(V_{i}\right)$ and $\mathbb{I}\left(W_{j}\right)$. Clearly $K \subset \cap_{i, j} K_{i, j}$. The
claim is that $K=\cap_{i, j} K_{i, j}$. Let $f \in \cap_{i, j} K_{i, j}$ be any element. Just as in the proof of the lemma, there exist sequences $a_{1}, \ldots, a_{r} \in \cap_{i, j} K_{i, j}$ and $b_{1}, \ldots, b_{s} \in \cap_{i, j} K_{i, j}$ mapping to k-linearly independent sets in $k[V]$ and $k[W]$ and such that, modulo K, f is congruent to an element $g=\sum_{v, w} c_{v, w} a_{v} b_{w}$. If f is not in K, then $g \neq 0$ so that for some $w, \sum_{v} c_{v, w} \overline{a_{v}} \in k[V]$ is nonzero. Therefore there exists $p \in V$ for which this element is nonzero. Thus $g(p) \in k[W]$ is nonzero. Because $g \in \cap_{i, j} K_{i, j}$, $g(p)$ is in $\cap_{j} \mathbb{I}\left(W_{j}\right)=(0)$. This contradiction proves $f \in K$. So $K=\cap_{i, j} K_{i, j}$. By the lemma, each ideal $K_{i, j}$ is a prime ideal. Therefore K is a radical ideal.
Problem 9 Prove $V=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in k\right\}$ is an affine algebraic subset of \mathbb{A}_{k}^{3} and find $\mathbb{I}(V) \subset k\left[x_{1}, x_{2}, x_{3}\right]$.

Solution: Clearly $V=\mathbb{V}\left(\left\langle x_{2}-x_{1}^{2}, x_{3}-x_{1}^{3}\right\rangle\right)$.
Difficult Problem 10 Prove the subset $V=\left\{\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right) \mid s, t \in k\right\}$ is an affine algebraic subset of \mathbb{A}_{k}^{4} and find $\mathbb{I}(V) \subset k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$. Don't write up: If you do both Problem 9 and Problem 10, compare your answers.
Solution: Consider the ideal $I=\left\langle x_{0} x_{2}-x_{1}^{2}, x_{0} x_{3}-x_{1} x_{2}, x_{1} x_{3}-x_{2}^{2}\right\rangle$. Denote $W=\mathbb{V}(I)$. Clearly $V \subset W$; the claim is $W \subset V$. Let $p=\left(a_{0}, \ldots, a_{3}\right)$ be an element of W. If $a_{0}=a_{3}=0$, then $a_{1}^{2}=a_{0} a_{2}=0$ and $a_{2}^{2}=a_{1} a_{3}=0$ so that $p=(0,0,0,0)$, which is in V. Therefore assume $a_{0} \neq 0$ or $a_{3} \neq 0$; without loss of generality $a_{0} \neq 0$. Denote by $s \in k$ any cube root of a_{0} and denote $t=$ $s a_{1} / a_{0}=a_{1} / s^{2}$. Then $a_{1}=s^{2} t, a_{2}=\left(a_{0} a_{2}\right) / a_{0}=a_{1}^{2} / a_{0}=s^{4} t^{2} / s^{3}=s t^{2}$, and $a_{3}=\left(a_{0} a_{3}\right) / a_{0}=\left(a_{1} a_{2}\right) / a_{0}=s^{3} t^{3} / s^{3}=t^{3}$. So $p=\left(s^{3}, s^{2} t, s t^{2}, t^{3}\right)$, which is in V. Therefore $V=\mathbb{V}(I)$.
Every I-congruence class of elements in $k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ contains an expression, $f=$ $a\left(x_{0}, x_{3}\right)+b\left(x_{0}, x_{3}\right) x_{1}+c\left(x_{0}, x_{3}\right) x_{2}$, for unique polynomials $a\left(x_{0}, x_{3}\right), b\left(x_{0}, x_{3}\right), c\left(x_{0}, x_{3}\right) \in$ $k\left[x_{0}, x_{3}\right]$. Consider the k-algebra homomorphism

$$
\begin{gathered}
\phi: k\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \rightarrow k[s, t], \\
x_{0} \mapsto s^{3}, x_{1} \mapsto s^{2} t, x_{2} \mapsto s t^{2}, x_{3} \mapsto t^{3}
\end{gathered}
$$

