
18.725 SOLUTIONS TO PROBLEM SET 1

Required Problem 1 Do Exercise 1.11 from the notes for Lecture 1. Try to use
the Nullstellensatz only when necessary.

Solution:(i) Clearly I(∅) = k[x1, . . . , xn]. The Strong Nullstellensatz implies
I(An

k ) = I(V({0})) = rad{0} = {0}. This can also be proved by induction on
n. For n = 0, it is trivial. Let n > 0 and assume the result known for n − 1.
For every f ∈ k[x1, . . . , xn]−{0}, expand it as f =

∑d
i=0 gi(x1, . . . , xn−1)xi

n where
gd 6= 0. By the induction hypothesis, there exists (a1, . . . , an−1) ∈ An−1

k such
that gd(a1, . . . , an−1) 6= 0. The polynomial f(a1, . . . , an−1, xn) =

∑d
i=0 gix

i
n has

degree d, so at most d roots. Since k is infinite there exists an ∈ k such that
f(a1, . . . , an−1, an) 6= 0, i.e., f 6∈ I(An

k ).

(ii) For every f ∈ I(W ), since f vanishes on W it also vanishes on V , i.e., f ∈ I(V ).

(iii) Denote V = ∩λVλ and denote I =
∑

λ I(Vλ). By Exercise 1.3(iii), V = V(I).
By the Strong Nullstellensatz, I(V ) = I(V(I)) = rad(I).

(iv) By (ii), I(V ∪ W ) ⊂ I(V ) ∩ I(W ). By Exercise 1.3(ii), V(I(V ) ∩ I(W )) ⊃
V ∪W , so that by (ii) again, I(V ) ∩ I(W ) ⊂ I(V(I(V ) ∩ I(W ))) ⊂ I(V ∪W ). Thus
I(V ∪W ) = I(V ) ∩ I(W ).

(v) Clearly V ⊂ V(I(V )). For every Zariski closed W containing V , I(W ) ⊂ I(V )
by (ii), and V(I(V )) ⊂ V(I(W )) = W by Exercise 1.3(ii). Thus V(I(W )) is the
smallest Zariski closed set containing V .

Required Problem 2 (a) Prove that A1
k with the Zariski topology is not Haus-

dorff.

Solution: The zero locus of a polynomial function on A1
k is all of A1

k or a finite set.
So the intersection of any 2 nonempty open subsets is the complement of a finite
set, and thus nonempty.

(b) Prove that any bijection F : A1
k → A1

k is a homeomorphism with respect to the
Zariski topology.

Solution: The preimage under F of a finite set is a finite set, and of A1
k is A1

k.
Thus F is continuous. Since F−1 is a bijection, it is also continuuous and F is a
homeomorphism.

Required Problem 3 Let V ⊂ Am
k and W ⊂ An

k be affine algebraic sets with
I(V ) = I ⊂ k[x1, . . . , xm] and I(W ) = J ⊂ k[y1, . . . , yn] respectively. Define
K ⊂ k[z1, . . . , zm, zm+1, . . . , zm+n] to be the ideal,

K = 〈f(z1, . . . , zm)|f(x1, . . . , xm) ∈ I〉+ 〈g(zm+1, . . . , zm+n)|g(y1, . . . , yn) ∈ J〉.

(a) Prove the map

(π1, π2) : Am+n
k → Am

k ×An
k , (z1, . . . , zm, zm+1, . . . , zm+n) 7→ ((z1, . . . , zm), (zm+1, . . . , zm+n)),

restricts to a bijection from V(K) to V ×W .
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Solution: First of all, π∗1(I(V )) and π∗2(I(W )) are contained in K, thus π1(V(K)) ⊂
V and π2(V(K)) ⊂ W . For every p = (a1, . . . , am) ∈ V and q = (b1, . . . , bn) ∈
W , all generators of K are zero on r = (a1, . . . , am, b1, . . . , bn), i.e., r ∈ V(K) is
an element such that (π1, π2)(r) = (p, q). Hence (π1, π2) is surjective. Finally,
(π1, π2) : Am+n

k → Am
k × An

k is injective, thus also (π1, π2) : V(K) → V × W is
injective.