The image $\phi(f)$ is $a\left(s^{3}, t^{3}\right)+b\left(s^{3}, t^{3}\right) s^{2} t+c\left(s^{3}, t^{3}\right) s t^{2}$. Gathering monomials whose s and t exponent are congruent modulo $3, \phi(f)=0$ iff $a\left(s^{3}, t^{3}\right)=b\left(s^{3}, t^{3}\right)=$ $c\left(s^{3}, t^{3}\right)=0$, i.e., iff $f=0$. So ϕ determines an injective k-algebra homomorphism $k\left[x_{0}, \ldots, x_{3}\right] / I \rightarrow k[s, t]$. Since $k[s, t]$ is an integral domain, also $k\left[x_{0}, \ldots, x_{3}\right] / I$ is an integral domain. Hence I is a prime ideal. By the Strong Nullstellensatz, $\mathbb{I}(V)=\operatorname{rad}(I)=I$.
Problem 11 Assume $\operatorname{char}(k) \neq 2$. Let $g \geq 1$ be an integer, let $a_{1}, a_{2}, \ldots, a_{2 g-1} \in$ $k-\{0,1\}$ be distinct elements, and denote $f=y^{2}-x(x-1)\left(x-a_{1}\right) \ldots\left(x-a_{2 g-1}\right) \in$ $k[x, y]$.
(a) Prove f is an irreducible polynomial. (Hint: Eisenstein's criterion.)

Solution: This follows immediately from Eisenstein's criterion for irreducibility.
(b) Prove the ring $k[x, y] /\langle f\rangle$ is not a unique factorization domain.

Solution: By way of contradiction, suppose it is a UFD. The claim is that \bar{x} is a square. Every irreducible factor p of \bar{x} is a factor of \bar{y}. Let $\bar{y}=p^{e} q$ with $q \notin\langle p\rangle$. Then $\bar{y}^{2}=p^{2 e} q^{2}$. For every $a \in k-\{0\}, a=\bar{x}-(\bar{x}-a)$ and p does not divide a, thus p does not divide $\bar{x}-a$. So $p^{2 e}$ divides \bar{x}. Because p does not divide q, it does
not divide q^{2}, hence $\bar{x}=p^{2 e} r$ with $r \notin\langle p\rangle$. Therefore the irreducible factorization of \bar{x} is $p_{1}^{2 e_{1}} \cdots p_{m}^{2 e_{m}}$, i.e., $\bar{x}=u^{2}$ for $u=p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}$.
Every element in $k[x, y]$ is congruent modulo $\langle f\rangle$ to $a(x)+b(x) y$ for unique polynomials $a(x), b(x) \in k[x]$; call this the standard form of the congruence class. Let $a(x)+b(x) y$ be a standard form such that $u=\overline{a(x)+b(x) y}$. Modulo f,

$$
\begin{gathered}
(a(x)+b(x) y)^{2}=a(x)^{2}+2 a(x) b(x) y+b(x)^{2} y^{2} \\
\equiv\left(a(x)^{2}+b(x)^{2} x(x-1) \cdots\left(x-a_{2 g-1}\right)\right)+(2 a(x) b(x)) y,
\end{gathered}
$$

which is also congruent modulo f to $x+0 y$. Because the standard form of the congruence class is unique, $2 a(x) b(x)=0$ and $\left(a(x)^{2}+b(x)^{2} x(x-1) \cdots\left(x-a_{2 g-1}\right)\right)=x$. Because $\operatorname{char}(k) \neq 2, a(x) b(x)=0$, i.e., $a(x)=0$ or $b(x)=0$. If $a(x)=0$, then $x=b(x)^{2} x(x-1) \cdots\left(x-a_{2 g-1}\right)$. But then, in particular, $x-1$ divides x which is absurd. If $b(x)=0$, then $x=a(x)^{2}$ which is again absurd. This contradiction proves the hypothesis is false, i.e., $k[x, y] /\langle f\rangle$ is not a UFD.
(c) Conclude the affine algebraic set $\mathbb{V}(f) \subset \mathbb{A}_{k}^{2}$ is not isomorphic to \mathbb{A}_{k}^{1}. This affine algebraic set is the affine part of a genus g hyperelliptic curve.
Solution: The coordinate ring of \mathbb{A}_{k}^{1} is $k[t]$, which is a UFD. Since the coordinate ring of $\mathbb{V}(f)$ is not isomorphic to the coordinate ring of $\mathbb{A}_{k}^{1}, \mathbb{V}(f)$ is not isomorphic to \mathbb{A}_{k}^{1}.
Difficult Problem 12 With notation from Problem 11, prove there is no nonconstant regular morphism $F: \mathbb{A}_{k}^{1} \rightarrow \mathbb{V}(f)$. (Hint: If there where such a morphism, what could you say about the irreducible factors of $F^{*} y, F^{*} x, F^{*}(x-1)$, etc.)
Solution: Let $F: \mathbb{A}_{k}^{1} \rightarrow \mathbb{V}(f)$ be a regular morphism. The coordinate ring of \mathbb{A}_{k}^{1} is $k[t]$, which is a UFD. Because they differ by nonzero constants, the irreducible factors of $F^{*} x, F^{*}(x-1)$, etc. are all distinct. But the concatenation of these irreducible factors is the irreducible factorization of $F^{*} y^{2}$, which is a square. Therefore each of $F^{*} x, F^{*}(x-1)$, etc. is a square. In particular, $F^{*} x=u^{2}$ and $F^{*}(x-1)=v^{2}$ for some polynomials $u, v \in k[t]$. But then $1=F^{*} x-F^{*}(x-1)=u^{2}-v^{2}=(u-v)(u+v)$. So $u-v=a, u+v=a^{-1}$ for some nonzero constant. Solving, $2 u=a+a^{-1}$. Thus $F^{*} x$ is a constant. So also $F^{*}\left(x(x-1) \ldots\left(x-a_{2 g-1}\right)\right)$ is a constant. Thus $F^{*}\left(y^{2}\right)$ is a constant, which implies $F^{*}(y)$ is a constant. Therefore F is a constant morphism.
Problem 13 Let $F: V \rightarrow W$ be a regular morphism of affine algebraic sets, and let $F^{*}: k[W] \rightarrow k[V]$ be the induced k-algebra homomorphism on coordinate rings.
(a) $\operatorname{Prove} \operatorname{Kernel}\left(F^{*}\right)$ is a radical ideal of $k[W]$.