(b) Prove the projections π1 : V(K) → V , π2 : V(K) → W are regular morphisms.

Solution: The coordinates of π1 and π2 are usual coordinates on Am+n
k , which are

polynomials.

(c) For every affine algebraic set T prove the following set map is a bijection,

(π∗1 , π∗2) : Regular morphisms(T, V(K)) → Regular morphisms(T, V )× Regular morphisms(T,W ),
(f : T → V(K)) 7→ ((π1 ◦ f : T → V ), (π2 ◦ f : T → W ))

In other words, the pair of regular morphisms (π1, π2) is a product of V and W in
the category of affine algebraic sets.

Solution: By the correspondence between polynomial mappings and k-algebra
homomorphisms, it suffices to prove for every reduced k-algebra A the following set
map is a bijection,

Homk−alg(k[z1, . . . , zm+n]/K, A) → Homk−alg(k[V ], A)×Homk−alg(k[W ], A).

First this is proved injective, then surjective. Let φ1, φ2 : k[z1, . . . , zm+n]/K → A be
k-algebra homomorphisms giving equal k-algebra homomorphisms π∗1φi : k[V ] → A
and π∗2φi : k[W ] → A. In particular, for every j = 1, . . . ,m, φ1(zj) = φ2(zj) since
both equal the image in A of xi ∈ k[V ]. Similarly, for j = m + 1, . . . ,m + n,
φ1(zj) = φ2(zj). Thus for every polynomial p ∈ k[z1, . . . , zm+n],

φ1(p) = p(φ1(z1), . . . , φ1(zm+n)) = p(φ2(z1), . . . , φ2(zm+n)) = φ2(p).

So φ1 = φ2, i.e., (π∗1 , π∗2) is injective.

Next, let φV : k[V ] → A and φW : k[W ] → A be k-algebra homomorphisms. Define
a k-algebra homomorphism φ̃ : k[z1, . . . , zn] → A by,

φ̃(zi) =
{

φV (xi), 1 ≤ i ≤ m,
φW (yj−m), m + 1 ≤ i ≤ n

For every f ∈ I,

φ̃(f(z1, . . . , zm)) = f(φ̃(z1), . . . , φ̃(zm)) =
f(φV (x1), . . . , φV (xm)) = φV (f(x1, . . . , xm)) = φV (0) = 0.

Similarly, for every g ∈ J , φ̃(g(zm+1, . . . , zm+n)) = 0. Therefore K is contained in
the kernel of φ̃. So it factors through a k-algebra homomorphism φ : k[z1, . . . , zm+n]/K →
A. By construction π∗1φ = φV , π∗2φ = φW . Therefore (π∗1 , π∗2) is also surjective.

Required Problem 4(a) Prove the induced topology on every subset of a Noe-
therian topological space is Noetherian.

Solution: Let X be a Noetherian topological space, let Y ⊂ X be a subset, and
let C be a nonempty collection of closed subset of Y . The collection D of closures
in X of sets in C contains a minimal closes set V . The intersection V ∩ Y is in C.
For every W ⊂ V ∩ Y in C, the closure of W in X is in D and a subset of V , thus
equals V . So W = V ∩ Y , i.e., V ∩ Y is a minimal closed set in C.
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(b) Prove every Noetherian topological space is quasi-compact. (Hint: Given an
open covering U of X by open subsets, consider the collection of closed subsets that
are complements of unions of finite subsets.)

Solution: Because X is Noetherian, the collection C of complements of unions
of finite subsets of U contains a minimal closed set V ; say V = X − (∪n

i=1Ui)
for U1, . . . , Un in U . Every element of X is contained in some set U in U . Since
V −U = X− (U ∪ (∪iUi)), V −U ⊂ V is in C so that V −U = V . So every element
of X is not in V , i.e. V = ∅. Therefore (U1, . . . , Un) is a finite subcovering of U .

Problem 5 Give an example of a Jacobson ring that is not a finitely-generated
algebra over a field. Prove your example is a Jacobson ring.

Solution: The ring of integers Z is a Jacobson ring: the only prime ideal that is
not a maximal ideal is (0), which is the intersection over all primes p of ∩pZ.

Problem 6 Denote f(X, Y ) = C2,0,0X
2+C1,1,0XY +C0,2,0Y

2+C1,0,1X+C0,1,1Y +
C0,0,2 for coefficients Ci,j,k ∈ k satisfying (C2,0,0, C1,1,0, C0,2,0) 6= (0, 0, 0).

(a) Prove V(f) ⊂ A2
k is nonempty.

Solution: It is not hard to prove this directly, but it also follows from the Weak
Nullstellensatz: because f is not constant, it it is not invertible and therefore is
contained in a maximal ideal, which is I(p) for some p ∈ V(f).

(b) If the following symmetric matrix M is invertible, prove f is irreducible (and
thus V(f) is irreducible).

M =

 2C2,0,0 C1,1,0 C1,0,1

C1,1,0 2C0,2,0 C0,1,1

C1,0,1 C0,1,1 2C0,0,2


Solution: Assume f is reducible. The matrix M will be proved singular. Because
degree(f) = 2, f = g1g2 for linear polynomials g1 and g2. The rows of the matrix
M are the coefficients of X, Y and the constant coefficient in ∂f/∂X, ∂f/∂Y and
2f−X∂f/∂X−Y ∂f/∂Y . Expanding this in g1 and g2, all three are constant linear
combinations of g1 and g2; thus the three rows are linearly dependent.

(c) If M has rank at least 2, prove f is not the square of a linear polynomial (and
thus V(f) is not a line).

Solution: Assume f = g2. By the same argument as above, the three rows of M
are the coefficients of constant multiples of g so that M has rank at most 1.

Problem 7 With notation from Problem 6 and assuming char(k) 6= 2, prove that
V(f) is a line if M has rank 1, and that V(f) is reducible if M has rank 2. Don’t
write up: What if char(k) = 2?

Solution: Assume first M has rank 1. Because (C2,0,0, C1,1,0, C0,2,0) 6= (0, 0, 0), at
least one of ∂f/∂X or ∂f/∂Y is nonzero; say ∂f/∂X 6= 0. The other 2 rows are
multiples of ∂f/∂X, i.e., there exist a, b ∈ k such that,

∂f/∂Y = a∂f/∂X,
2f −X∂f/∂X − Y ∂f/∂Y = b∂f/∂X

Substituting in,
2f = (X + aY + b)∂f/∂X.
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Partial differentiating both sides with respect to X and cancelling,

∂f/∂X = (X + aY + b)∂2f/∂X2.

Therefore,
2f = (X + aY + b)(∂2f/∂X2),

and V(f) = V(2f) = V(X + aY + b) is a line.

Next suppose that M has rank 2. Then there exists (u, v, w) 6= (0, 0, 0) and a linear
relation,

u∂f/∂X + v∂f/∂Y + w(2f −X∂f/∂X − Y ∂f/∂Y ) = 0.

If w = 0 then, after a linear change of coordinates, the relation gives ∂f/∂Y = 0.
Therefore f = C2,0,0X

2 +C1,0,1X +C0,0,2, which is the equation of 2 parallel lines.
If w 6= 0, then after translating to (u/w, v/w), f has no constant or linear terms,
i.e., f is the equation of 2 lines intersecting in (u/w, v/w).

Difficult Problem 8 With notation as in Problem 3, prove that K is a radical
ideal. Warning: You will need to use that k is algebraically closed; for k not a
perfect field there are examples where the ideals I and J are radical, but K is not
radical.

Solution: First comes a lemma of interest in its own right.

Lemma 0.1. If V and W are irreducible, then K is a prime ideal.

Proof. It suffices to prove for every pair f ′, f ′′ ∈ k[z1, . . . , zm+n] not in K, f ′f ′′

is not in K. Together f ′ and f ′′ involves only finitely many monomials, whose
(z1, . . . , zm)-parts map to elements in k[V ] spanning a finite dimensional k-vector
space, and whose (zm+1, . . . , zm+n)-parts map to elements in k[W ] spanning a finite
dimensional k-vector space. Denote by a1, . . . , ar ∈ k[z1, . . . , zm] elements map-
ping to a basis for the finite dimensional k-subspace of k[V ], and by b1, . . . , bs ∈
k[zm+1, . . . , zm+n] elements mapping to a basis for the finite dimensional k-subspace
of k[W ]. Modulo K, f ′ is congruent to g′ =

∑
i,j c′i,jaibj and f ′′ is congruent to

g′′ =
∑

i,j c′′i,jaibj for elements c′i,j , c
′′
i,j ∈ k. Because f ′, f ′′ are not in K, also g′, g′′

are not in K. To prove f ′f ′′ is not in K, it suffices to prove g′g′′ is not in K.