Solution: The image of F^{*} is a subalgebra of a reduced ring, and so is itself a reduced ring. Therefore the kernel of F^{*} is a radical ideal.
(b) Describe the ideal $\mathbb{I}(F(V))$.

Solution: A polynomial function on W is zero on $F(V)$ iff the precomposition with F is zero iff it is in the kernel of F^{*}. Thus $\mathbb{I}(F(V))$ is $\operatorname{Kernel}\left(F^{*}\right)$.
(c) Give a geometric interpretation to the condition that F^{*} is injective.

By (b), F^{*} is injective iff $\mathbb{I}(F(V))$ is the zero ideal iff the Zariski closure $\mathbb{V}(\mathbb{I}(F(V)))$ is all of W. Therefore F^{*} is injective iff $F(V) \subset W$ is dense in the Zariski topology.
(d) Give an example where F^{*} is injective, but $F(V) \neq W$.

Solution: Let $V=\mathbb{V}(x y-1) \subset \mathbb{A}_{k}^{2}$, let $W=\mathbb{A}_{k}^{1}$ and let $F: V \rightarrow W$ be $F(x, y)=x$. Then $F^{*}: k[x] \rightarrow k[x, y] /\langle x y-1\rangle=k[x][1 / x]$ is injective. But $0 \in W-F(V)$.
Problem 14 Give an example of a homeomorphic regular morphism of affine algebraic sets that is not an isomorphism of affine algebraic sets. Don't write up: Try to find an example where the coordinate ring of the target is a unique factorization domain.
Solution: A standard example is to take $V=\mathbb{A}_{k}^{1}, W=\mathbb{V}\left(x^{3}-y^{2}\right) \subset \mathbb{A}_{k}^{2}$ and $F: V \rightarrow W$ is $F(t)=\left(t^{2}, t^{3}\right)$. It isn't hard to see this is a bijection. Because the Zariski closed subset of V, resp. W, are V itself, resp. W itself, together with all finite subsets, F is a homeomorphism. But it is not an isomorphism, because the map of coordinate rings is not an isomorphism.

A more interesting example is the following, called the Frobenius morphism (ubiquitous in positive characteristic algebra). Let k be an algebraically closed field of positive characteristic p. Let $n \geq 1$ and define $F: \mathbb{A}_{k}^{n} \rightarrow \mathbb{A}_{k}^{n}$ by $F\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$. This is a bijection because every element of k has a unique $p^{\text {th }}$ root. Moreover, for every polynomial $g \in k\left[x_{1}, \ldots, x_{n}\right], g^{p}=F^{*}(h)$ for some element $h \in$ $k\left[x_{1}, \ldots, x_{n}\right]$. Therefore $\mathbb{V}(g)=\mathbb{V}\left(g^{p}\right)=F^{-1}(\mathbb{V}(h))$, implying $F(\mathbb{V}(g))=\mathbb{V}(h)$. So F is a closed, continuous bijection, i.e., F is a homeomorphism. However F is not an isomorphism since there is no $h \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $F^{*} h=x_{1}$.
Problem 15 For every choice of $a, b \in k$, find the irreducible components of the affine algebraic set $\mathbb{V}(x y-z, b x+a y-z-a b) \subset \mathbb{A}_{k}^{3}$.
Solution: The irreducible components are $\mathbb{V}(x-a, z-a y)$ and $\mathbb{V}(y-b, z-b x)$.