Because g′ 6= 0,
∑

i c′i,j1ai 6= 0 for some j1; denote this α′
j1

. Because g′′ 6= 0,∑
i c′′i,j2ai 6= 0 for some j2; denote this α′′

j2
. The images α′

j1 , α
′′

j2 ∈ k[V ] are
nonzero because a1, . . . , ar map to k-linearly independent elements. Because k[V ]
is an integral domain, α′

j1α
′′

j2 6= 0, i.e., there exists p = (p1, . . . , pm) ∈ V such
that α′

j1(p), α′′
j2(p) 6= 0. Denote by g′(p), g′′(p) ∈ k[W ] the elements obtained

by substituting in zi = ai for i = 1, . . . ,m and zm+i = yi for i = 1, . . . , n. Each
is a linear combination of the k-linearly independent elements b1, . . . , bs, and the
coefficients of bj1 in g′(p) and of bj2 in g′′(p) are nonzero, i.e., g′(p), g′′(p) 6= 0.
Because k[W ] is an integral domain, g′(p)g′′(p) 6= 0, i.e., there exists q ∈ W such
that g′(p, q)g′′(p, q) 6= 0. By Problem 3, r = (p, q) is in V(K), therefore g′g′′ is not
in K. �

If either V = ∅ or W = ∅, the problem is trivial; hence assume both nonempty.
Let V1, . . . , Vr be the irreducible components of V , and let W1, . . . ,Ws be the
irreducible components of W . For each 1 ≤ i ≤ r and 1 ≤ j ≤ s, denote by Ki,j ⊂
k[z1, . . . , zm+n] the ideal determined by I(Vi) and I(Wj). Clearly K ⊂ ∩i,jKi,j . The
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claim is that K = ∩i,jKi,j . Let f ∈ ∩i,jKi,j be any element. Just as in the proof
of the lemma, there exist sequences a1, . . . , ar ∈ ∩i,jKi,j and b1, . . . , bs ∈ ∩i,jKi,j

mapping to k-linearly independent sets in k[V ] and k[W ] and such that, modulo
K, f is congruent to an element g =

∑
v,w cv,wavbw. If f is not in K, then g 6= 0

so that for some w,
∑

v cv,wav ∈ k[V ] is nonzero. Therefore there exists p ∈ V for
which this element is nonzero. Thus g(p) ∈ k[W ] is nonzero. Because g ∈ ∩i,jKi,j ,
g(p) is in ∩jI(Wj) = (0). This contradiction proves f ∈ K. So K = ∩i,jKi,j . By
the lemma, each ideal Ki,j is a prime ideal. Therefore K is a radical ideal.

Problem 9 Prove V = {(t, t2, t3)|t ∈ k} is an affine algebraic subset of A3
k and find

I(V ) ⊂ k[x1, x2, x3].

Solution: Clearly V = V(〈x2 − x2
1, x3 − x3

1〉).

Difficult Problem 10 Prove the subset V = {(s3, s2t, st2, t3)|s, t ∈ k} is an affine
algebraic subset of A4

k and find I(V ) ⊂ k[x0, x1, x2, x3]. Don’t write up: If you
do both Problem 9 and Problem 10, compare your answers.

Solution: Consider the ideal I = 〈x0x2 − x2
1, x0x3 − x1x2, x1x3 − x2

2〉. Denote
W = V(I). Clearly V ⊂ W ; the claim is W ⊂ V . Let p = (a0, . . . , a3) be an
element of W . If a0 = a3 = 0, then a2

1 = a0a2 = 0 and a2
2 = a1a3 = 0 so

that p = (0, 0, 0, 0), which is in V . Therefore assume a0 6= 0 or a3 6= 0; without
loss of generality a0 6= 0. Denote by s ∈ k any cube root of a0 and denote t =
sa1/a0 = a1/s2. Then a1 = s2t, a2 = (a0a2)/a0 = a2

1/a0 = s4t2/s3 = st2, and
a3 = (a0a3)/a0 = (a1a2)/a0 = s3t3/s3 = t3. So p = (s3, s2t, st2, t3), which is in V .
Therefore V = V(I).

Every I-congruence class of elements in k[x0, x1, x2, x3] contains an expression, f =
a(x0, x3)+b(x0, x3)x1+c(x0, x3)x2, for unique polynomials a(x0, x3), b(x0, x3), c(x0, x3) ∈
k[x0, x3]. Consider the k-algebra homomorphism

φ : k[x0, x1, x2, x3] → k[s, t],
x0 7→ s3, x1 7→ s2t, x2 7→ st2, x3 7→ t3

The image φ(f) is a(s3, t3)+ b(s3, t3)s2t+ c(s3, t3)st2. Gathering monomials whose
s and t exponent are congruent modulo 3, φ(f) = 0 iff a(s3, t3) = b(s3, t3) =
c(s3, t3) = 0, i.e., iff f = 0. So φ determines an injective k-algebra homomorphism
k[x0, . . . , x3]/I → k[s, t]. Since k[s, t] is an integral domain, also k[x0, . . . , x3]/I
is an integral domain. Hence I is a prime ideal. By the Strong Nullstellensatz,
I(V ) = rad(I) = I.

Problem 11 Assume char(k) 6= 2. Let g ≥ 1 be an integer, let a1, a2, . . . , a2g−1 ∈
k−{0, 1} be distinct elements, and denote f = y2−x(x−1)(x−a1) . . . (x−a2g−1) ∈
k[x, y].

(a) Prove f is an irreducible polynomial. (Hint: Eisenstein’s criterion.)

Solution: This follows immediately from Eisenstein’s criterion for irreducibility.

(b) Prove the ring k[x, y]/〈f〉 is not a unique factorization domain.

Solution: By way of contradiction, suppose it is a UFD. The claim is that x is a
square. Every irreducible factor p of x is a factor of y. Let y = peq with q 6∈ 〈p〉.
Then y2 = p2eq2. For every a ∈ k − {0}, a = x− (x− a) and p does not divide a,
thus p does not divide x− a. So p2e divides x. Because p does not divide q, it does
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not divide q2, hence x = p2er with r 6∈ 〈p〉. Therefore the irreducible factorization
of x is p2e1

1 · · · p2em
m , i.e., x = u2 for u = pe1

1 · · · pem
m .

Every element in k[x, y] is congruent modulo 〈f〉 to a(x) + b(x)y for unique poly-
nomials a(x), b(x) ∈ k[x]; call this the standard form of the congruence class. Let
a(x) + b(x)y be a standard form such that u = a(x) + b(x)y. Modulo f ,

(a(x) + b(x)y)2 = a(x)2 + 2a(x)b(x)y + b(x)2y2

≡ (a(x)2 + b(x)2x(x− 1) · · · (x− a2g−1)) + (2a(x)b(x))y,

which is also congruent modulo f to x+0y. Because the standard form of the con-
gruence class is unique, 2a(x)b(x) = 0 and (a(x)2+b(x)2x(x−1) · · · (x−a2g−1)) = x.
Because char(k) 6= 2, a(x)b(x) = 0, i.e., a(x) = 0 or b(x) = 0. If a(x) = 0, then
x = b(x)2x(x − 1) · · · (x − a2g−1). But then, in particular, x − 1 divides x which
is absurd. If b(x) = 0, then x = a(x)2 which is again absurd. This contradiction
proves the hypothesis is false, i.e., k[x, y]/〈f〉 is not a UFD.

(c) Conclude the affine algebraic set V(f) ⊂ A2
k is not isomorphic to A1

k. This
affine algebraic set is the affine part of a genus g hyperelliptic curve.

Solution: The coordinate ring of A1
k is k[t], which is a UFD. Since the coordinate

ring of V(f) is not isomorphic to the coordinate ring of A1
k, V(f) is not isomorphic

to A1
k.

Difficult Problem 12 With notation from Problem 11, prove there is no non-
constant regular morphism F : A1

k → V(f). (Hint: If there where such a morphism,
what could you say about the irreducible factors of F ∗y, F ∗x, F ∗(x− 1), etc.)

Solution: Let F : A1
k → V(f) be a regular morphism. The coordinate ring of

A1
k is k[t], which is a UFD. Because they differ by nonzero constants, the ir-

reducible factors of F ∗x, F ∗(x − 1), etc. are all distinct. But the concatena-
tion of these irreducible factors is the irreducible factorization of F ∗y2, which
is a square. Therefore each of F ∗x, F ∗(x − 1), etc. is a square. In particu-
lar, F ∗x = u2 and F ∗(x − 1) = v2 for some polynomials u, v ∈ k[t]. But then
1 = F ∗x − F ∗(x − 1) = u2 − v2 = (u − v)(u + v). So u − v = a, u + v = a−1 for
some nonzero constant. Solving, 2u = a + a−1. Thus F ∗x is a constant. So also
F ∗(x(x−1) . . . (x−a2g−1)) is a constant. Thus F ∗(y2) is a constant, which implies
F ∗(y) is a constant. Therefore F is a constant morphism.

Problem 13 Let F : V → W be a regular morphism of affine algebraic sets, and
let F ∗ : k[W ] → k[V ] be the induced k-algebra homomorphism on coordinate rings.

(a) Prove Kernel(F ∗) is a radical ideal of k[W ].

Solution: The image of F ∗ is a subalgebra of a reduced ring, and so is itself a
reduced ring. Therefore the kernel of F ∗ is a radical ideal.

(b) Describe the ideal I(F (V )).

Solution: A polynomial function on W is zero on F (V ) iff the precomposition
with F is zero iff it is in the kernel of F ∗. Thus I(F (V )) is Kernel(F ∗).

(c) Give a geometric interpretation to the condition that F ∗ is injective.

By (b), F ∗ is injective iff I(F (V )) is the zero ideal iff the Zariski closure V(I(F (V )))
is all of W . Therefore F ∗ is injective iff F (V ) ⊂ W is dense in the Zariski topology.

(d) Give an example where F ∗ is injective, but F (V ) 6= W .
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Solution: Let V = V(xy−1) ⊂ A2
k, let W = A1

k and let F : V → W be F (x, y) = x.
Then F ∗ : k[x] → k[x, y]/〈xy − 1〉 = k[x][1/x] is injective. But 0 ∈ W − F (V ).

Problem 14 Give an example of a homeomorphic regular morphism of affine alge-
braic sets that is not an isomorphism of affine algebraic sets. Don’t write up: Try
to find an example where the coordinate ring of the target is a unique factorization
domain.

Solution: A standard example is to take V = A1
k, W = V(x3 − y2) ⊂ A2

k and
F : V → W is F (t) = (t2, t3). It isn’t hard to see this is a bijection. Because the
Zariski closed subset of V , resp. W , are V itself, resp. W itself, together with all
finite subsets, F is a homeomorphism. But it is not an isomorphism, because the
map of coordinate rings is not an isomorphism.

A more interesting example is the following, called the Frobenius morphism (ubiq-
uitous in positive characteristic algebra). Let k be an algebraically closed field of
positive characteristic p. Let n ≥ 1 and define F : An

k → An
k by F (x1, . . . , xn) =

(xp
1, . . . , x

p
n). This is a bijection because every element of k has a unique pth root.

Moreover, for every polynomial g ∈ k[x1, . . . , xn], gp = F ∗(h) for some element h ∈
k[x1, . . . , xn]. Therefore V(g) = V(gp) = F−1(V(h)), implying F (V(g)) = V(h). So
F is a closed, continuous bijection, i.e., F is a homeomorphism. However F is not
an isomorphism since there is no h ∈ k[x1, . . . , xn] such that F ∗h = x1.

Problem 15 For every choice of a, b ∈ k, find the irreducible components of the
affine algebraic set V(xy − z, bx + ay − z − ab) ⊂ A3

k.

Solution: The irreducible components are V(x− a, z − ay) and V(y − b, z − bx).
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